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1. Introduction. In [T88] F. Thaine studied the relation of the ideal class
group Cl(L) of a totally real absolutely abelian number field L and a certain
group of cyclotomic units introduced by W. Sinnott in [S80]. These can be
used to produce annihilators of the p-Sylow subgroup Cl(L)p of the ideal class
group. Sinnott’s methods were generalized by K. Rubin to abelian extensions
of an imaginary quadratic base fieldK in [R87], where the cyclotomic units are
replaced by elliptic units. These approaches are closely related to Kolyvagin’s
Euler system machinery; in fact, Rubin already works with so-called special
numbers in a quite general setting and then specializes to the case of an
imaginary quadratic base field. This method yields nice results when p does
not divide [L : Q] (resp. [L : K]), but when p is a divisor of the degree of the
extension, the annihilation statement obtained is not satisfying.

When L/Q is a cyclic extension of degree pk, the ideal class group (con-
sidered as the Galois group of the Hilbert class field of L) splits into a genus
part (corresponding to the extension FI/L, where FI denotes the genus field
of L) and a so-called non-genus part. In order to study this non-genus part
(σ − 1)Cl(L)p, where σ denotes a generator of Gal(L/Q), C. Greither and
R. Kučera [GK04], [GK06] extended Rubin’s method, to so-called semispecial
numbers. These satisfy weaker conditions but are still sufficient to produce
annihilators. The source of semispecial numbers in this case are certain roots
with respect to group-ring-valued exponents of Sinnott’s cyclotomic units.

It was shown by D. Burns and A. Hayward that the annihilation result
of Greither and Kučera can also be deduced from the equivariant Tamagawa
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number conjecture (see [BH07]); however, the proof of Greither and Kučera
is constructive whereas the method of Burns and Hayward uses abstract ar-
guments. In particular, the explicit construction of the roots of circular units
enables Greither and Kučera to refine their method in [GK15] and weaken
the conditions on L to cover even more cases. They use results on Sinnott’s
module from [GK14] which are formulated in an abstract way without spec-
ifying an extension of number fields. Hence, these results can also be used
in other cases. This is done by H. Chapdelaine and R. Kučera in [CK19],
where they prove an annihilation result for a cyclic extension of an imagi-
nary quadratic field of prime power degree. They take roots of elliptic units
studied by H. Oukhaba [O03] to obtain semispecial numbers and then adapt
the methods of Greither and Kučera to this case.

In this article, we want to apply the methods described above to the case
of global function fields. For this purpose, we explicitly construct elliptic units
based on the torsion points of sign-normalized rank-1 Drinfeld modules as
in [H85]. As in the case of cyclotomic units (see e.g. [K04]), there are several
methods to construct elliptic units in an arbitrary real abelian extension of
global function fields. We use the function field version of Sinnott’s cyclo-
tomic units and are hence able to prove an index formula for this subgroup
of the units of L analogously to the ones in the rational case [S80] and in the
imaginary quadratic case [O03]. There exist some other index formulae for
elliptic units in function fields, e.g. by L. Yin [Y97a], [Y97b], who studied
cyclotomic units in ray class fields in the sense of L. Washington [W97], or by
H. Oukhaba [O92], [O95], [O97], who studied elliptic units in extensions where
at most one prime ideal ramifies in L/K. However, there is no discussion of an
index formula for a general abelian extension of global function fields known
to the author. Moreover, we can use the methods of Greither and Kučera to
extract roots of the elliptic units defined and obtain an annihilation result
similar to the one in the number field case.

The article has the following structure: For the convenience of the reader,
we first present a collection of the necessary notation and state the main
results afterwards. Then we introduce the elliptic units and prove an index
formula for them (Sections 2–4). This part will closely follow [O03]. The rest
of the article (Sections 5–8) will deal with the desired annihilation result and
will have the same structure as [CK19].

1.1. Notation and preliminaries. Let K be a global function field
with constant field Fq and let ∞ be a fixed place of K of degree d∞.

• OK is the ring of functions in K which have no poles away from ∞.
• h(K) (resp. h := hK) is the class number of K (resp. OK), i.e. the cardi-

nality of Pic(K) (resp. Pic(OK)). Note that h = h(K)d∞.
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• w∞ := qd∞ − 1.
• ord∞ is the valuation at ∞.
• K∞ is the completion of K at ∞.
• F∞ is the constant field of K∞.
• For any prime p of K set Np := qdeg(p). This is the order of the residue

class field at p.

An extension of K is called real if it is contained in K∞. Now let ρ
be a sign-normalized rank-1 Drinfeld module with respect to a fixed sign-
function sgn. Then we set K(1) to be the extension of K generated by all
coefficients of ρx, x ∈ OK . Note that this extension is finite. For any integral
ideal m ⊆ OK ,

• ρm is the generator of the principal ideal generated by the elements ρx for
all x ∈ m,
• Λm is the set of m-torsion points of ρ,
• Km := K(1)(Λm),
• Hm is the maximal real subfield of Km and is called the real ray class field

of K modulo m (in particular H = H(1) is the real Hilbert class field of K),
• Hm∞ :=

⋃
n≥1Hmn .

For any finite extension L/K,

• OL is the integral closure of OK in L,
• µ(L) is the group of roots of unity in L,
• wL := |µ(L)|,
• hL is the class number of OL,
• if p ⊆ OK is a prime ideal, then pL is the product of all ideals of OL

above p,
• if L/K is abelian and m is an integral ideal of K, set Lm = L ∩Hm.

Note that wK = q − 1.

Remark 1.1. It is shown in [H85, §3, §4] that

(i) wHm = w∞ for all m (see [H85, §3]), so F∞ is the constant field of Hm,
(ii) we have [Hm : K] = h

wK
|(OK/m)×| (see [H85, eq. (3.2)]) for m 6= (1)

and [H : K] = h,
(iii) [Km : Hm] = w∞ for m 6= 1 (see [H85, §4]) and [K(1) : H] = w∞/wK

(see [H85, Cor. 4.8(2)]).

Now suppose that the extension L/K is Galois and p is a prime of K.
Then:

• DP ⊆ Gal(L/K) is the decomposition group of a prime P of L above p.
If L/K is abelian, this subgroup does not depend on the choice of the
prime P, hence we write Dp in this case.
• TP ⊆ DP is the inertia subgroup. If L/K is abelian, we again write Tp.
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• (P, L/K) (or σP if the extension is clear) is a lift to Gal(L/K) of the
corresponding Frobenius element in DP/TP. These elements form a con-
jugacy class in Gal(L/K) which will be denoted by (p, L/K) (or σp). If
L/K is abelian and p is unramified, this conjugacy class contains only one
element, which coincides with the Artin symbol.

For any abelian group G, we set

Ĝ := Hom(G,C×)
to be the group of characters of G. For any subset U ⊆ G, we define

s(U) :=
∑
σ∈U

σ ∈ Z[G].

If U is a subgroup of G, we define the associated idempotent

eU :=
1

|U |
s(U) ∈ Q[G].

To a character χ ∈ Ĝ, we also assign an idempotent

eχ :=
1

|G|
∑
σ∈G

χ(σ)σ−1 ∈ C[G].

By extension of scalars with Z ⊆ R ⊆ C, we can evaluate a character χ ∈ Ĝ
at an element a =

∑
σ∈G aσσ ∈ R[G], i.e. we set

χ(a) =
∑
σ∈G

aσχ(σ) ∈ C.

Finally, for any multiplicative abelian group A and a positive integer m, we
set A/m := A/(Am).

1.2. Main results. Let L/K be a finite real abelian extension with
Galois group G. Then the elliptic units CL of L are essentially the norms
of torsion points in Km together with certain unramified units (for a precise
definition see Section 2.3). These form a subgroup of O×L which has finite
index given by

Theorem A. We have

[O×L : CL] =
(hKw∞)[L:K]−1wKhL

wLhK

∏
p[L ∩Hp∞ : L(1)]

[L : L(1)]

[Z[G] : U ′]
d(L)

.

Remark. The Sinnott module U ′ ⊆ Q[G] is defined in [S80]. The Sinnott
index [Z[G] : U ′] as well as the number d(L) can be computed in certain cases
(cf. Remark 4.6 and Proposition 4.5). This index formula is an analogue of
[S80, Thm. 4.1] and [O03, Thm. 1]. It is proven as Theorem 4.4.

