ACTA ARITHMETICA

Online First version

Annihilators of the ideal class group of a cyclic extension
of a global function field

by

PAscAL STUCKY (Miinchen)

1. Introduction. In[T88| F. Thaine studied the relation of the ideal class
group CI(L) of a totally real absolutely abelian number field L and a certain
group of cyclotomic units introduced by W. Sinnott in [S80]. These can be
used to produce annihilators of the p-Sylow subgroup CI(L),, of the ideal class
group. Sinnott’s methods were generalized by K. Rubin to abelian extensions
of an imaginary quadratic base field K in [R87], where the cyclotomic units are
replaced by elliptic units. These approaches are closely related to Kolyvagin’s
Euler system machinery; in fact, Rubin already works with so-called special
numbers in a quite general setting and then specializes to the case of an
imaginary quadratic base field. This method yields nice results when p does
not divide [L : Q] (resp. [L : K]), but when p is a divisor of the degree of the
extension, the annihilation statement obtained is not satisfying.

When L/Q is a cyclic extension of degree p¥, the ideal class group (con-
sidered as the Galois group of the Hilbert class field of L) splits into a genus
part (corresponding to the extension Fy/L, where F; denotes the genus field
of L) and a so-called non-genus part. In order to study this non-genus part
(6 —1)CI(L),, where o denotes a generator of Gal(L/Q), C. Greither and
R. Kucera [GK04], [GK06] extended Rubin’s method, to so-called semispecial
numbers. These satisfy weaker conditions but are still sufficient to produce
annihilators. The source of semispecial numbers in this case are certain roots
with respect to group-ring-valued exponents of Sinnott’s cyclotomic units.

It was shown by D. Burns and A. Hayward that the annihilation result
of Greither and Kucera can also be deduced from the equivariant Tamagawa
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number conjecture (see [BHOT|); however, the proof of Greither and Kucera
is constructive whereas the method of Burns and Hayward uses abstract ar-
guments. In particular, the explicit construction of the roots of circular units
enables Greither and Kucera to refine their method in [GK15| and weaken
the conditions on L to cover even more cases. They use results on Sinnott’s
module from [GK14] which are formulated in an abstract way without spec-
ifying an extension of number fields. Hence, these results can also be used
in other cases. This is done by H. Chapdelaine and R. Kuéera in [CK19],
where they prove an annihilation result for a cyclic extension of an imagi-
nary quadratic field of prime power degree. They take roots of elliptic units
studied by H. Oukhaba [O03] to obtain semispecial numbers and then adapt
the methods of Greither and Kucera to this case.

In this article, we want to apply the methods described above to the case
of global function fields. For this purpose, we explicitly construct elliptic units
based on the torsion points of sign-normalized rank-1 Drinfeld modules as
in [H85]. As in the case of cyclotomic units (see e.g. [K04]), there are several
methods to construct elliptic units in an arbitrary real abelian extension of
global function fields. We use the function field version of Sinnott’s cyclo-
tomic units and are hence able to prove an index formula for this subgroup
of the units of L analogously to the ones in the rational case [S80] and in the
imaginary quadratic case [O03|. There exist some other index formulae for
elliptic units in function fields, e.g. by L. Yin [Y97a], [Y97b|, who studied
cyclotomic units in ray class fields in the sense of L. Washington [W97], or by
H. Oukhaba [092], [095], [O97], who studied elliptic units in extensions where
at most one prime ideal ramifies in L/ K. However, there is no discussion of an
index formula for a general abelian extension of global function fields known
to the author. Moreover, we can use the methods of Greither and Kudcera to
extract roots of the elliptic units defined and obtain an annihilation result
similar to the one in the number field case.

The article has the following structure: For the convenience of the reader,
we first present a collection of the necessary notation and state the main
results afterwards. Then we introduce the elliptic units and prove an index
formula for them (Sections [2H4)). This part will closely follow [O03]. The rest
of the article (Sections will deal with the desired annihilation result and
will have the same structure as [CK19].

1.1. Notation and preliminaries. Let K be a global function field
with constant field IF;, and let oo be a fixed place of K of degree du.

e Of is the ring of functions in K which have no poles away from oo.
e h(K) (resp. h := hg) is the class number of K (resp. Ok), i.e. the cardi-
nality of Pic(K) (resp. Pic(Ok)). Note that h = h(K)deo.
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Weo 1= qd°° — 1.

orde is the valuation at oo.

K is the completion of K at oc.

F is the constant field of K.

For any prime p of K set Np := ¢38®) This is the order of the residue
class field at p.

An extension of K is called real if it is contained in K.,. Now let p
be a sign-normalized rank-1 Drinfeld module with respect to a fixed sign-
function sgn. Then we set K (1) to be the extension of K generated by all
coefficients of p,, x € Ok. Note that this extension is finite. For any integral
ideal m C Ok,

® pn, is the generator of the principal ideal generated by the elements p, for
all z € m,

e /A, is the set of m-torsion points of p,

(] Km = K(l) (Am),

e H. is the maximal real subfield of Ky, and is called the real ray class field
of K modulo m (in particular H = H(y) is the real Hilbert class field of K),

[ ] Hmoo = UnZl Hmn.
For any finite extension L/K,

Oy is the integral closure of Ok in L,

p(L) is the group of roots of unity in L,

wp = |u(L),

hr, is the class number of Oy,

if p C Ok is a prime ideal, then py is the product of all ideals of Op
above p,

e if L/K is abelian and m is an integral ideal of K, set Ly = L N Hy.

Note that wg = q — 1.
REMARK 1.1. It is shown in [H85| §3, §4] that

(i) wh, = W for all m (see [H85, §3]), so Fo is the constant field of Hp,
(ii) we have [Hyp : K| = (O /m)*| (see [H85, eq. (3.2)]) for m # (1)
and [H : K| = h,
(iii) [Km : Hu] = weo for m # 1 (see [H85, §4]) and [K(y) : H] = weo/wi
(see [H85, Cor. 4.8(2)]).

Now suppose that the extension L/K is Galois and p is a prime of K.
Then:

e Dy C Gal(L/K) is the decomposition group of a prime B of L above p.
If L/K is abelian, this subgroup does not depend on the choice of the
prime ‘B, hence we write Dy in this case.

e Ty C Dy is the inertia subgroup. If L/K is abelian, we again write T},.

e
Wi
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o (B,L/K) (or oy if the extension is clear) is a lift to Gal(L/K) of the
corresponding Frobenius element in Dy /Tis. These elements form a con-
jugacy class in Gal(L/K) which will be denoted by (p, L/K) (or o). If
L/K is abelian and p is unramified, this conjugacy class contains only one
element, which coincides with the Artin symbol.

For any abelian group G, we set
G := Hom(G, CX)
to be the group of characters of G. For any subset U C G, we define
s(U) := Z o € Z[G].
ocU
If U is a subgroup of G, we define the associated idempotent

1
ey = ms(U) € Q[aG].

To a character x € é, we also assign an idempotent

ey 1= ’(1;| Z x(o)o™t € C[q).

By extension of scalars with Z C R C C, we can evaluate a character y € G
at an element a = Y __~a,0 € R[G], i.e. we set

x(@) = 3 apx(o) €C.

oeG

oeG

Finally, for any multiplicative abelian group A and a positive integer m, we

set A/m = A/(A™).

