

SoSe 2019

Prof. Dr. Thomas Vogel Dr. Jonas Stelzig

Geometrie und Topologie von Flächen

Aufgabenblatt 4

Aufgabe 1. Sei $\gamma: I \longrightarrow \mathbb{R}^3$ eine Frenet-Kurve (nicht notwendigerweise nach Bogenlänge parametrisiert). Setze

$$\kappa(t) := \frac{\|\dot{\gamma} \times \ddot{\gamma}\|}{\|\dot{\gamma}\|^3} \text{ und } \tau(t) := \frac{\operatorname{Det}(\dot{\gamma}, \ddot{\gamma}, \dddot{\gamma})}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$$

Zeigen Sie: Wenn φ eine dreimal stetig differenzierbare, orientierungserhaltende ($\dot{\varphi} > 0$) Umparametrisierung ist, sodass $\tilde{\gamma} := \gamma \circ \varphi$ nach Bogenlänge parametrisiert ist, dann gilt $\tilde{\kappa} = \kappa \circ \varphi$ und $\tilde{\tau} = \tau$.

Aufgabe 2. Sei $\gamma: I \longrightarrow \mathbb{R}^2$ eine reguläre, geschlossene C^2 -Kurve, deren Umlaufzahl > 0 ist. Dann existiert ein $t_0 \in I$ sodass $\kappa(t_0) > 0$.

Aufgabe 3. Sei $\gamma : \mathbb{R} \longrightarrow \mathbb{R}^2$ eine periodische (mit Periode T, ebene C^1 -Kurve, die nach Bogenlänge parametrisiert ist und $\vartheta : \mathbb{R} \longrightarrow \mathbb{R}$ eine stetige Funktion sodass

$$\dot{\gamma} = (\cos(\vartheta(t)), \sin(\vartheta(t)))$$

gilt. Zeigen Sie: Für jedes $t_0 \in \mathbb{R}$ ist $t \mapsto \vartheta(t - t_0) - \vartheta(t)$ periodisch. Ist auch ϑ selbst periodisch?

Aufgabe 4. Sei $A \in \mathbb{R}^n$ eine bezüglich $x_0 \in A$ sternförmige offene Menge und $e: A \longrightarrow S^1 \subseteq \mathbb{R}^2$. Dann existiert eine stetige Abbildung $\vartheta: A \longrightarrow \mathbb{R}$ sodass

$$e(x) = (\cos(\vartheta(x)), \sin(\vartheta(x))).$$