Now let p be an odd prime not dividing the class number hK of OK , the
characteristic of K or the number of roots of unity wK of K. Suppose that
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L/K is cyclic of degree pk for some k > 0; then we can define a subgroup
CL ⊆ O×L satisfying ChKL ·µ(L) = CL. Let η be a top generator of CL (precisely
defined in Section 5) and p1, . . . , ps be the primes of K which ramify in L.
We assume s ≥ 2. Let σ be a generator of Gal(L/K). Then there is a certain
subextension K ⊆ L′ ⊂ L such that we get

Theorem B. Define y :=
∏s−1
i=2 (1 − σni), where ni is the index of the

decomposition group of pi in Gal(L/K). Then there exists a unique α ∈ L
with η = αy and NL/L′(α) = 1.

Remark. The element α of Theorem B is a semispecial number in the
sense of Definition 7.3 (cf. Theorem 7.4). This result is an analogue of [GK15,
Thm. 1.2] and [CK19, Thm. 4.2]. The field L′ is defined right before Theo-
rem 5.13.

Now we can extend CL by αj (taking a root for each subextension K ⊆
Lj ⊆ L) to obtain CL. In this special case, the index formula of Theorem A
simplifies significantly and we obtain

[O×L : CL] = wp
k−1
∞ · hL

hK
· ϕ−1L

for a certain p-power ϕL (cf. Theorem 6.2). In particular, [CL : CL] = pν

where ν is determined by the ni (also see Theorem 6.2). Our main result
then reads

Theorem C. There exists a number 0 ≤ r < k such that

AnnZ[Gal(L/K)]((O×L/CL)p) ⊆ AnnZ[Gal(L/K)]((1− σp
r
) Cl(OL)p).

Remark. This is an analogue of [GK15, Thm. 5.3] and [CK19, Thm. 7.5].
The number r has a concrete description given in Theorem 8.8.

2. Elliptic units in global function fields. Let Ω be the completion
of the algebraic closure of K∞ and let Γ be a lattice in Ω, i.e. a finitely
generated projective OK-module. The exponential function associated to Γ
is defined by

eΓ : Ω → Ω, z 7→ z
∏
γ∈Γ
γ 6=0

(
1− z

γ

)
.

We say that Γ is special if the rank-1 Drinfeld module associated to Γ (see
[H85, §5]) is sign-normalized with respect to the fixed sign-function sgn. For
each Γ , there exists an invariant ξ(Γ ) ∈ Ω× such that ξ(Γ )Γ is special. This
invariant is unique up to multiplication by an element of F∞.

2.1. Unramified elliptic units. Following [O97, Sec. 2], we can fix a
fractional ideal c of K and a choice of the invariant ξ(c) such that the sign-
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normalized rank-1 Drinfeld module associated to Γ := ξ(c)c is exactly ρ. Let
D be the differential of the twisted polynomial ring (see e.g. [H85, §4]). Then
for any non-zero integral ideal a of K, the rank-1 Drinfeld module associated
to D(ρa)a

−1Γ is sign-normalized with respect to sgn, hence we can choose
ξ(a−1c) = D(ρa)ξ(c). Any fractional ideal of K is of the form d = ab−1c and
setting τ := (d−1c,K(1)/K) we can define

ξ(d) =
D(ρb)

D(ρa)τ
ξ(c).

Lemma 2.1. The element ξ(d) is well-defined, i.e. independent of the
choice of a and b. It depends on the choice of c and ξ(c).

Proof. Suppose that d = ab−1c = a′b′−1c. This implies ab′ = a′b and
hence

ρab′ = ρa′b.

The ideal class group acts on the set of isomorphism classes of rank-1 Drinfeld
modules and via this action we obtain (cf. [R02, Prop. 13.15])

ρab′ρ
σab′
a′ = ρaa′b′ = ρ

σaa′
b′ ρaa′ , ρa′bρ

σa′b
a = ρaa′b = ρ

σaa′
b ρaa′ .

Since aa′ 6= 0 (we only consider non-zero ideals), we have D(ρaa′) 6= 0.
Because of σab′ = σa′b = τσaa′ , we get(

D(ρb)

D(ρa)τ

)σaa′
=
D(ρ

σaa′
b )

D(ρ
σa′b
a )

=
D(ρa′b)

D(ρaa′)

=
D(ρab′)

D(ρaa′)
=
D(ρ

σaa′
b′ )

D(ρ
σab′
a′ )

=

(
D(ρb′)

D(ρa′)τ

)σaa′
.

With these definitions, we obtain the following explicit form of the prin-
cipal ideal theorem:

Lemma 2.2 ([O97, Lemma 3]). Let d1, d2 and d be fractional ideals of K.
Then the ideal d2d−11 OK(1)

is principal, generated by ξ(d1)/ξ(d2). Moreover,(
ξ(d1)

ξ(d2)

)(d,K(1)/K)

=
ξ(d1d

−1)

ξ(d2d−1)
.

Now let σ ∈ Gal(H/K) be arbitrary and let a ⊆ OK be such that
(a−1, H/K) = σ. Let x ∈ OK be a generator of the principal ideal ah. Then
we can define

∂(σ) := (xξ(a)h)w∞/wK .

Remark 2.3. (i) The element ∂(σ)wK is well-defined, i.e. independent
of the choice of a and x. Indeed, it is even independent of the choice of c
and ξ(c): If c′ and ξ′(c′) were used to define the invariants ξ′(d) for any
fractional ideal d, then ξ′(d)d would again correspond to a sign-normalized
rank-1 Drinfeld module. Since these lattices only differ by an element of
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µ(H) (see e.g. [O97, Sec. 2]), we obtain ξ(d) = ζξ′(d) for some ζ ∈ µ(H).
Taking the w∞th power kills the root of unity, so the element ∂(σ)wK will
be the same.

(ii) The above definition differs from the one given in [O97] by the factor
1/wK in the exponent. This definition of ∂(σ) still depends on the choice of
the generator x and of the ideal c and ξ(c). However, two different choices
only differ by an element of µ(K). Since we are only interested in subgroups
of the units containing µ(K), it suffices to define ∂(σ) “up to roots of unity”.

Lemma 2.4. Let σ, σ1, σ2 ∈ Gal(H/K). Then ∂(σ1)
∂(σ2)

∈ O×H and(
∂(σ1)

∂(σ2)

)σ
=
∂(σ1σ)

∂(σ2σ)
.

Proof. This follows directly from Lemma 2.2 and [O×K(1)
: O×H ] = w∞/wK

(see [Y97b, Lemma 1.5(1)]).

2.2. Ramified elliptic units. Using the exponential function, we can
define the element

λm := ξ(m)em(1)

for each integral ideal m 6= (1). It is shown in [H85, §5] that this element is a
generator of the m-torsion points Λ′m of the sign-normalized rank-1 Drinfeld
module ρ′ associated to ξ(m)m. The construction of Km does not depend
on the chosen Drinfeld module but only on the sign-function, hence λm ∈
K(1)(Λ

′
m) = Km (cf. [H85, §4]). Indeed, if b is an integral ideal of OK such

that b is prime to m and (b,K(1)/K) = (m−1,K(1)/K), one can show that
(bc,Km/K) defines a bijection Λm → Λ′m (note that ξ(m)m is associated to
the Drinfeld module bc ∗ ρ, then use [H85, Thm. 4.12]). It is also shown in
[H85, Thm. 4.17] that

αm := −NKm/Hm
(λm) = λw∞m ∈ Hm

is a unit if m is not a prime power and that αpk generates the ideal pw∞/wkHm
.

Remark 2.5. (i) The element λm depends on the choice of c which was
used to define the invariants ξ(m). As already noted in Remark 2.3, chang-
ing c would change ξ(m) by a root of unity in H, hence αm = λw∞m is inde-
pendent of this choice.

(ii) Note that our definition of αm differs from the one in [H85] by a sign.
This is necessary for obtaining the correct norm relation; see Proposition 2.9
below.

2.3. The group of elliptic units in an arbitrary real abelian ex-
tension. Now let L be a finite real abelian extension of K of conductor m.
Recall that for any integral ideal n ⊆ OK we defined Ln = L ∩Hn. Set

ϕL,n := NHn/Ln
(αn)

h.
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Remark 2.6. Raising to the hth power is necessary to ensure compat-
ibility with the unramified elliptic units for the desired index formula. If
there are no unramified elliptic units (e.g. when L/K is a totally ramified
extension), we can also work with the elements ηn = ϕ

1/h
L,n ; see Section 5.