1.2. Main results. Let L/K be a finite real abelian extension with
Galois group G. Then the elliptic units C', of L are essentially the norms
of torsion points in Ky, together with certain unramified units (for a precise
definition see Section . These form a subgroup of O] which has finite
index given by

THEOREM A. We have
(hweo ) K g by, [I,[L N Hpeo : Lyy] [Z]G] : U]

thK [L : L(l)] d(L)

REMARK. The Sinnott module U’ C Q[G] is defined in [S80]. The Sinnott

index [Z[|G] : U'] as well as the number d(L) can be computed in certain cases

(cf. Remark and Proposition . This index formula is an analogue of
[S80, Thm. 4.1] and [O03, Thm. 1|. It is proven as Theorem [4.4]

Now let p be an odd prime not dividing the class number hx of Ok, the
characteristic of K or the number of roots of unity wg of K. Suppose that

[OF : CL] =
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L/K is cyclic of degree p* for some k > 0; then we can define a subgroup
Cr, C OF satisfying CZK -u(L) = Cr. Let n be a top generator of C, (precisely
defined in Section [5) and pi,...,ps be the primes of K which ramify in L.
We assume s > 2. Let o be a generator of Gal(L/K). Then there is a certain
subextension K C L' C L such that we get

THEOREM B. Define y := Hf;%(l — o™), where n; is the index of the
decomposition group of p; in Gal(L/K). Then there exists a unique o € L
with n = a¥ and Ny 1 (a) = 1.

REMARK. The element « of Theorem B is a semispecial number in the
sense of Definition[7.3] (cf. Theorem 7.4). This result is an analogue of [GK15)
Thm. 1.2] and [CK19, Thm. 4.2]. The field L’ is defined right before Theo-
rem (.13

Now we can extend Cr, by a; (taking a root for each subextension K C
L; C L) to obtain Cr,. In this special case, the index formula of Theorem A
simplifies significantly and we obtain

— h
05 5T =t e
hk

for a certain p-power ¢y, (cf. Theorem . In particular, [Cf, : CL] = p¥
where v is determined by the n; (also see Theorem . Our main result
then reads

THEOREM C. There exists a number 0 < r < k such that

AnnZ[Gal(L/K)]((O}j /G)p) - AnnZ[Gal(L/K)]((l - Upr) Cl(OL)p).

REMARK. This is an analogue of [GK15, Thm. 5.3] and [CK19, Thm. 7.5].
The number r has a concrete description given in Theorem

2. Elliptic units in global function fields. Let {2 be the completion
of the algebraic closure of K., and let I' be a lattice in {2, i.e. a finitely
generated projective Og-module. The exponential function associated to I’
is defined by

We say that I" is special if the rank-1 Drinfeld module associated to I" (see
[H85, §5]) is sign-normalized with respect to the fixed sign-function sgn. For
each I', there exists an invariant £(I") € £2* such that £(I")I" is special. This
invariant is unique up to multiplication by an element of F.

2.1. Unramified elliptic units. Following [O97, Sec. 2|, we can fix a
fractional ideal ¢ of K and a choice of the invariant £(c) such that the sign-
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normalized rank-1 Drinfeld module associated to I" := £(¢)c¢ is exactly p. Let
D be the differential of the twisted polynomial ring (see e.g. [H85l §4]). Then
for any non-zero integral ideal a of K, the rank-1 Drinfeld module associated
to D(pg)a~ I is sign-normalized with respect to sgn, hence we can choose
E(a~le) = D(pa)ﬁ(c). Any fractional ideal of K is of the form d = ab~'¢ and
setting 7 := (07 '¢, K(1)/K) we can define

D(pp)
£0) = &(c).
) D(pa)T ©)
LEMMA 2.1. The element £(0) is well-defined, i.e. independent of the
choice of a and b. It depends on the choice of ¢ and &(c).
Proof. Suppose that 9 = ab~'¢ = o’6/~'¢. This implies ab’ = a’b and
hence

Pab’ = Pa’b-
The ideal class group acts on the set of isomorphism classes of rank-1 Drinfeld
modules and via this action we obtain (cf. [R02, Prop. 13.15|)

Tab’ _ — %ad 9a'v _ — %ad

Pab’ Py = Pad’t’ = Py Paa’s Pa’bPa” " = Paa’d = Py Paa’-
Since aa’ # 0 (we only consider non-zero ideals), we have D(pgy) # 0.

Because of o4y = 0grp = TOgr, We get
( D(py) >g“/ _ D(pg*') _ D(par)
D(pa)T D(PZ /b) (paa’)

_ D(pav) _ D(pg) (D(Pb’)> "

D(pua’) D(pu/“[’ ) D(pa’)T .
With these definitions, we obtain the following explicit form of the prin-
cipal ideal theorem:

LEMMA 2.2 (JO97, Lemma 3|). Let 91,02 and 0 be fractional ideals of K.
Then the ideal 0201_1(’)1((1) is principal, generated by £(01)/£(02). Moreover,

<£(01))(0,K(1)/K) ¢
£(02) £(02071)

Now let ¢ € Gal(H/K) be arbitrary and let a C Ok be such that
(a=', H/K) = 0. Let x € O be a generator of the principal ideal a”. Then
we can define

0(0) = (w€(a)) /v,

REMARK 2.3. (i) The element 0(c)"¥ is well-defined, i.e. independent
of the choice of a and x. Indeed, it is even independent of the choice of ¢
and £(¢): If ¢ and &'(¢') were used to define the invariants &'(9) for any
fractional ideal d, then &'(9)0 would again correspond to a sign-normalized
rank-1 Drinfeld module. Since these lattices only differ by an element of
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w(H) (see e.g. [O97, Sec. 2]), we obtain £(9) = ¢&'(d) for some ¢ € u(H).
Taking the weoth power kills the root of unity, so the element 9(o)"¥ will
be the same.

(ii) The above definition differs from the one given in [O97] by the factor
1/wg in the exponent. This definition of J(o) still depends on the choice of
the generator x and of the ideal ¢ and £(c¢). However, two different choices
only differ by an element of p(K). Since we are only interested in subgroups
of the units containing p(K), it suffices to define 9(¢) “up to roots of unity”.

LEMMA 2.4. Let 0,01,05 € Gal(H/K). Then 524 € O} and
(8(01)>U _ 9(010)
J(02) d(o20)’
Proof. This follows directly from Lemmaand [(’)IX((1> 1 O] = woo /WK
(see [YOTD, Lemma 1.5(1)]). m

2.2. Ramified elliptic units. Using the exponential function, we can

define the element
Am = E(m)em(1)

for each integral ideal m # (1). It is shown in [H85) §5] that this element is a
generator of the m-torsion points A}, of the sign-normalized rank-1 Drinfeld
module p’ associated to {(m)m. The construction of Ky, does not depend
on the chosen Drinfeld module but only on the sign-function, hence A\, €
K1y(Ay) = K (cf. [H85, §4]). Indeed, if b is an integral ideal of Of such
that b is prime to m and (b, K(1)/K) = (m™', K(1)/K), one can show that
(be, K/ K) defines a bijection Ay — A7, (note that {(m)m is associated to
the Drinfeld module be * p, then use [H85, Thm. 4.12]). It is also shown in
[H85, Thm. 4.17] that

Qg = _NKm/Hm (Am) = )\ﬁw S Hm

is a unit if m is not a prime power and that o, generates the ideal p}?‘:/ Wk,

REMARK 2.5. (i) The element Ay depends on the choice of ¢ which was
used to define the invariants £(m). As already noted in Remark [2.3] chang-
ing ¢ would change £(m) by a root of unity in H, hence aym = A~ is inde-
pendent of this choice.

