Übungen zur Analysis II, Hausaufgabenblatt 6

F. Merkl, J. Berger, Y. Bregman, G. Svindland

Aufgabe 1: Berechnen Sie für $f(x, y, z) = \frac{x}{\sqrt{1 - \frac{y^2}{z^2}}}$ das Differential df.

Aufgabe 2: Berechnen Sie die Tangentialebene an das Hyperboloid mit der Gleichung $x^2 - y^2 - z^2 = 1$ in $P_0 = (x_0, y_0, z_0)$ mit $x_0 > 1$

- a) durch Linearisierung der Darstellung der positiven Schale als Graph zu $x=\sqrt{1+y^2+z^2},$
- b) durch Linearisierung der Parametrisierung

 $(u, v) \mapsto (\cosh u, \sinh u \cos v, \sinh u \sin v).$

Aufgabe 3: Gegeben sei $k : \mathbb{R}^{\to}\mathbb{R}$, $k(x) = f(g(x^3, x), h(x^2))$, wobei f, g, h differenzierbar sind. Drücken Sie die Ableitung von k nach x durch die Ableitungen von f, g und h auf 2 Weisen aus:

- a) indem Sie die Abbildung k als Komposition von $x \mapsto (x^3, x, x^2), (a, b, c) \mapsto (g(a, b), h(c))$ und $(u, v) \mapsto f(u, v)$ schreiben, die Bausteine linearisieren und dann mit der Kettenregel die Linearisierungen zusammensetzen.
- b) indem Sie nach jedem Auftreten von x ableiten und dann summieren.

Aufgabe 4: Sei (\mathcal{M}, d) ein metrischer Raum und seien $j_1 : (\mathcal{M}, d) \to (\hat{\mathcal{M}}_1, \hat{d}_1), \quad j_2 : (\mathcal{M}, d) \to (\hat{\mathcal{M}}_2, \hat{d}_2)$ Vervollständigungen von (\mathcal{M}, d) . Zeigen Sie die Existenz einer bijektiven Isometrie $\varphi : \hat{\mathcal{M}}_1 \to \hat{\mathcal{M}}_2$ mit $\varphi \circ j_1 = j_2$.

(*) Aufgabe 5: Berechnen Sie die Ableitung der Funktion

$$F: (C[0,1], \|\cdot\|_{\infty}) \to (\mathbb{R}, |\cdot|), \quad F(f) = \int_{0}^{1} \arctan f(x) \, dx.$$

Abgabe: Wegen des vorlesungsfreien Pfingstdienstags ausnahmsweise erst am Freitag, den 27.5.2005