Corollary 2.7.

(i) If n is not a prime power, then ϕL,n ∈ O×Ln
.

(ii) If n = pk, then ϕL,n generates the ideal p
[H:L(1)]hw∞/wK
Ln

.

Proof. This follows directly from [H85, Thm. 4.17].

Definition 2.8.

(i) For σ1, σ2 ∈ Gal(L(1)/K) define

∂L(σ1)

∂L(σ2)
:= NH/L(1)

(
∂(σ̂1)

∂(σ̂2)

)
,

where σ̂i is any lift of σi to Gal(H/K).
(ii) The subgroup ∆L of O×L(1)

generated by µ(L) and the elements

∂L(σ1)

∂L(σ2)

for σ1, σ2 ∈ Gal(L(1)/K) is the group of unramified elliptic units of L.
(iii) The elements ϕL,n for n |m, n 6= (1) are called the ramified elliptic

numbers of L.
(iv) The Gal(L/K)-submodule PL of L× generated by ∆L and by the ram-

ified elliptic numbers is called the group of elliptic numbers of L.
(v) The group of elliptic units CL of L is defined by CL := PL ∩ O×L .

Proposition 2.9. We have

NLnp/Ln
(ϕL,np) =


ϕL,n, p | n,

ϕ
1−σ−1

p

L,n , p - n, n 6= (1),

x
w∞/wK [H:L(1)]
p

( ∂L(1)

∂L(σ
−1
p )

)
, n = (1),

where σp = (p, Ln/K) and xp is a generator of ph. The last equation should
be read modulo roots of unity (cf. Remark 2.3).

Proof. The first two cases can be deduced from the definition of the
elliptic units and the norm relation in [O95, Prop. 2.3].

In the case n = (1), we use [O97, Remark 1] where it is said that

NKp/K(1)
(µp) =

ξ(p−1c)

ξ(c)

for a generator µp of Λp. As already discussed in Section 2.2, we can choose
the generator µp = λ

(bc,Kp/K)−1

p , where b is an integral ideal prime to p such
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that (b,K(1)/K) = (p−1,K(1)/K). Then via Lemma 2.2 we obtain

NKp/K(1)
(λp) = NKp/K(1)

(µp)
(bc,K(1)/K) =

(
ξ(p−1c)

ξ(c)

)(p−1c,K(1)/K)

=
ξ(OK)

ξ(p)
.

With the definitions of ϕL,p and ∂L(σ) the desired result follows directly.

2.4. L-functions and the analytic class number formula for func-
tion fields. Let L be an arbitrary finite abelian extension of K and set
G := Gal(L/K). Let χ be a character of G and let p be a prime of K with
decomposition group Dp and inertia group Tp ⊆ G. Recall that σp ∈ G is a
lift of the Frobenius element in Dp/Tp. We set

χ(p) = χ(σpeTp).

Note that χ(p) 6= 0 if and only if Tp ⊆ ker(χ).
For a finite set S of primes of K we define the S-truncated L-function

LS(χ, s) associated to χ as the Euler product∏
p/∈S

(1− χ(p)Np−s)−1, Re(s) > 1,

where the product runs over all primes of K which are not contained in S.
If S = ∅, we simply write

L(χ, s) = L∅(χ, s).

If χ = 1, we find that

LS(1, s) = ζK,S(s)

is the S-truncated Dedekind ζ-function of K.
We summarize some results on L-functions:

Proposition 2.10.

(i) LS(χ, s) has a meromorphic continuation to the whole complex plane,
which will also be denoted by LS(χ, s). If the extension Kχ = Lker(χ) is
not a constant field extension, this continuation is holomorphic.

(ii) We have

ζK(s) =
P (q−s)

(1− q−s)(1− q1−s)
,

where P (x) ∈ Z[x] satisfies P (0) = 1 and P (1) = h(K).
(iii) If L′ ⊇ L is a finite abelian extension of K with Galois group G′ and if

ψ is the inflation of χ to G′, we have

LS(χ, s) = LS(ψ, s),

i.e. the L-function is invariant under inflation.
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(iv) We have
ζL(s) = ζK(s) ·

∏
χ 6=1

L(χ, s),

where the product runs over all non-trivial characters of G.

Proof. (i) is [R02, Thm. 9.25]; (ii) is [R02, Thm. 5.9]; (iii) is [N06, Ch. VII,
Thm. (10.4)(iii)]; and (iv) is [N06, Ch. VII, Cor. (10.5)(iii)].

Note that the proofs in [N06] do not use the fact that the L-functions
considered there are defined over number fields.

Notation 2.11. Let L∗S(χ, 0) be the leading term of the Taylor expansion
of LS(χ, s) at s = 0.

Now suppose that L is a real abelian extension of K. Define S∞(L) to be
the set of all primes of L lying over∞ (if the extension is clear, we will simply
write S∞). Since L/K is real, these are exactly [L : K] many primes and
each has norm N∞ = qd∞ . Note that O×L/µ(L) is a free Z-module of rank
|S∞(L)|− 1 and hence we can choose units u1, . . . , u[L:K]−1 which project to
a basis. Choosing a place w0 ∈ S∞(L), we can define a matrix

(−d∞ ordw(ui)) w∈S∞(L)\{w0}
i∈{1,...,[L:K]−1}

∈ Z([L:K]−1)×([L:K]−1).

Then we define the regulator RL of L as the absolute value of the determinant
of this matrix. Note that the regulator RRos

L defined in [R02, Ch. 14] can be
obtained from our definition by

(2.1) RRos
L = (log(q))[L:K]−1RL.

Hence we obtain

Theorem 2.12 (Analytic class number formula). We have

ζ∗L,S∞(0) = −(log(q))
[L:K]−1hLRL

wL
.

Proof. This is [R02, Thm. 14.4] together with (2.1).

Corollary 2.13. We have

ζ∗K,{∞}(0) = −
h

wK
.

Proof. Since O×K = µ(K), we get RK = 1.

2.5. Kronecker’s limit formulae. We fix a prime w0 ∈ S∞(Hm). Then
for each subfield L of Hm, there is a unique prime in S∞(L) below w0. Since
∞ splits completely in Hm, the valuations of these primes are compatible.
By abuse of notation, we denote each of these valuations by ord∞, i.e. for
an element x ∈ Hm we implicitly set

ord∞(x) := ordw0(x)
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and analogously for each subfield L of Hm. The same convention will be used
for absolute values.

For n 6= (1) let Sn := {p ⊆ OK | p prime, p | n} be the support of n. Now
we can state Kronecker’s second limit formula:

Proposition 2.14.

(i) Let (1) 6= n |m and let χ ∈ ̂Gal(Hn/K). Then

LSn(χ, 0) =
1

w∞

∑
σ∈Gal(Hn/K)

ord∞(ασn )χ(σ).

(ii) For any non-trivial character χ ∈ ̂Gal(H/K), we have

L(χ, 0) =
1

w∞h

∑
σ∈Gal(H/K)

ord∞(∂(σ))χ(σ).

Proof. Part (i) is exactly the last equation in [H85], whereas (ii) follows
directly from [O97, proof of Prop. 3] and Remark 2.3.

Remark 2.15. By the proposition above, we can regard the ramified
elliptic units as Stark units. Indeed, if n 6= (1) then the set S := Sn ∪ {∞}
contains all places which ramify in Hn/K and |S| ≥ 2. Moreover, S contains
the completely split prime ∞. Then Stark’s conjecture (cf. [T84, Ch. IV,
Conj. 2.2]) predicts the existence of an element ε such that

L′S(χ, 0) = −
1

wHn

∑
σ∈Gal(Hn/K)

log(|εσ|∞)χ(σ)

for all χ ∈ ̂Gal(Hn/K). By definition of the L-function, we obtain

LS(χ, s) = (1− χ(∞)N∞−s)LSn(χ, s) = (1−N∞−s)LSn(χ, s)

and hence

L′S(χ, 0) = log(N∞)LSn(χ, 0) = −
1

w∞

∑
σ∈Gal(Hn/K)

log(N∞− ord∞(ασn ))χ(σ)

= − 1

w∞

∑
σ∈Gal(Hn/K)

log(|ασn |∞)χ(σ).