(ii) Note that our definition of ay, differs from the one in [H85] by a sign.
This is necessary for obtaining the correct norm relation; see Proposition
below.

2.3. The group of elliptic units in an arbitrary real abelian ex-
tension. Now let L be a finite real abelian extension of K of conductor m.
Recall that for any integral ideal n C Ok we defined L, = L N Hy. Set

¢rn = Ny, /1, (on)".
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REMARK 2.6. Raising to the hth power is necessary to ensure compat-
ibility with the unramified elliptic units for the desired index formula. If
there are no unramified elliptic units (e.g. when L/K is a totally ramified

extension), we can also work with the elements n, = @i/ : ; see Section
COROLLARY 2.7.

(i) Ifn is not a prime power, then @, € Ofn.
[H:Ly]hweo /wi

(ii) If n=p*, then o1, generates the ideal P,
Proof. This follows directly from [H85, Thm. 4.17|. =
DEFINITION 2.8.
(i) For 01,02 € Gal(L()/K) define
50 _y,,,,(220)
Or(os) 0\ 0@y) )
where ¢; is any lift of 0; to Gal(H/K).
(ii) The subgroup Ay, of (’)Z(l) generated by u(L) and the elements
r(o1)
r(02)
for 01,09 € Gal(L(1)/K) is the group of unramified elliptic units of L.

(iii) The elements ¢r, for n|m, n # (1) are called the ramified elliptic
numbers of L.

(iv) The Gal(L/K)-submodule Py, of L™ generated by Ay, and by the ram-
ified elliptic numbers is called the group of elliptic numbers of L.

(v) The group of elliptic units Cr, of L is defined by Cr, := P, N OF.

PROPOSITION 2.9. We have

SDL,X‘U p ‘ n,
1—o;t
Nan/Ln (SDL,np) = @Lm/p ?[ ] p T nn 7é (1)a
Woo /Wi [H:L o
! K [H:L) (ﬁ(;))’ n=(1),

where oy = (p, Ly/K) and x, is a generator of p". The last equation should
be read modulo roots of unity (cf. Remark .

Proof. The first two cases can be deduced from the definition of the
elliptic units and the norm relation in [O95, Prop. 2.3].
In the case n = (1), we use [0O97, Remark 1| where it is said that

1
NKp/K(l) (ko) = é(g(c)C)

for a generator p, of Ap. As already discussed in Section [2.2} we can choose

(be, Kp /K) ™!

the generator p, = A, , where b is an integral ideal prime to p such
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that (b, K(;)/K) = (p~, K(1)/K). Then via Lemma 2.2 we obtain

K S\ PR g0
NKP/K(l)(AP) :NKp/Ku)(/J'P)(b 7K( )/K) :< f(C) ) - é(pl)( '

With the definitions of ¢y, , and 0r,(c) the desired result follows directly. =

2.4. L-functions and the analytic class number formula for func-
tion fields. Let L be an arbitrary finite abelian extension of K and set
G = Gal(L/K). Let x be a character of G and let p be a prime of K with
decomposition group Dy and inertia group T, C G. Recall that op € G is a
lift of the Frobenius element in D, /T,. We set

x(p) = x(oper,).-
Note that x(p) # 0 if and only if T}, C ker(x).

For a finite set S of primes of K we define the S-truncated L-function
Ls(x, s) associated to x as the Euler product

[T = x(e)Np™)"",  Re(s) > 1,
pES
where the product runs over all primes of K which are not contained in S.
If S =), we simply write
L(x;s) = Ly(x, 5)-
If x =1, we find that

Ls(1,s) = Ck,s(s)
is the S-truncated Dedekind (-function of K.
We summarize some results on L-functions:

ProrosiTIiON 2.10.

(i) Ls(x,s) has a meromorphic continuation to the whole complex plane,
which will also be denoted by Ls(x,s). If the extension K, = Lker(X) g
not a constant field extension, this continuation is holomorphic.

(ii) We have

Plg?)

K (s) (L=g )1 —q'9)
where P(z) € Z[zx] satisfies P(0) =1 and P(1) = h(K).

(i) If L' O L is a finite abelian extension of K with Galois group G' and if

1 1s the inflation of x to G', we have

Ls(x,s) = Ls(¢, s),

i.e. the L-function is invariant under inflation.
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(iv) We have
Ce(s) = Cr(s)- [] Lx 9),
x71
where the product runs over all non-trivial characters of G.

Proof. (i) is [R02, Thm. 9.25]; (ii) is [R02, Thm. 5.9]; (iii) is [NO6, Ch. VII,
Thm. (10.4)(iii)]; and (iv) is [NO6, Ch. VII, Cor. (10.5)(iii)].

Note that the proofs in [NO6] do not use the fact that the L-functions
considered there are defined over number fields. =

NOTATION 2.11. Let Lg(x,0) be the leading term of the Taylor expansion
of Ls(x,s) at s = 0.

Now suppose that L is a real abelian extension of K. Define So (L) to be
the set of all primes of L lying over oo (if the extension is clear, we will simply
write Soo). Since L/K is real, these are exactly [L : K| many primes and
each has norm Noo = ¢%=. Note that OF /u(L) is a free Z-module of rank
|Soo(L)| — 1 and hence we can choose units us, . .., u[z.x)—1 Which project to
a basis. Choosing a place wg € S (L), we can define a matrix

(—doo 0wy (1)) wesn (L\ (g € ZIEKITDX (LK),
e{1,...,[L:K]-1}
Then we define the regulator Ry, of L as the absolute value of the determinant
of this matrix. Note that the regulator RX° defined in [R02, Ch. 14] can be
obtained from our definition by

2.1) REo — (log() =11 Ry
Hence we obtain
THEOREM 2.12 (Analytic class number formula). We have
G 5..0) = —(og(q)) LT
wr,
Proof. This is [R02, Thm. 14.4] together with (2.1).

COROLLARY 2.13. We have
h

’LUK.
Proof. Since O = u(K), we get R = 1. =

2.5. Kronecker’s limit formulae. We fix a prime wg € Soo(Hm). Then
for each subfield L of Hy, there is a unique prime in S (L) below wy. Since
oo splits completely in Hy,, the valuations of these primes are compatible.
By abuse of notation, we denote each of these valuations by ord., i.e. for
an element x € Hy, we implicitly set

ordeo () := ordyy, ()
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and analogously for each subfield L of Hy,. The same convention will be used
for absolute values.

For n # (1) let Sy := {p € Ok | p prime, p|n} be the support of n. Now
we can state Kronecker’s second limit formula:

PROPOSITION 2.14.
(i) Let (1) #n|m and let x € Gal(/HT/K). Then

1
Ls,(x,00 = — > ordw(aq)x(0).
 seGal(Hy /K)

(ii) For any non-trivial character x € Gal(H/K), we have

1
L(x,0) = weh Z ordeo(9(0))x(0).
" geGal(H/K)
Proof. Part (i) is exactly the last equation in [H85|, whereas (ii) follows
directly from [O97, proof of Prop. 3| and Remark .

