Übungen zur Analysis II, Hausaufgabenblatt 2

F. Merkl, J.Berger, Y. Bregman, G.Svindland

Aufgabe 1: (Metrik der französischen Eisenbahn) Alle Eisenbahnlinien schneiden sich in genau einem Punkt P (Paris). Um von einem Ort A zu einem Ort B per Eisenbahn zu gelangen, gibt es also zwei Möglichkeiten: Entweder die Orte liegen an der gleichen Strecke, dann kann direkt gefahren werden, oder man muß in P umsteigen. Zeigen Sie, daß der bei einer Eisenbahnfahrt zurückgelegte Abstand d (oder auch die benötigte Zeit t) eine Metrik auf der Menge der an das Schienennetz angebundenen Orte definiert.

Aufgabe 2: (zur Hölderungleichung) Seien $x,y\in\mathbb{R}^n$ und p,q>1 mit 1/p+1/q=1. Sei σ das kanonische Skalarprodukt auf dem \mathbb{R}^n . Zeigen Sie, daß

$$\sigma(x,y) = ||x||_p \cdot ||y||_q$$

genau dann gilt, wenn $x_i y_i \geq 0$ für alle $i=1,\ldots,n$ und die Vektoren $(|x_i|^p)_{i=1,\ldots,n}$ und $(|y_i|^q)_{i=1,\ldots,n}$ in \mathbb{R}^n linear abhängig sind.

Aufgabe 3: Wir versehen \mathbb{R}^n mit der euklidischen Metrik d_2 . Zeigen Sie: Die abgeschlossene Einheitskugel $K_1(0) = \{x \in \mathbb{R}^n \mid ||x||_2 \le 1\}$ ist der Abschluß der offenen Einheitskugel $U_1(0) = \{x \in \mathbb{R}^n \mid ||x||_2 < 1\}$, und die Einheitssphäre $S^{n-1} = \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}$ ist der Rand von $U_1(0)$ bzw $K_1(0)$.

Aufgabe 4: Sei (M, d) ein metrischer Raum. Wir definieren

$$\tilde{d}: M \times M \to \mathbb{R}, \ \tilde{d}(x,y) = \min\{d(x,y), 1\}.$$

Zeigen Sie, daß auch (M, \tilde{d}) ein metrischer Raum ist und $\mathcal{T}_d = \mathcal{T}_{\tilde{d}}$ gilt.

(*) **Aufgabe 5:** Seien (A, d_A) und (B, d_B) zwei metrische Räume mit den durch die Metriken induzierten Topologien \mathcal{T}_A und \mathcal{T}_B . Zeigen Sie: Die Produktmetrik d auf $A \times B$ erzeugt die Produkttopologie \mathcal{T} . (Für eine Definition von Produktmetrik und Produkttopologie schaue man auf das Übungsblatt 2.)

Abgabe: spätestens Dienstag 26.04.2005 um 11.00