3. Sinnott’s module. Let L/K be a fixed finite real abelian extension
of conductor m (as in Section 2.3). Remember that for a prime p of K the
element σp ∈ G = Gal(L/K) is the lift of an associated Frobenius element
in Dp/Tp. Define τp := σ−1p eTp ∈ Q[G].

Definition 3.1.

(i) We define ρ′n := s(Gal(L/Ln))
∏

p|n(1−τp) for any integral ideal n, where
the product runs over all prime ideals of K dividing n.



12 P. Stucky

(ii) The Z[G]-submodule U ′ of Q[G] generated by ρ′n where n runs through
all integral ideals of OK is called Sinnott’s module.

(iii) Define U ′0 to be the kernel of multiplication by s(G) in U ′.

Remark 3.2. (i) The notation U ′ and ρ′n is adopted from [CK19]. In the
second part of the present article, we use a modification of Sinnott’s module
which will be denoted by U .

(ii) Note that for n - m, we have Ln = Lgcd(n,m), hence ρ′n = ρ′gcd(n,m).
Therefore, it suffices to consider the elements ρ′n with n |m.

(iii) If n 6= (1), we have ρ′n ∈ U ′0. As in the imaginary quadratic case
(cf. [O03]), the component of U ′ generated by ρ′(1) intersected with U ′0 is
generated by

ρ′(1)(1− σ), σ ∈ G.

If σ, σ′ ∈ G are lifts of the same element τ ∈ Gal(L(1)/K), then

ρ′(1)(1− σ) = ρ′(1)(1− σ
′),

hence it suffices to consider the elements

ρ′(1)(1− τ̃), τ ∈ Gal(L(1)/K),

where τ̃ ∈ G is an arbitrary lift of τ .

Now recall the convention introduced in Section 2.5 and consider the
logarithmic map

lL : L× → Q[G], x 7→
∑
σ∈G

ord∞(xσ)σ−1,

and the element
ω := hw∞

∑
χ∈Ĝ
χ 6=1

L(χ, 0)eχ.

Also define
l∗L := (1− eG)lL.

Proposition 3.3 (cf. [O03, Prop. 6]). Let n 6= 1 be such that n | m and
let τ ∈ Gal(L(1)/K). Then

l∗L(ϕL,n) = ωρ′n , l∗L

(
∂L(1)

∂L(τ)

)
= ωρ′(1)(1− τ̃),

where τ̃ ∈ G is any lift of τ .

Proof. It suffices to prove the equations on the χ-component for each
non-trivial character χ ∈ Ĝ. This follows from Proposition 2.14 by a direct
computation.

Corollary 3.4. We have l∗L(PL) = ω · U ′0.
Proof. This follows directly from Remark 3.2.
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4. An index formula. We briefly recall the definition of Sinnott’s index
(see [O03, §4]). Let V be a finite-dimensional vector space over L = Q or R.
A subgroup X of V is a lattice if rkZ(X) = dimL(V ) and L ·X = V . If A and
B are lattices of V and if γ is an automorphism of V such that γ(A) = B,
then we define

[A : B] := |det(γ)|.

If B ⊆ A, then [A : B] is the usual group index. Now we can prove

Proposition 4.1 (cf. [O03, Prop. 7]). We have

[U ′0 : l
∗
L(PL)] =

(
hw∞
d∞

)[L:K]−1
· wKhLRL

wLh
.

Proof. Using Proposition 2.10(iv) and

L′{∞}(χ, 0) = log(N∞) · L(χ, 0) = d∞ log(q) · L(χ, 0),

we obtain

ζ∗L,S∞(0) = ζ∗K,{∞}(0) ·
∏
χ 6=1

L′{∞}(χ, 0) = −
h

wK
(d∞ log(q))[L:K]−1

∏
χ 6=1

L(χ, 0).

Together with the analytic class number formula in 2.12, this yields∏
χ 6=1

L(χ, 0) =
wKhLRL

wLhd
[L:K]−1
∞

.

Therefore, we obtain

|det(ω)| =
∏
χ 6=1

χ(ω) = (hw∞)[L:K]−1
∏
χ 6=1

L(χ, 0)

=

(
hw∞
d∞

)[L:K]−1
· wKhLRL

wLh
,

where the first equality follows from [S80, Lemma 1.2(b)]. Since this is non-
zero, we find that multiplication by ω is an automorphism of V = Q · U ′0.
By Corollary 3.4 we have l∗L(PL) = ωU ′0 and hence the desired Sinnott index
exists and is given by

[U ′0 : l
∗
L(PL)] = [U ′0 : ωU

′
0] = |det(ω)| =

(
hw∞
d∞

)[L:K]−1
· wKhLRL

wLh
.

Let p |m be a prime ideal of K. The norm relation of Proposition 2.9
implies that x

w∞/wK [H:L(1)]
p ∈ PL, where xp is a generator of ph.

Definition 4.2. Let QL be the subgroup of PL generated by µ(L), ∆L

and the elements x
w∞/wK [H:L(1)]
p for all p |m.
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Now we can state

Proposition 4.3 (cf. [O03, Prop. 8]). We have

[l∗L(PL) : lL(CL)] =

∏
p[L ∩Hp∞ : L(1)]

[PwLL ∩K : QwLL ∩K]

where p runs through all maximal ideals of OK .

Proof. We can use the proof of [O03, Prop. 8] here. The essential inputs

(i) ker(lL) ∩ O×L = µ(L),
(ii) lL(CL) = l∗L(CL)

also hold in the function field case.

Now we can state the desired index formula (cf. Theorem A):

Theorem 4.4 (cf. [O03, Thm. 1]). Set d(L) := [PwLL ∩ K : QwLL ∩ K].
Then

[O×L : CL] =
(hw∞)[L:K]−1wKhL

wLh

∏
p[L ∩Hp∞ : L(1)]

[L : L(1)]

[Z[G] : U ′]
d(L)

.

Proof. Let R = Z[G] and R0 be the kernel of multiplication with s(G)
in R. Since ker(lL) ∩ O×L = µ(L) we get

[O×L : CL] = [lL(O×L ) : lL(CL)] = [lL(O×L ) : R0][R0 : lL(CL)]

=
[R0 : U

′
0]

[R0 : lL(O×L )]
[U ′0 : lL(CL)]

=
[R0 : U

′
0]

[R0 : lL(O×L )]
[U ′0 : l

∗
L(PL)][l

∗
L(PL) : lL(CL)].

Note that all the indices above are defined, since each of the Z-modules has
the same rank. By definition of Sinnott’s index, one can easily show that

[R0 : lL(O×L )] = |det(A)|,
where A is the matrix with entries

(ordw(ui)) w∈S∞(L)\{w0}
i∈{1,...,[L:K]−1}

,

where w0 is an arbitrary place in S∞(L) and the units u1, . . . , u[L:K]−1 ∈ O×L
project to a basis of O×L/µ(L). By the definition of the regulator, we hence
get

RL = |det(−d∞A)| = d[L:K]−1
∞ |det(A)|,

so

[R0 : lL(O×L )] =
RL

d
[L:K]−1
∞

.
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As in [O03] we find that

[R0 : U
′
0] =

[R : U ′]

[L : L(1)]
.

Using these computations and the results of Propositions 4.1 and 4.3 we
obtain

[O×L : CL] =
(hw∞)[L:K]−1wKhL

wLh

∏
p[L ∩Hp∞ : L(1)]

[L : L(1)]

[R : U ′]

d(L)
.

We state some results on [R : U ′] similar to [O03, §6, §7]:

Proposition 4.5.

(i) The index [R : U ′] is an integer divisible only by primes dividing [L :
L(1)]. Moreover, if Gal(L/L(1)) is the direct product of its inertia groups
or if at most two primes ramify in L/K, then [R : U ′] = 1.

(ii) If G is cyclic, then [R : U ′] = 1.
(iii) If L = Hm for some integral ideal m =

∏s
i=1 p

ei
i for some s ≥ 3 and if

h is coprime to wK , we have

[R : U ′] = w
e(2s−2−1)
K ,

where e is the index of the subgroup generated by the classes of pi
in Cl(K).

Proof. (i) is [O03, Prop. 16]; (ii) is [S80, Thm. 5.3]; and (iii) is [O03,
Prop. 18].