REMARK 2.15. By the proposition above, we can regard the ramified
elliptic units as Stark units. Indeed, if n # (1) then the set S := S, U {oo}
contains all places which ramify in H,/K and |S| > 2. Moreover, S contains
the completely split prime co. Then Stark’s conjecture (cf. [T84, Ch. IV,
Conj. 2.2]) predicts the existence of an element € such that

1 g
Ls(x.0)=——— > log(e7]oc)x(0)
Hu e Gal(Ha/K)

for all x € Gal(Hy/K). By definition of the L-function, we obtain
Ls(x;8) = (1 = x(00)Noo™) Ls, (x; 8) = (1 = Noo™*) Ls, (x; )
and hence
1 —or ay
Ls(x,0) =1og(Noo) Ls, (x,0) = ——— > log(Noo™ "= ¥))x (o)
° seGal(Hy/K)

=LY log(laflx(o).

w
° seGal(Hy/K)

3. Sinnott’s module. Let L/K be a fixed finite real abelian extension
of conductor m (as in Section . Remember that for a prime p of K the
element 0, € G = Gal(L/K) is the lift of an associated Frobenius element
in Dy /T,. Define 7, := o, 'er, € Q[G].

DEFINITION 3.1.

(i) We define p), := s(Gal(L/Ly)) [I;}a(1—Tp) for any integral ideal n, where
the product runs over all prime ideals of K dividing n.
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(ii) The Z[G]-submodule U’ of Q[G] generated by p, where n runs through
all integral ideals of O is called Sinnott’s module.
(iii) Define U} to be the kernel of multiplication by s(G) in U’.

REMARK 3.2. (i) The notation U’ and p}, is adopted from [CKI9]. In the
second part of the present article, we use a modification of Sinnott’s module
which will be denoted by U.

(ii) Note that for n { m, we have Ly = Lgcq(mm), hence pj = p’gcd(n’m).
Therefore, it suffices to consider the elements p, with n|m.

(iii) If n # (1), we have p; € Uj. As in the imaginary quadratic case
(cf. JO03]), the component of U’ generated by p’(l) intersected with Uy is
generated by

p’(l)(l —0), o€eaqG.
If 0,0" € G are lifts of the same element 7 € Gal(L(y)/K), then

P,(1)(1 —0)= P/(1)(1 —a'),
hence it suffices to consider the elements
py(1=7), 7€ Gal(Ly)/K),
where 7 € G is an arbitrary lift of 7.

Now recall the convention introduced in Section B.5 and consider the
logarithmic map

I, : L - Q[G], zw+ Z ordes (27)o ™1,
oeqG

w = hwso Z L(X,0)ey.

xed
x#1

and the element

Also define
I7:=(1—eq)lL.
PROPOSITION 3.3 (cf. [O03, Prop. 6]). Let n # 1 be such that n | m and
let T € Gal(L(1y/K). Then
or(1) -

l* — / l* — / 1 _

L(SDL,H) WPy L <8L(7_) wlo(l)( 7—)7
where T € G is any lift of T.

Proof. Tt suffices to prove the equations on the x-component for each
non-trivial character y € G. This follows from Proposition by a direct
computation. =

COROLLARY 3.4. We have I} (P) = w - Uj.
Proof. This follows directly from Remark .
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4. An index formula. We briefly recall the definition of Sinnott’s index
(see [O03, §4]). Let V' be a finite-dimensional vector space over L = Q or R.
A subgroup X of V is a lattice if rkz(X) = dimz (V) and L- X = V. If A and
B are lattices of V' and if « is an automorphism of V' such that y(A) = B
then we define

)

[A: B] := |det(v)].
If B C A, then [A : B] is the usual group index. Now we can prove
PROPOSITION 4.1 (cf. [O03, Prop. 7]). We have

[L:K]-1
U} 15 (Py)] = (7;“0> L wihi Ry
Proof. Using Proposition 2.10|iv) and

/{oo}(X7O) = log(Noo) - L(x,0) = dw log(q) - L(x, 0),

th

we obtain

* * h
Lo (0) = Ciegoep 0+ [T Loy 06, 0) = = "=(doc Tog(a NERETT Lix, 0
x#1 x#1
Together with the analytic class number formula in 2.12] this yields

IT 2.0y = —lhetie.

Therefore, we obtain

|det(w ]—Hx (hweo ) IFK] 1HLx,

x#1 x#1
(s \EET wichy Ry,
N doo 'th ’

where the first equality follows from [S80, Lemma 1.2(b)|. Since this is non-
zero, we find that multiplication by w is an automorphism of V' = Q - U|.
By Corollary [3.4] we have I} (P) = wUj{ and hence the desired Sinnott index
exists and is given by

[L:K]-1
(U4 15, (Pr)] = [Uf : U] = |det(w)| = (lww) 'W' -

Let p|m be a prime ideal of K. The norm relation of Proposition

Woo /wi [H:L :
[wi [H:L(1)] € Ppr, where z, is a generator of p.

implies that
DEFINITION 4.2. Let @, be the subgroup of P;, generated by p(L), Az

and the elements m:fm/wK[H:L(l)] for all p|m.
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Now we can state

PROPOSITION 4.3 (cf. [O03], Prop. 8|). We have
Hp [L N Hpoo . L(l)]
[PIENK: Q7" NK]

where p runs through all maximal ideals of Ok .

1L(Pr) : 1(Cp)] =

Proof. We can use the proof of [O03] Prop. 8| here. The essential inputs

(i) ker(l) N O} = u(L),
(i) I£(CL) =11(CL)
also hold in the function field case. =
Now we can state the desired index formula (cf. Theorem A):
THEOREM 4.4 (cf. [003, Thm. 1]). Set d(L) := [P/* N K : Q7" N K].
Then
(hweo)E K"V hy, TT,[L N Hy : Lyy) [Z]G] : U]
Proof. Let R = Z[G] and Ry be the kernel of multiplication with s(G)
in R. Since ker(Iy,) N Of = u(L) we get
[Of : O] = [1L(OF) : 1L(CL)] = [I(OF) : Ro|[Ro : 1(CL)]
[RU : U(,)] /
=————> Uy : 1,(CyL,
[Ro : lL(Of)][ o+ t(Ce)
[Ro:Usl . ]
= ———————[Uy : I7.(Pp)|[IL(Pr) : I(CL)].
oo PP 14(Co)
Note that all the indices above are defined, since each of the Z-modules has
the same rank. By definition of Sinnott’s index, one can easily show that
[Ro < 1L(OF)] = |det(A)],

where A is the matrix with entries

Of : C] =

(ordu (1i)) weSeo (L)\fuwo} 5
i€{1,.,[L:K]-1}
where wy is an arbitrary place in S (L) and the units uy, ..., .1 € OF
project to a basis of Of /u(L). By the definition of the regulator, we hence
get
Ry, = |det(—deoA)| = diE 57 det(A)),

S0
Ry,

[Ro : 1.,(Of)] = LK
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As in [O03| we find that

[R:U'|

[L: Ly

Using these computations and the results of Propositions [I.1] and [1.3] we
obtain

[Ro : Up] =

[Ox O ] o (hwoo)[L:K]_lehL Hp[LmHPOO :L(l)] [R : U/] .
r:Crl = wih T L) i)

We state some results on [R : U’] similar to [O03] §6, §7]:

PROPOSITION 4.5.

(i) The index [R : U'| is an integer divisible only by primes dividing L :
L] Moreover, if Gal(L/L(yy) is the direct product of its inertia groups
or if at most two primes ramify in L/K, then [R:U'] = 1.
(i) If G is cyclic, then [R: U'] = 1.
(iii) If L = Hy for some integral ideal m = [[;_, p5* for some s > 3 and if
h is coprime to wi, we have

[R:U") = wi® Y
where e is the index of the subgroup generated by the classes of p;

in CI(K).

Proof. (i) is |O03l Prop. 16[; (ii) is [S80, Thm. 5.3|; and (iii) is [O03,
Prop. 18].

Note that the arguments are only based on the group structure of G and
hence can also be applied in the case of function fields. =

REMARK 4.6. There is a list of cases in [O03, Remark 2| in which the
author gets d(L) = 1. With similar methods we can show that if one of the
following conditions holds, we have d(L) = 1:

(i) LCH,
(i) H C L
(iii) [H : L] and [L : L(yy] are coprime,
(iv) Gal(L/L y) is cyclic,
(v) Gal(L/L ) is the direct product of its inertia subgroups,
(vi) at most two primes ramify in L/K.
REMARK 4.7. (i) In [O92] H. Oukhaba defines a group &, of elliptic units

in an unramified extension L/K. He also shows that the elements of €% wooh

are of the form 19 ’
o, (1)or (o™ WK
11 < Ir(o=1)aL(7) >

TEG
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for o € G and certain rational numbers m, € Q (cf. [092, Prop. 3.6]). He
also derives an index formula in this case:

Of &L =

[H: L]

In this case, our index formula yields

X _ [L;K]AU’KhL
[OL : CL] (hwoo) th .

From the above description, we find that Ef“h C Cp, and so

. cweohy _ 3 WL
[Cp : E>"] = th.

(i) In [YO7b] L. Yin defines a group C of extended cyclotomic units in
the ray class fields K. The ramified elliptic units in the present article are
in fact norms of Yin’s cyclotomic units. However our construction of the
unramified units is quite different from the one in [Y97h]. Nevertheless, Yin
also computes an index formula

[OF,. (cn O ) = wihm,,

where @ = 0 if s < 2 and a = (272 — 1) — (s — 2) if s > 3. Note that
there is the additional assumption (h,wg) = 1 in the case s > 3. With these
assumptions, from our index formula we get

J-1WKhH, —(s—
(O, ¢ O] = (wog) 171 i 7D R 17,

With Proposition [£.5] this yields

(O,  Ctin] = (hwso) ™K 2wfe by,

5. A non-trivial root of an elliptic unit. With this definition of
elliptic units we can prove an analogue of the main result of [CK19| in the
case of global function fields.

5.1. Preliminaries. We use the notation of Section [[.T] with the follow-
ing additional assumptions:

e p is an odd prime such that p{q-(¢—1)-h.
e L is a real cyclic extension of K of degree p¥ for some positive integer k.
e We change notation to I' := Gal(L/K). Let o be a generator of I.

REMARK 5.1. Note that the assumption on L and p t h are exactly the
same as in [CKI9|. The assumption p{ (¢ — 1) = wg is also implied by the
hypotheses stated there. The only new assumption is p { g, i.e. we suppose
that p is prime to the characteristic of K, which is a natural hypothesis when
dealing with function fields.
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Note that since p t h, we have
LNH=K,

and we assume that there are exactly s > 2 primes p1,...,ps of K which
ramify in L. Now we introduce some more notation:

I:={1,...,s}.

Tj = Ty, is a generator of p?.

B; is a fixed prime ideal of L over p;.

For any abelian extension M/K let D;(M) := D,, C Gal(M/K) be the
decomposition group of p; and T;(M) := T,, € D;(M) be the inertia
group of p;.

e t; :=|T;(L)| is the ramification index of B; over p;.

e n;:=[G:D;(L)].

Then it follows that ¢;n; | p* and

n;—1
t
p; O = H ;B Jo’
Since p t ¢, this implies that the extension L/K is tamely ramified and hence
its conductor is square-free. Therefore the conductor is given by m := my
= Hjel pj-

5.2. The distinguished subfields F;. For any subset ) # J C I we
set my := HjeJ p;. With our previous observation we find that L C Hy,.

LEMMA 5.2. We have L C [];c; Hy,; .
Proof. By class field theory, we have a canonical isomorphism
Gal(Hy/H) 2 (O fm)” /im(p())
(see e.g. [H85, eq. (3.1)]). With the Chinese Remainder Theorem, we get

[Hw:H]  [(Ok/m)*|/wk
{ ]E[IHPJ HJEI Hy, : H]  [ljes[Hy, : H]
[1erl(Ok /pj)*] o1

" Wk e O /o) o K

The second equality follows, since we obtain Hy, N Hi;ll H,, = H for any
2 < j < s by considering the ramification of p;. Since p  wg, we get

Using the canonical isomorphism of the proof above, we obtain
Gal(Hy, /H) = (Ok /p;)” /im(u(K)),
which is a cyclic group. Since t; | [Ly, : K]|[Hp, : K] and p { h, it follows
that ¢; [ [Hy, : H]. Using p { h and [CK19, Lemma 2.1] we can define Fj to
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be the unique subfield of Hy, such that [F; : K] =t;. Then F;NH = K and
F;/K is totally ramified at p; and unramified everywhere else.
From now on, we will write Hy := Hy,, for each () # J C I and

Fy:=]]F C H.
jed
Note that the conductor of F; is mj. The definition of F; implies that the
Galois group Gal(Fy/Fp ;) = Tj(Fr) is the inertia subgroup of a prime of
F above pj, in particular for each j € I we have |Gal(Fy/Fp ;)] = t;.
LEMMA 5.3. For any two subsets ) # J; C Jy C I, we have Fj, =
Fj, NHy . Moreover, FiNH =K.

Proof. The inclusion Fj;, C Fj, N Hj, is clear. For the other inclusion,
we use induction on n = |Jo \ Ji|. The case n = 0, i.e. J; = Jo, is clear. If
n > 1, we fix an index j € Jo \ J; and we see that

Fpp NV Hy € Fi, N Hp\(5y € Frvgy
by the induction hypothesis. But we clearly also have F;, NH; C Hj,, hence
FJQQHjl th\{j}ﬂHJl gFjl
by the induction hypothesis.
The second assertion follows, since [Fj : K| is a p-power and pt h. =

PROPOSITION 5.4 (cf. [CK19, Prop. 2.2]). We have F;Hp ;3 = LHp ()
for each j € I. The Galois group

JeI
18 the direct product of its inertia subgroups. Moreover L C FT.

Proof. We can take the proof of [CK19, Prop. 2.2 here, since there are
no changes necessary. m

COROLLARY 5.5 (cf. [CK19, Cor. 2.3]).
(i) For each j € I we have

T;(L) = Gal(L/LN Fp ) = (0" /4),

MOT@O’U@T‘, FI\{j}L = F[ and [L N F[\{j} : K] = pk/tj.

(i1) Fr/L is an unramified abelian extension.

(iii) There exists a jo € I such that t;, = p*, and hence G = Gal(F;/K) has
exponent pk,

5.3. The elliptic units. Since F; N H = K by Lemma there are
no unramified elliptic units and we define

1/h
nJs = NHJ/FJ(amJ) = QDF/hmJ € OFJ’
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cf. Remark [2.6] Let 0; € G = Gal(Fy/K) be the lift of the Frobenius of p;
uniquely defined by o;|r,, ;, = (pj, Fn(j;/K) and oj|r; = 1. Then we can
state

LEMMA 5.6 (cf. [CK19l Lemma 3.1|). For any j € I we have
D;(L) = {o™) = (o1, 0" /).
LEMMA 5.7 (cf. [CK19, Lemma 3.2]). We have pu(Fr) = u(K).