Note that the arguments are only based on the group structure of G and
hence can also be applied in the case of function fields.

Remark 4.6. There is a list of cases in [O03, Remark 2] in which the
author gets d(L) = 1. With similar methods we can show that if one of the
following conditions holds, we have d(L) = 1:

(i) L ⊆ H,
(ii) H ⊆ L,
(iii) [H : L(1)] and [L : L(1)] are coprime,
(iv) Gal(L/L(1)) is cyclic,
(v) Gal(L/L(1)) is the direct product of its inertia subgroups,
(vi) at most two primes ramify in L/K.

Remark 4.7. (i) In [O92] H. Oukhaba defines a group EL of elliptic units
in an unramified extension L/K. He also shows that the elements of EwKw∞hL
are of the form ∏

τ∈G

(
∂L(1)∂L(τσ

−1)

∂L(σ−1)∂L(τ)

)wKmτ
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for σ ∈ G and certain rational numbers mτ ∈ Q (cf. [O92, Prop. 3.6]). He
also derives an index formula in this case:

[O×L : EL] =
hL

[H : L]
.

In this case, our index formula yields

[O×L : CL] = (hw∞)[L:K]−1wKhL
wLh

.

From the above description, we find that Ew∞hL ⊆ CL and so

[CL : Ew∞hL ] = h
wL
wK

.

(ii) In [Y97b] L. Yin defines a group C of extended cyclotomic units in
the ray class fields Km. The ramified elliptic units in the present article are
in fact norms of Yin’s cyclotomic units. However our construction of the
unramified units is quite different from the one in [Y97b]. Nevertheless, Yin
also computes an index formula

[O×Hm
: (C ∩ O×Hm

)] = waKhHm ,

where a = 0 if s ≤ 2 and a = e(2s−2 − 1) − (s − 2) if s ≥ 3. Note that
there is the additional assumption (h,wK) = 1 in the case s ≥ 3. With these
assumptions, from our index formula we get

[O×Hm
: CHm ] = (hw∞)[Hm:K]−1wKhHm

w∞h
w
−(s−1)
K [R : U ′].

With Proposition 4.5, this yields

[O×Hm
: CHm ] = (hw∞)[Hm:K]−2waKhHm .

5. A non-trivial root of an elliptic unit. With this definition of
elliptic units we can prove an analogue of the main result of [CK19] in the
case of global function fields.

5.1. Preliminaries. We use the notation of Section 1.1 with the follow-
ing additional assumptions:

• p is an odd prime such that p - q · (q − 1) · h.
• L is a real cyclic extension of K of degree pk for some positive integer k.
• We change notation to Γ := Gal(L/K). Let σ be a generator of Γ .

Remark 5.1. Note that the assumption on L and p - h are exactly the
same as in [CK19]. The assumption p - (q − 1) = wK is also implied by the
hypotheses stated there. The only new assumption is p - q, i.e. we suppose
that p is prime to the characteristic of K, which is a natural hypothesis when
dealing with function fields.
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Note that since p - h, we have
L ∩H = K,

and we assume that there are exactly s ≥ 2 primes p1, . . . , ps of K which
ramify in L. Now we introduce some more notation:

• I := {1, . . . , s}.
• xj := xpj is a generator of phj .
• Pj is a fixed prime ideal of L over pj .
• For any abelian extension M/K let Dj(M) := Dpj ⊆ Gal(M/K) be the

decomposition group of pj and Tj(M) := Tpj ⊆ Dj(M) be the inertia
group of pj .
• tj := |Tj(L)| is the ramification index of Pj over pj .
• nj := [G : Dj(L)].

Then it follows that tjnj | pk and

pjOL =

nj−1∏
i=0

P
tjσ

i

j .

Since p - q, this implies that the extension L/K is tamely ramified and hence
its conductor is square-free. Therefore the conductor is given by m := mI

:=
∏
j∈I pj .

5.2. The distinguished subfields Fj. For any subset ∅ 6= J ⊆ I we
set mJ :=

∏
j∈J pj . With our previous observation we find that L ⊆ HmI .

Lemma 5.2. We have L ⊆
∏
j∈I Hpj .

Proof. By class field theory, we have a canonical isomorphism
Gal(Hm/H) ∼= (OK/m)×/im(µ(K))

(see e.g. [H85, eq. (3.1)]). With the Chinese Remainder Theorem, we get[
Hm :

∏
j∈I

Hpj

]
=

[Hm : H]

[
∏
j∈I Hpj : H]

=
|(OK/m)×|/wK∏

j∈I [Hpj : H]

=

∏
j∈I |(OK/pj)×|

wK
∏
j∈I |(OK/pj)×|/wK

= ws−1K .

The second equality follows, since we obtain Hpj ∩
∏j−1
i=1 Hpi = H for any

2 ≤ j ≤ s by considering the ramification of pj . Since p - wK , we get
L ⊆

∏
j∈I Hpj .

Using the canonical isomorphism of the proof above, we obtain
Gal(Hpj/H) ∼= (OK/pj)×/im(µ(K)),

which is a cyclic group. Since tj | [Lpj : K] | [Hpj : K] and p - h, it follows
that tj | [Hpj : H]. Using p - h and [CK19, Lemma 2.1] we can define Fj to
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be the unique subfield of Hpj such that [Fj : K] = tj . Then Fj ∩H = K and
Fj/K is totally ramified at pj and unramified everywhere else.

From now on, we will write HJ := HmJ for each ∅ 6= J ⊆ I and

FJ :=
∏
j∈J

Fj ⊆ HJ .

Note that the conductor of FJ is mJ . The definition of FI implies that the
Galois group Gal(FI/FI\{j}) = Tj(FI) is the inertia subgroup of a prime of
FI above pj , in particular for each j ∈ I we have |Gal(FI/FI\{j})| = tj .

Lemma 5.3. For any two subsets ∅ 6= J1 ⊆ J2 ⊆ I, we have FJ1 =
FJ2 ∩HJ1. Moreover, FI ∩H = K.

Proof. The inclusion FJ1 ⊆ FJ2 ∩ HJ1 is clear. For the other inclusion,
we use induction on n = |J2 \ J1|. The case n = 0, i.e. J1 = J2, is clear. If
n ≥ 1, we fix an index j ∈ J2 \ J1 and we see that

FJ2 ∩HJ1 ⊆ FJ2 ∩HJ2\{j} ⊆ FJ2\{j}
by the induction hypothesis. But we clearly also have FJ2∩HJ1 ⊆ HJ1 , hence

FJ2 ∩HJ1 ⊆ FJ2\{j} ∩HJ1 ⊆ FJ1
by the induction hypothesis.

The second assertion follows, since [FI : K] is a p-power and p - h.
Proposition 5.4 (cf. [CK19, Prop. 2.2]). We have FjHI\{j} = LHI\{j}

for each j ∈ I. The Galois group

G = Gal(FI/K) =
∏
j∈I

Gal(FI/FI\{j})

is the direct product of its inertia subgroups. Moreover L ⊆ FI .
Proof. We can take the proof of [CK19, Prop. 2.2] here, since there are

no changes necessary.

Corollary 5.5 (cf. [CK19, Cor. 2.3]).

(i) For each j ∈ I we have

Tj(L) = Gal(L/L ∩ FI\{j}) = 〈σp
k/tj 〉.

Moreover, FI\{j}L = FI and [L ∩ FI\{j} : K] = pk/tj.
(ii) FI/L is an unramified abelian extension.
(iii) There exists a j0 ∈ I such that tj0 = pk, and hence G = Gal(FI/K) has

exponent pk.

5.3. The elliptic units. Since FI ∩ H = K by Lemma 5.3, there are
no unramified elliptic units and we define

ηJ := NHJ/FJ (αmJ ) = ϕ
1/h
FI ,mJ

∈ OFJ ;
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cf. Remark 2.6. Let σj ∈ G = Gal(FI/K) be the lift of the Frobenius of pj
uniquely defined by σj |FI\{j} = (pj , FI\{j}/K) and σj |Fj = 1. Then we can
state

Lemma 5.6 (cf. [CK19, Lemma 3.1]). For any j ∈ I we have

Dj(L) = 〈σnj 〉 = 〈σj |L, σp
k/tj 〉.