Proof. For ¢ € u(Fy), the extension K ({)/K is a constant field extension.
Since all constant field extensions are unramified, we obtain

so (e pu(K). u
Proposition implies that for each J C I and each j € J,
1-o;!
I J\{j} #0,
(5.1) Ney iy (1) = 4 ™y o TAUEE

¢ T\ {5} =0,
for some ¢ € p(K).
In analogy to [CK19], we use the following definition of elliptic units:
DEFINITION 5.8.

e The group of elliptic numbers Pr, of Fr is defined to be the Z[G]-submo-
dule of F}* generated by p(K) and by ny for all § % J C I.

e The group of elliptic units Cr, of Fy is defined as Cr, := Pr, N (’)}X,I.
e The group of elliptic numbers Pr, of L is the Z[I']-submodule of L* gen-
erated by pu(K) and Np,/p,nr(ns) for all § # J C I.

e The group of elliptic units Cr, of L is defined as Cr, := PN O} .

Since FfN H = K = LN H, one can check that these elliptic units are
related to the units of Definition by

Cr, =Cp, - (K), Cp=Cp-p(K).

This fact and Theorem [£.4] imply the next lemma. We first need the

following

NoTATION 5.9. Let L be the maximal subfield of L containing K such
that L/K is ramified in at most one prime ideal of K.

Note that since I is cyclic and of prime power order, the field Lis unique.
LEMMA 5.10 (cf. [CK19, Lemma 3.4]).
(i) We have

h h
Or :C :wgﬂK]*lﬂ, or:C :w([)g:K}*liL~ )
[ Fr Fz] h [ L L] hL: L]

(ii) For B € Pr, we have B € Cp, if and only if Np, /i (B) € p(K).
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Sketch of proof. For more details and part (ii) see [CK19, Lemma 3.4].
First, we deduce from the above observation that [Cp, : Cp,] = RIFTKI
and [Cp, : Cp] = hIEKI=1 Moreover, it follows from Propositions (ii)
(resp. (i)) and Remark [£.6{iv) (resp. (v)) that the last quotient in is
equal to 1 for L (resp. Fr). We also obtain wg, = wy, = wk by Lemma
L(l) = K, Fr N Hye = F} for p = p; and szl[Fj : K| = [Fy : K], which
yields the first equation. For the second equation, we consider the definition
of L. By Corollary (iii) we know that there is a prime p; which is totally
ramified in L. Therefore, Lis the maximal subfield of L which is unramified
at every prime except p;, hence L = LN Hye. Since for p # p; the extension
L N Hy is unramified at p; and p; is totally ramified in L, we find that

LM Hye = K for p # p;, and hence [[,[L N Hyo : K] =[L: K].

Now we use a modification of Sinnott’s module, defined in [GK14]. This
module U is a Z[G]-submodule of Q[G] & Z*® generated over Z[G] by certain
elements py, J C I. Each Z summand is endowed with the trivial G-action

and has a standard basis element denoted by e;.
Define

g/:PF[ _>U7 nJHpI\Ja
for 0 #£ J C I and ¥(u(K)) = 0.

LEMMA 5.11 (cf. [CK19, Lemma 3.5]|). ¥ is a well-defined Z|G]-module
homomorphism satisfying ker(¥) = p(K) and U = ¥(Pr,) & (s(G)Z).
We call
1= Ng,/(n1)
the top generator of both Pr and Cr. Set B := Gal(Fr/L) C Gal(F;/K)
=G. Then I' = (o) 2 G/B.

LEMMA 5.12 (cf. |[CK19, Lemma 4.1]). An elliptic number 8 € Pp, be-
longs to L if and only if U(B) is fived by B, i.e. ¥(Pp,)? =W (Pp, NL).

Recall that n; is the index of the decomposition group of the ideal J3; C L
in I'. Without loss of generality we can assume

ny < - <ng

and set n = ny, = max{n; | i € I}. Since p|ts, we have n|pF~! and by

Corollary (iii) we get t; = p¥ and hence n; = 1. Let L be the unique sub-
field of L containing K such that [L' : K| = n. Note that (¢") = Gal(L/L’)
and that ps splits completely in L'/ K. Now we can restate Theorem B:

THEOREM 5.13 (cf. [CK19, Thm. 4.2]). There is a unique o € L such that
Npjp(a) =1 andn = oY, wherey = Hf;%(l—am). This « is an elliptic unit
of Fr, so that o € Cg, N L. Moreover, there is v € L* such that a = =",
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Proof. We have proven all ingredients which are used in the proof of
[CK19, Thm. 4.2], hence we obtain the same result for function fields. =

6. Enlarging the group C; of elliptic units of L. We label the
subfields of L containing K by

K=LyCLi G CLi=L,

hence we obtain [L; : K| = p'. Moreover, we define
M;:={jel|t;>p"}.

Since we have already seen that n; = 1, we deduce from the definition of M;

that
leMi CMyC---CM,=1.

For j € M; we get p' > p*/t; and with Corollary (1) we can see that
p; ramifies in L;. On the other hand, if p; ramifies in L;, this implies that
t; > [L : L;] = pF~% This shows that the conductor of L; is equal to myy,
and so L; C Fy, by Proposition applied to L;. Define

i = NFJMZ-/LZ' (nMi)
fori=1,...,k. Then nx =n € L is the top generator of Cr.
Now we fix j € {1,...,s} and let L; = L7, hence the index i is deter-
mined by t; = p*~t. By Lemma we get

(0™)/40” 1) = {al, o714 /(P 11).

This quotient group can be interpreted as the restriction to L;, since oP i =
oP" generates Gal(L/L;). Hence we can find a smallest positive integer c; such
that 0=%" |1, = 0j|1,. Moreover, we see that p; splits completely in L;/K
if and only if n; = PP /t;, in which case we get in particular ¢; = 1 since 0™
is already an element of the inertia group of p; of L/K. If p; does not split
completely in L;/ K, we find that n; < p*/t; and hence (0™|,) = (o|,). In
each case, we find that p { ¢; and hence 1 — %" and 1 — o™ are associated
in Z[I].

Now let i € {1,...,k} be such that |M;| > 1. We apply Theorem to
the extension L;/K and obtain an elliptic unit o; € CF]V[i N L; and a number

v; € L such that

N — Y L ey
(1) = where y; = HjEMi,1<j<maxMi(1 o J)?
(i) a; =~;", where z; = 1 — gCmax MiTmaxM;

Note that the new c; factors can be obtained since 1 — 0™ and 1 —o%"™ are
associated. In particular we find for |M;| = 2 that y; = 1 and «; = n; since
the product is empty. For ¢ € {1,...,k} with |M;| = 1 we set v; = n; and

1—0o
Qp =1);
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DEFINITION 6.1. The Z[I']-submodule Cf, of OF generated by u(K) and
Qi, ..., qp is called the extended group of elliptic units.

THEOREM 6.2 (cf. [CK19, Thm. 5.2|). The group of elliptic units Cr, of L
is a subgroup of Cp, of index [Cr : Cr] = p¥, where

k
V= E E ;.
j=1 1€M;
1<i<max Mj;

Moreover, setting ¢r, = (I[;_; t") - H§:1 p M e get

hL -1

WeE

Proof. We use the same proof as in [GKI5, Thm. 3.1]. Note that we need

the factors ¢; appearing in the definition of the «; here. m

REMARK 6.3. If p f woo, we obtain ¢ |hr. As in [CKI9, Remark 5.3],
this divisibility statement is really stronger than [Fy : L]|hr (which we
obtain since Fy/L is unramified). Indeed, by |[GK15, Prop. 3.4, [FT : L]| ¢
and we obtain equality if and only if ny =--- =ns_1 = 1.

P’ = [L: Z]*l and (O] :Cr] = wngl .