Lemma 5.7 (cf. [CK19, Lemma 3.2]). We have µ(FI) = µ(K).

Proof. For ζ ∈ µ(FI), the extensionK(ζ)/K is a constant field extension.
Since all constant field extensions are unramified, we obtain

K(ζ) ⊆ FI ∩H = K,

so ζ ∈ µ(K).

Proposition 2.9 implies that for each J ⊆ I and each j ∈ J ,

(5.1) NFJ/FJ\{j}(ηJ) =

η
1−σ−1

j

J\{j} , J \ {j} 6= ∅,
ζx

w∞/wK
j , J \ {j} = ∅,

for some ζ ∈ µ(K).
In analogy to [CK19], we use the following definition of elliptic units:

Definition 5.8.

• The group of elliptic numbers PFI of FI is defined to be the Z[G]-submo-
dule of F×I generated by µ(K) and by ηJ for all ∅ 6= J ⊆ I.
• The group of elliptic units CFI of FI is defined as CFI := PFI ∩ O

×
FI
.

• The group of elliptic numbers PL of L is the Z[Γ ]-submodule of L× gen-
erated by µ(K) and NFJ/FJ∩L(ηJ) for all ∅ 6= J ⊆ I.
• The group of elliptic units CL of L is defined as CL := PL ∩ O×L .

Since FI ∩H = K = L ∩H, one can check that these elliptic units are
related to the units of Definition 2.8 by

CFI = C
h
FI
· µ(K), CL = ChL · µ(K).

This fact and Theorem 4.4 imply the next lemma. We first need the
following

Notation 5.9. Let L̃ be the maximal subfield of L containing K such
that L̃/K is ramified in at most one prime ideal of K.

Note that since Γ is cyclic and of prime power order, the field L̃ is unique.

Lemma 5.10 (cf. [CK19, Lemma 3.4]).

(i) We have

[O×FI : CFI ] = w[FI :K]−1
∞

hFI
h
, [O×L : CL] = w[L:K]−1

∞
hL

h[L : L̃]
.

(ii) For β ∈ PFI we have β ∈ CFI if and only if NFI/K(β) ∈ µ(K).
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Sketch of proof. For more details and part (ii) see [CK19, Lemma 3.4].
First, we deduce from the above observation that [CFI : CFI ] = h[FI :K]−1

and [CL : CL] = h[L:K]−1. Moreover, it follows from Propositions 5.4, 4.5(ii)
(resp. (i)) and Remark 4.6(iv) (resp. (v)) that the last quotient in 4.4 is
equal to 1 for L (resp. FI). We also obtain wFI = wL = wK by Lemma 5.7,
L(1) = K, FI ∩ Hp∞ = Fj for p = pj and

∏s
j=1[Fj : K] = [FI : K], which

yields the first equation. For the second equation, we consider the definition
of L̃. By Corollary 5.5(iii) we know that there is a prime pi which is totally
ramified in L. Therefore, L̃ is the maximal subfield of L which is unramified
at every prime except pi, hence L̃ = L∩Hp∞i

. Since for p 6= pi the extension
L ∩ Hp∞ is unramified at pi and pi is totally ramified in L, we find that
L ∩Hp∞ = K for p 6= pi, and hence

∏
p[L ∩Hp∞ : K] = [L̃ : K].

Now we use a modification of Sinnott’s module, defined in [GK14]. This
module U is a Z[G]-submodule of Q[G]⊕Zs generated over Z[G] by certain
elements ρJ , J ⊆ I. Each Z summand is endowed with the trivial G-action
and has a standard basis element denoted by ej .

Define
Ψ : PFI → U, ηJ 7→ ρI\J ,

for ∅ 6= J ⊆ I and Ψ(µ(K)) = 0.

Lemma 5.11 (cf. [CK19, Lemma 3.5]). Ψ is a well-defined Z[G]-module
homomorphism satisfying ker(Ψ) = µ(K) and U = Ψ(PFI )⊕ (s(G)Z).

We call
η := NFI/L(ηI)

the top generator of both PL and CL. Set B := Gal(FI/L) ⊆ Gal(FI/K)
= G. Then Γ = 〈σ〉 ∼= G/B.

Lemma 5.12 (cf. [CK19, Lemma 4.1]). An elliptic number β ∈ PFI be-
longs to L if and only if Ψ(β) is fixed by B, i.e. Ψ(PFI )B = Ψ(PFI ∩ L).

Recall that ni is the index of the decomposition group of the ideal Pi ⊆ L
in Γ . Without loss of generality we can assume

n1 ≤ · · · ≤ ns
and set n = ns = max {ni | i ∈ I}. Since p | ts, we have n | pk−1 and by
Corollary 5.5(iii) we get t1 = pk and hence n1 = 1. Let L′ be the unique sub-
field of L containing K such that [L′ : K] = n. Note that 〈σn〉 = Gal(L/L′)
and that ps splits completely in L′/K. Now we can restate Theorem B:

Theorem 5.13 (cf. [CK19, Thm. 4.2]). There is a unique α ∈ L such that
NL/L′(α) = 1 and η = αy, where y =

∏s−1
i=2 (1−σni). This α is an elliptic unit

of FI , so that α ∈ CFI ∩ L. Moreover, there is γ ∈ L× such that α = γ1−σ
n.
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Proof. We have proven all ingredients which are used in the proof of
[CK19, Thm. 4.2], hence we obtain the same result for function fields.

6. Enlarging the group CL of elliptic units of L. We label the
subfields of L containing K by

K = L0 ( L1 ( · · · ( Lk = L,

hence we obtain [Li : K] = pi. Moreover, we define

Mi := {j ∈ I | tj > pk−i}.
Since we have already seen that n1 = 1, we deduce from the definition of Mi

that
1 ∈M1 ⊆M2 ⊆ · · · ⊆Mk = I.

For j ∈ Mi we get pi > pk/tj and with Corollary 5.5(i) we can see that
pj ramifies in Li. On the other hand, if pj ramifies in Li, this implies that
tj > [L : Li] = pk−i. This shows that the conductor of Li is equal to mMi

and so Li ⊆ FMi by Proposition 5.4 applied to Li. Define

ηi := NFMi/Li
(ηMi)

for i = 1, . . . , k. Then ηk = η ∈ L is the top generator of CL.
Now we fix j ∈ {1, . . . , s} and let Li = LTj , hence the index i is deter-

mined by tj = pk−i. By Lemma 5.6 we get

〈σnj 〉/〈σpk/tj 〉 = 〈σj |L, σp
k/tj 〉/〈σpk/tj 〉.

This quotient group can be interpreted as the restriction to Li, since σp
k/tj =

σp
i generatesGal(L/Li). Hence we can find a smallest positive integer cj such

that σ−cjnj |Li = σj |Li . Moreover, we see that pj splits completely in Li/K
if and only if nj = pk/tj , in which case we get in particular cj = 1 since σnj
is already an element of the inertia group of pj of L/K. If pj does not split
completely in Li/K, we find that nj < pk/tj and hence 〈σnj |Li〉 = 〈σj |Li〉. In
each case, we find that p - cj and hence 1− σcjnj and 1− σnj are associated
in Z[Γ ].

Now let i ∈ {1, . . . , k} be such that |Mi| > 1. We apply Theorem 5.13 to
the extension Li/K and obtain an elliptic unit αi ∈ CFMi ∩Li and a number
γi ∈ L×i such that

(i) ηi = αyii , where yi =
∏
j∈Mi, 1<j<maxMi

(1− σcjnj ),
(ii) αi = γzii , where zi = 1− σcmaxMi

nmaxMi .

Note that the new cj factors can be obtained since 1−σnj and 1−σcjnj are
associated. In particular we find for |Mi| = 2 that yi = 1 and αi = ηi since
the product is empty. For i ∈ {1, . . . , k} with |Mi| = 1 we set γi = ηi and
αi = η1−σi .
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Definition 6.1. The Z[Γ ]-submodule CL of O×L generated by µ(K) and
α1, . . . , αk is called the extended group of elliptic units.

Theorem 6.2 (cf. [CK19, Thm. 5.2]). The group of elliptic units CL of L
is a subgroup of CL of index [CL : CL] = pν , where

ν =
k∑
j=1

∑
i∈Mj

1<i<maxMj

ni.