7. Semispecial numbers. We use the same notation as before and fix
m which is a power of p such that p*s | m. We know that for a prime ideal q
of K we have

Gal(Hy/H) = (Ok /q)” /im(u(K))

via Artin’s reciprocity map. In particular, Gal(H,/H) is cyclic. This enables
us to state

DEFINITION 7.1. For a prime ideal q of K such that |Ok/q| = 1 mod m,
we define K[q] to be the (unique) subfield of Hy containing K such that
[K[q] : K] = m. For a finite field extension M /K, we define M[q] := M K|q].

Note that since |0k /q| = 1 mod m and p 1 |u(K)|, we know that the order
of Gal(Hy/H) is divisible by m. Hence we get the existence and uniqueness
of K[q] from the fact that p{ h and from |[CK19l Lemma 2.1|. Since K|q] is
contained in Hy, it is only ramified at q. Moreover, since p { h, we find that
HNK][q) = K and hence it is totally ramified at q. Finally, since p 1 |Ox/q|,
we deduce that this ramification is tame.

DEFINITION 7.2. Let Q,, be the set of all prime ideals q of K such that

(i) |Ok /gl =1+ m mod m?,
(ii) q splits completely in L,
(ili) for each j =1,...,s, the class of z; is an mth power in (Ox/q)*.
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Now we want to study condition (iii) in some more detail. Let g be such
that |Ox/q] = 1 mod m. Since H N K[q] = K, we get Gal(H[q]/H) =
Gal(K[q]/K) by restriction. The first group is the unique quotient of the
cyclic group Gal(Hq/H) of order m, hence it is obtained by factoring out
mth powers. Therefore with the Artin reciprocity map and p { wx we get

(Ox/a)™/m = Gal(H[q]/H) = Gal(K]q]/ K),
where the composition map takes the class of & € Ok \ q to (a«Ok, K[q]/K).
Now the facts that ;0 = p? and p 1 h imply that condition (iii) is equiv-
alent to
(p;j, K[q]/K)=1 Vj=1,...,s.

DEFINITION 7.3. A number € € L* is called m-semispecial if for all but
finitely many q € Q,,, there exists a unit ¢4 € (’)z[q] such that

(i) Npgyoleq) =1,

(ii) if qz[q is the product of all primes of L[q] above q, then ¢ and g4 have
the same image in ((’)L[q]/qL[q])X/(m/pk(s_l)).
Since each q € Q,, is totally ramified in KJq]/K and splits completely

in L/K, we find that L[q]/L is totally ramified at each prime above q and
we obtain L N K[q] = K. Therefore, the two restriction maps

Gal(L[q]/L) — Gal(K[q]/K),  Gal(L[q]/K[q]) = Gal(L/K)
are isomorphisms.
THEOREM 7.4 (cf. [CK19, Thm. 6.4]). The elliptic unit « € Cp, N L of

Theorem [5.13| is m-semispecial.

Proof. Recall that « is a yth root of the top generator n of Cr,. We need to
show that for almost all q € Q,,, there exists an 4 satisfying the conditions
(i) and (ii) of Definition In fact, we can construct such an ey for each
q € Q,, with the methods of [CK19, Thm. 6.4]. There is only a slight change
in the result which implies the congruence relation. Therefore we skip the
proof of the theorem here and refer to [CK19] once again. Our version of
Proposition 6.6 of that paper is stated below. m

ProrosiTION 7.5 (cf. [CK19, Prop. 6.6]). Let q € O, Q :=|Oxk/q| and
let qrpq be the product of all primes of L[q] above q. Then
77@(1—0) = n(l—a)(Q—l)/m mod qz,
where 1 is the top generator of Cr, and 1) is the top generator of Crq)-

Proof. Let x € Ok be such that 2O = q". Let K, := K((n), where G,
is a primitive mth root of unity. Then K,,/K is a constant field extension,
and hence it is unramified everywhere. Moreover, it is an abelian extension.
Now we can define M := K,,(/?), and since Oy = u(K), p { |u(K)| and
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K, contains a primitive pth root of unity, this definition is independent of
the choice of the generator z and of its pth root. Then M/K is a Galois
extension. We claim that x is not a pth power in K,,. If z = o, then the
valuation of = at q would be p-times the valuation of o at q since K,/ K is
unramified. But zOx = ¢", and since p t h, this is a contradiction. Hence
the extension M /K, is cyclic of degree p. For finishing the proof, we need

LEMMA 7.6. Let q € Q,, and o be the unique generator of Gal(L[q]/K]|q])
which restricts to the original generator of Gal(L/K). Then there exists a
prime | of K such that

(i) |Ok/l] =1 mod m,
(ii) I is unramified in L[q] and (I, L[q]/K) = o071,
(iii) q is inert in K[l]/K.

Proof. By an explicit analysis of the Galois automorphisms, one checks
that K,,/K is an abelian extension whereas M /K, is not. As [M : K,,] = p,
there are no intermediate fields and hence K,,/K is the maximal abelian
subextension of M. This implies that M N L[q] = K,, N L[q], since L[q]/K
is an abelian extension. Since K, N L[q] is unramified and p t h, we find
K, N L[q] = K. Then there exists a 7 € Gal(L[q] - M/K) which restricts to
o~ € Gal(L[q]/K) and to a generator of Gal(M/K,,) C Gal(M/K).

Using a variant of Chebotarev’s Density Theorem (cf. [R02, Thm. 9.13B]),
we see that there exists a prime [ such that the Frobenius of [ is the conjugacy
class of 7 and |Og/I] = 1 mod m. Then conditions (i) and (ii) are satisfied
and it remains to prove that q is inert in K[l].

Since 7 acts as the identity on K,,, we find that [ splits completely
in K,,,/K. Let £ be a prime of K, over [; then O, /£ = Ok/l. Moreover,
since

(T|m) = Gal(M/ Ky,) = Z/pZ,

£ must be inert in M. It is easily seen that Oy /L0y = (O, /L)[€], where
¢ is the class of /P modulo £0y,. If x was a pth power in (O, /£)*, this
extension would be trivial, hence the inertia degree of £ would be 1. This is
a contradiction, since £ is inert in M, so we have shown that z cannot be a
pth power in (O /I)*.

Recall that we get (Og/1)*/m = Gal(K|[l]/K) from Artin’s Reciprocity
Theorem and p { wg. Since z is not a pth power in (Og/1)*, it follows
that the Frobenius (zOx, K[l]/K) = (q, K[[]/K)" is not a pth power in
Gal(K[l]/K). But since Gal(K[l]/K) is cyclic of order m and p { h, we deduce
that (q, K[l]/K) generates Gal(K[l]/K) and hence q is inert in KJl]. m

Using the prime [ satisfying the conditions of the previous lemma, we can
define the elliptic units

M= Npg e (@), 0= Np, 0iq0(cigm; ),
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where L[ql] is the compositum of L[q] and L[l]. Using the norm relation, we
find

—1

~ -0
Niye() =n °
~ "l—ol _ Al—o
Nijgu/oiq () =79 =77,
1
Niyp(m) =n""% =n'"7,
]

where oq = (q, L[l]/K) and oy = (I, L[g]/K) = o~ by condition (ii).

Since q € Qy, q splits completely in L/K, and by condition (iii), the
primes of L above q are inert in L[l]/L. Then each prime of L[q] above q
must also be inert in L[ql]/L[q]. Moreover, since each prime above q is un-
ramified in L[l]/L and totally ramified in L[q]/L, it is also totally ramified
in L[ql]/L[l], hence the product of all primes of L[ql] above g is given by
Az[q)OL[qy- Therefore, we get the following isomorphism of rings:

OLjqy/aLiqOLiqy = Or/a0L)y-
Since L[q] and L[] are linearly disjoint over L, and q splits completely in
L/K, we can extend o4 € Gal(L[l]/K) to L[ql] in such a way that this
extension (also denoted by o4) restricts to the identity on L[q]. In particular,
oq generates Gal(L[ql]/L[q]).

From the above isomorphism, we see that o4 acts as raising to the Qth
power on Op(q1/d1[q OLqy- Moreover, the group Gal(L[ql]/L[l]) is the inertia
group at q and acts trivially on Ofqq /q0 Ljqq- Therefore, we can express the
action of the norms N/ and Npjgq/r[q on (’)L (4] /qL 10L[q as raising
to the power m respectively to the power > /" 0, Q’ Since @ = 1 mod m,

there exists a positive integer r such that ) ;" Q’ = mr. Combining our
results, we get

L O(1— . _ Qr(l—oyt 1) _
77@(1 o) _n[QmT:n[ r(1—oy )_n[(Q ): (™

Since the natural map Op(q/qrq — OLjq1/9Lq)OLqy 18 injective, we obtain
the assertion of Proposition 7.5. =

7”)(Q—l)/m

8. Annihilating the ideal class group. Using the same notation as
before, we define
Hi ‘= Mmax M, -
This is always a power of p, and since M; C M; 11, we get u; < piyr1. We call
an index ¢ € {1,...,k— 1} a jump if pu; < p;y1. Further, we declare 0 and &
to be jumps and set pg = 0. Then we get

LEMMA 8.1 (cf. [CK19, Lemma 7.1]). Let 0 =59 < 51 < --- < s, = k be
the ordered sequence of all jumps. Then the set
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Ulog [0 <i<p —p)
t=1
is a Z-basis of Cr/u(K).

Proof. See |[GK15, Lemma 5.1]. m
With this basis, we obtain our next result:

LEMMA 8.2 (cf. [CK19, Lemma 7.2]). Let r be the highest jump less
than k, i.e. pp < pry1 = ns. Assume that p € Z[I'] is such that of, € C,.
Then N

(I—-0”)p=0.

Now we need an additional condition on the p-power m. We already know
that (m,q) =1, since p{ q, so q € (Z/mZ)*. Let d denote the order of ¢ in
(Z/mZ)*. Then there exists i > 0 and b € Z with p { b such that

¢ —1=0b-p'm.
If we define m/ := p’m, we still have p** | m’ and d is the order of ¢ modulo m/,
so we can assume without loss of generality that ¢ = 0. Now we can define f
to be the order of ¢ in (Z/m?Z)*. Then an easy computation shows

LEMMA 8.3. We have m| f/d.

THEOREM 8.4. Let m be a power of p such that m| f/d, and V C L*/m
a finitely generated Zy[I')-submodule. Without loss of generality we can choose
representatives of generators of V. which belong to Or. Suppose there is a
map z: V. — (Z/mZ)[I'| of Zy[I']-modules such that z(V N K*) =0, where
VN K> means V -0 (K*(L*)™/(L*)™). Then for any ¢ € Cl(Opr)p, there
exist infinitely many primes Q in L such that:

(i) q:= QN K is completely split in L/ K,

(i) [ ] = ¢, where [Q] is the projection of the ideal class of Q into CI(L),,
(iii) @ :=|0L/Q| =1+ m mod m?,

(iv) for each j =1,...,s, the class of x; is an mth power in (Ok/q)*,

(V) mo prime above q is contained in the support of the generators ofV and
there is a Zy[I')-linear map ¢ : (Or/q0L)* /m — (Z/mZ)[I"] such that
the diagram

v

V2 (Z/mZ)[]]

b=

(OL/a0L)* /m

commutes, where 1 corresponds to the reduction map.

REMARK 8.5. The reduction map 1 is defined on the chosen set of gen-
erators: Let x € Of, be a representative of such a generator; then T is the
class of x € Or/qOr. Since no prime above q is contained in the support
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of z, we get T € (Or/qO0L)*. Hence we can set 1(x) to be the class of 7 in
(Or/q0)* /m. This yields a well-defined Z,[I']-homomorphism.

Proof of Theorem 8.4. The proof is essentially the same as in [GK04
Thm. 17]. We only point out some changes which are necessary in the func-
tion field case:

e In the proof of [GK04, Lemma 18(i,ii)|, we only get an isomorphism to
a subgroup H of (Z/m?Z)* of order f. Nevertheless, we can choose ¢ as
a generator of H and hence prove the vanishing of the coinvariants since
ptqg—1.

e For [GKO04, Lemma 18(iii)] we consider the splitting field of oo in LF ;,
which is the unique subextension of degree (f,dw) (see [R02, Prop. 8.13]).
Then the claim follows since doo | h and pt h, so p { deo.

e In the last step of the construction of the element 7 which is used for
Chebotarev’s Density Theorem (cf. [R02, Thm. 9.13A]), we need an ele-
ment of order m in Gal(LF,s/LF ). At this point we need m | f/d from
Lemma

e Condition (iii) uses the fact that (,,2 is an element of the constant field
of Lqu. n

For the desired annihilation result, we need

THEOREM 8.6 (cf. [R87, Thm. (5.1)]). Let q be a prime of K which splits
completely in L, set Q == |Ok/q|. Let M be a finite extension of L which is
abelian over K and such that in M /L, all primes above q are totally tamely
ramified and no other primes ramify. Write qas for the product of all primes
of M above q and let A denote the annihilator in (Z/(Q — 1)Z)[I'] of the

cokernel of the reduction map

{e€ Oy | Nyyr(e) =13 = (Onr/am) ™.
Writew:=(Q — 1)/[M : L]. Then ACw(Z/(Q—1)Z)[I"] and for every prime
9 of L above q, w1 A annihilates the ideal class of Q in CI(Or)/[M : L].
Proof. The proof of [R87, Thm. (5.1)] also works for function fields. m

The above theorems are the main ingredients for proving

THEOREM 8.7. Let m be a power of p divisible by p** such that m | f/d.
Assume that € € Op is m-semispecial and let V. C L*/m be a finitely
generated Z[I']-module. Suppose that the class of € belongs to V. Now let
z:V = (Z/mZ)[I] be a Z[I']-linear map such that z(V N K*) = 0. Then
z(g) annihilates C1(OF),/(m/p*E=D).

Proof. See |GK04, Thm. 12|. m
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The main result of this article is Theorem C:
THEOREM 8.8. Let r be the highest jump less than k. Then
Anng (05 /Cr)p) C Annggry((1 — o) CU(OL)p).

Let J ={j € {1,...,s} | nj = ns}. Then the number r is determined by
PP =max{t; | j € J}.

Proof. The proof of [CK19, Thm. 7.5] can be used without any changes,
as we have proven all the main ingredients in Theorems [8.4] 8.6 and [8.7] =
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Abstract (will appear on the journal’s web site only)

Let K be a global function field and fix a place oo of K. Let L/K be
a finite real abelian extension, i.e. a finite, abelian extension such that oo
splits completely in L. Then we define a group Cp, of elliptic units in Of
analogously to Sinnott’s cyclotomic units and compute the index [O] : Cr].
In the second part of this article, we additionally assume that L is a cyclic
extension of prime power degree. Then we can use the methods of Greither
and Kucera to take certain roots of these elliptic units and prove a result on
the annihilation of the p-part of the class group of L.
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