Moreover, setting ϕL := (
∏s
i=1 t

ni
i ) ·

∏k
j=1 p

−nmaxMj , we get

pν = ϕL · [L : L̃]−1 and [O×L : CL] = wp
k−1
∞ · hL

h
· ϕ−1L .

Proof. We use the same proof as in [GK15, Thm. 3.1]. Note that we need
the factors cj appearing in the definition of the αi here.

Remark 6.3. If p - w∞, we obtain ϕL |hL. As in [CK19, Remark 5.3],
this divisibility statement is really stronger than [FI : L] |hL (which we
obtain since FI/L is unramified). Indeed, by [GK15, Prop. 3.4], [FI : L] |ϕL
and we obtain equality if and only if n1 = · · · = ns−1 = 1.

7. Semispecial numbers. We use the same notation as before and fix
m which is a power of p such that pks |m. We know that for a prime ideal q
of K we have

Gal(Hq/H) ∼= (OK/q)×/im(µ(K))

via Artin’s reciprocity map. In particular, Gal(Hq/H) is cyclic. This enables
us to state

Definition 7.1. For a prime ideal q of K such that |OK/q| ≡ 1 mod m,
we define K[q] to be the (unique) subfield of Hq containing K such that
[K[q] : K] = m. For a finite field extensionM/K, we defineM [q] :=MK[q].

Note that since |OK/q| ≡ 1 modm and p - |µ(K)|, we know that the order
of Gal(Hq/H) is divisible by m. Hence we get the existence and uniqueness
of K[q] from the fact that p - h and from [CK19, Lemma 2.1]. Since K[q] is
contained in Hq, it is only ramified at q. Moreover, since p - h, we find that
H ∩K[q] = K and hence it is totally ramified at q. Finally, since p - |OK/q|,
we deduce that this ramification is tame.

Definition 7.2. Let Qm be the set of all prime ideals q of K such that

(i) |OK/q| ≡ 1 +m mod m2,
(ii) q splits completely in L,
(iii) for each j = 1, . . . , s, the class of xj is an mth power in (OK/q)×.
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Now we want to study condition (iii) in some more detail. Let q be such
that |OK/q| ≡ 1 mod m. Since H ∩ K[q] = K, we get Gal(H[q]/H) ∼=
Gal(K[q]/K) by restriction. The first group is the unique quotient of the
cyclic group Gal(Hq/H) of order m, hence it is obtained by factoring out
mth powers. Therefore with the Artin reciprocity map and p - wK we get

(OK/q)×/m ∼= Gal(H[q]/H) ∼= Gal(K[q]/K),

where the composition map takes the class of α ∈ OK \q to (αOK ,K[q]/K).
Now the facts that xjOK = phj and p - h imply that condition (iii) is equiv-
alent to

(pj ,K[q]/K) = 1 ∀j = 1, . . . , s.

Definition 7.3. A number ε ∈ L× is called m-semispecial if for all but
finitely many q ∈ Qm, there exists a unit εq ∈ O×L[q] such that

(i) NL[q]/L(εq) = 1,
(ii) if qL[q] is the product of all primes of L[q] above q, then ε and εq have

the same image in (OL[q]/qL[q])×/(m/pk(s−1)).
Since each q ∈ Qm is totally ramified in K[q]/K and splits completely

in L/K, we find that L[q]/L is totally ramified at each prime above q and
we obtain L ∩K[q] = K. Therefore, the two restriction maps

Gal(L[q]/L)→ Gal(K[q]/K), Gal(L[q]/K[q])→ Gal(L/K)

are isomorphisms.

Theorem 7.4 (cf. [CK19, Thm. 6.4]). The elliptic unit α ∈ CFI ∩ L of
Theorem 5.13 is m-semispecial.

Proof. Recall that α is a yth root of the top generator η of CL. We need to
show that for almost all q ∈ Qm, there exists an εq satisfying the conditions
(i) and (ii) of Definition 7.3. In fact, we can construct such an εq for each
q ∈ Qm with the methods of [CK19, Thm. 6.4]. There is only a slight change
in the result which implies the congruence relation. Therefore we skip the
proof of the theorem here and refer to [CK19] once again. Our version of
Proposition 6.6 of that paper is stated below.

Proposition 7.5 (cf. [CK19, Prop. 6.6]). Let q ∈ Qm, Q := |OK/q| and
let qL[q] be the product of all primes of L[q] above q. Then

η̂Q(1−σ) ≡ η(1−σ)(Q−1)/m mod qL[q],

where η is the top generator of CL and η̂ is the top generator of CL[q].

Proof. Let x ∈ OK be such that xOK = qh. Let Km := K(ζm), where ζm
is a primitive mth root of unity. Then Km/K is a constant field extension,
and hence it is unramified everywhere. Moreover, it is an abelian extension.
Now we can define M := Km(x

1/p), and since O×K = µ(K), p - |µ(K)| and
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Km contains a primitive pth root of unity, this definition is independent of
the choice of the generator x and of its pth root. Then M/K is a Galois
extension. We claim that x is not a pth power in Km. If x = αp, then the
valuation of x at q would be p-times the valuation of α at q since Km/K is
unramified. But xOK = qh, and since p - h, this is a contradiction. Hence
the extension M/Km is cyclic of degree p. For finishing the proof, we need

Lemma 7.6. Let q ∈ Qm and σ be the unique generator of Gal(L[q]/K[q])
which restricts to the original generator of Gal(L/K). Then there exists a
prime l of K such that

(i) |OK/l| ≡ 1 mod m,
(ii) l is unramified in L[q] and (l, L[q]/K) = σ−1,
(iii) q is inert in K[l]/K.

Proof. By an explicit analysis of the Galois automorphisms, one checks
that Km/K is an abelian extension whereasM/Km is not. As [M : Km] = p,
there are no intermediate fields and hence Km/K is the maximal abelian
subextension of M . This implies that M ∩ L[q] = Km ∩ L[q], since L[q]/K
is an abelian extension. Since Km ∩ L[q] is unramified and p - h, we find
Km ∩ L[q] = K. Then there exists a τ ∈ Gal(L[q] ·M/K) which restricts to
σ−1 ∈ Gal(L[q]/K) and to a generator of Gal(M/Km) ⊆ Gal(M/K).

Using a variant of Chebotarev’s Density Theorem (cf. [R02, Thm. 9.13B]),
we see that there exists a prime l such that the Frobenius of l is the conjugacy
class of τ and |OK/l| ≡ 1 mod m. Then conditions (i) and (ii) are satisfied
and it remains to prove that q is inert in K[l].

Since τ acts as the identity on Km, we find that l splits completely
in Km/K. Let L be a prime of Km over l; then OKm/L ∼= OK/l. Moreover,
since

〈τ |M 〉 = Gal(M/Km) ∼= Z/pZ,
L must be inert in M . It is easily seen that OM/LOM ∼= (OKm/L)[ξ], where
ξ is the class of x1/p modulo LOM . If x was a pth power in (OKm/L)×, this
extension would be trivial, hence the inertia degree of L would be 1. This is
a contradiction, since L is inert in M , so we have shown that x cannot be a
pth power in (OK/l)×.

Recall that we get (OK/l)×/m ∼= Gal(K[l]/K) from Artin’s Reciprocity
Theorem and p - wK . Since x is not a pth power in (OK/l)×, it follows
that the Frobenius (xOK ,K[l]/K) = (q,K[l]/K)h is not a pth power in
Gal(K[l]/K). But since Gal(K[l]/K) is cyclic of orderm and p - h, we deduce
that (q,K[l]/K) generates Gal(K[l]/K) and hence q is inert in K[l].

Using the prime l satisfying the conditions of the previous lemma, we can
define the elliptic units

ηl := NHlmI
/L[l](αlmI ), η̂l := NHlqmI

/L[ql](αlqmI ),
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where L[ql] is the compositum of L[q] and L[l]. Using the norm relation, we
find

NL[ql]/L[l](η̂l) = η
1−σ−1

q

l ,

NL[ql]/L[q](η̂l) = η̂1−σ
−1
l = η̂1−σ,

NL[l]/L(ηl) = η1−σ
−1
l = η1−σ,

where σq = (q, L[l]/K) and σl = (l, L[q]/K) = σ−1 by condition (ii).
Since q ∈ Qm, q splits completely in L/K, and by condition (iii), the

primes of L above q are inert in L[l]/L. Then each prime of L[q] above q
must also be inert in L[ql]/L[q]. Moreover, since each prime above q is un-
ramified in L[l]/L and totally ramified in L[q]/L, it is also totally ramified
in L[ql]/L[l], hence the product of all primes of L[ql] above q is given by
qL[q]OL[ql]. Therefore, we get the following isomorphism of rings:

OL[ql]/qL[q]OL[ql] ∼= OL[l]/qOL[l].
Since L[q] and L[l] are linearly disjoint over L, and q splits completely in
L/K, we can extend σq ∈ Gal(L[l]/K) to L[ql] in such a way that this
extension (also denoted by σq) restricts to the identity on L[q]. In particular,
σq generates Gal(L[ql]/L[q]).

From the above isomorphism, we see that σq acts as raising to the Qth
power on OL[ql]/qL[q]OL[ql]. Moreover, the group Gal(L[ql]/L[l]) is the inertia
group at q and acts trivially on OL[ql]/q̃OL[ql]. Therefore, we can express the
action of the norms NL[ql]/L[l] and NL[ql]/L[q] on OL[ql]/qL[q]OL[ql] as raising
to the power m respectively to the power

∑m−1
i=0 Qi. Since Q ≡ 1 mod m,

there exists a positive integer r such that
∑m−1

i=0 Qi = mr. Combining our
results, we get

η̂Q(1−σ) ≡ η̂Qmrl ≡ ηQr(1−σ
−1
q )

l ≡ ηr(Q−1)l ≡ (ηmrl )(Q−1)/m

≡ η(1−σ)(Q−1)/m mod qL[q]OL[ql].
Since the natural map OL[q]/qL[q] → OL[ql]/qL[q]OL[ql] is injective, we obtain
the assertion of Proposition 7.5.

8. Annihilating the ideal class group. Using the same notation as
before, we define

µi := nmaxMi .

This is always a power of p, and since Mi ⊆Mi+1, we get µi ≤ µi+1. We call
an index i ∈ {1, . . . , k− 1} a jump if µi < µi+1. Further, we declare 0 and k
to be jumps and set µ0 = 0. Then we get

Lemma 8.1 (cf. [CK19, Lemma 7.1]). Let 0 = s0 < s1 < · · · < sκ = k be
the ordered sequence of all jumps. Then the set
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κ⋃
t=1

{ασist | 0 ≤ i < pst − pst−1}

is a Z-basis of CL/µ(K).

Proof. See [GK15, Lemma 5.1].

With this basis, we obtain our next result:

Lemma 8.2 (cf. [CK19, Lemma 7.2]). Let r be the highest jump less
than k, i.e. µr < µr+1 = ns. Assume that ρ ∈ Z[Γ ] is such that αρk ∈ CLr .
Then

(1− σpr)ρ = 0.

Now we need an additional condition on the p-powerm. We already know
that (m, q) = 1, since p - q, so q ∈ (Z/mZ)×. Let d denote the order of q in
(Z/mZ)×. Then there exists i ≥ 0 and b ∈ Z with p - b such that

qd − 1 = b · pim.
If we definem′ := pim, we still have pks |m′ and d is the order of q modulom′,
so we can assume without loss of generality that i = 0. Now we can define f
to be the order of q in (Z/m2Z)×. Then an easy computation shows

Lemma 8.3. We have m | f/d.
Theorem 8.4. Let m be a power of p such that m | f/d, and V ⊆ L×/m

a finitely generated Zp[Γ ]-submodule. Without loss of generality we can choose
representatives of generators of V which belong to OL. Suppose there is a
map z : V → (Z/mZ)[Γ ] of Zp[Γ ]-modules such that z(V ∩K×) = 0, where
V ∩ K× means V ∩ (K×(L×)m/(L×)m). Then for any c ∈ Cl(OL)p, there
exist infinitely many primes Q in L such that:

(i) q := Q ∩K is completely split in L/K,
(ii) [Q] = c, where [Q] is the projection of the ideal class of Q into Cl(L)p,
(iii) Q := |OL/Q| ≡ 1 +m mod m2,
(iv) for each j = 1, . . . , s, the class of xj is an mth power in (OK/q)×,
(v) no prime above q is contained in the support of the generators of V and

there is a Zp[Γ ]-linear map ϕ : (OL/qOL)×/m→ (Z/mZ)[Γ ] such that
the diagram

V (Z/mZ)[Γ ]

(OL/qOL)×/m

z

ψ
ϕ

commutes, where ψ corresponds to the reduction map.

Remark 8.5. The reduction map ψ is defined on the chosen set of gen-
erators: Let x ∈ OL be a representative of such a generator; then x is the
class of x ∈ OL/qOL. Since no prime above q is contained in the support
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of x, we get x ∈ (OL/qOL)×. Hence we can set ψ(x) to be the class of x in
(OL/qOL)×/m. This yields a well-defined Zp[Γ ]-homomorphism.

Proof of Theorem 8.4. The proof is essentially the same as in [GK04,
Thm. 17]. We only point out some changes which are necessary in the func-
tion field case:

• In the proof of [GK04, Lemma 18(i, ii)], we only get an isomorphism to
a subgroup H of (Z/m2Z)× of order f . Nevertheless, we can choose q as
a generator of H and hence prove the vanishing of the coinvariants since
p - q − 1.
• For [GK04, Lemma 18(iii)] we consider the splitting field of ∞ in LFqf ,

which is the unique subextension of degree (f, d∞) (see [R02, Prop. 8.13]).
Then the claim follows since d∞ |h and p - h, so p - d∞.
• In the last step of the construction of the element τ which is used for

Chebotarev’s Density Theorem (cf. [R02, Thm. 9.13A]), we need an ele-
ment of order m in Gal(LFqf /LFqd). At this point we need m | f/d from
Lemma 8.3.
• Condition (iii) uses the fact that ζm2 is an element of the constant field

of LFqf .

For the desired annihilation result, we need

Theorem 8.6 (cf. [R87, Thm. (5.1)]). Let q be a prime of K which splits
completely in L, set Q := |OK/q|. Let M be a finite extension of L which is
abelian over K and such that in M/L, all primes above q are totally tamely
ramified and no other primes ramify. Write qM for the product of all primes
of M above q and let A denote the annihilator in (Z/(Q − 1)Z)[Γ ] of the
cokernel of the reduction map

{ε ∈ O×M | NM/L(ε) = 1} → (OM/qM )×.

Write w :=(Q− 1)/[M : L]. Then A⊆w(Z/(Q−1)Z)[Γ ] and for every prime
Q of L above q, w−1A annihilates the ideal class of Q in Cl(OL)/[M : L].

Proof. The proof of [R87, Thm. (5.1)] also works for function fields.

The above theorems are the main ingredients for proving

Theorem 8.7. Let m be a power of p divisible by pks such that m | f/d.
Assume that ε ∈ OL is m-semispecial and let V ⊆ L×/m be a finitely
generated Z[Γ ]-module. Suppose that the class of ε belongs to V . Now let
z : V → (Z/mZ)[Γ ] be a Z[Γ ]-linear map such that z(V ∩K×) = 0. Then
z(ε) annihilates Cl(OL)p/(m/pk(s−1)).

Proof. See [GK04, Thm. 12].
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The main result of this article is Theorem C:

Theorem 8.8. Let r be the highest jump less than k. Then

AnnZ[Γ ]((O×L/CL)p) ⊆ AnnZ[Γ ]((1− σp
r
) Cl(OL)p).

Let J = {j ∈ {1, . . . , s} | nj = ns}. Then the number r is determined by
pk−r = max {tj | j ∈ J}.

Proof. The proof of [CK19, Thm. 7.5] can be used without any changes,
as we have proven all the main ingredients in Theorems 8.4, 8.6 and 8.7.
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Abstract (will appear on the journal’s web site only)
Let K be a global function field and fix a place ∞ of K. Let L/K be

a finite real abelian extension, i.e. a finite, abelian extension such that ∞
splits completely in L. Then we define a group CL of elliptic units in O×L
analogously to Sinnott’s cyclotomic units and compute the index [O×L : CL].
In the second part of this article, we additionally assume that L is a cyclic
extension of prime power degree. Then we can use the methods of Greither
and Kučera to take certain roots of these elliptic units and prove a result on
the annihilation of the p-part of the class group of L.
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