

MATHEMATISCHES INSTITUT

SoSe 2019

Prof. Dr. Thomas Vogel Dr. Jonas Stelzig

Geometrie und Topologie von Flächen

Aufgabenblatt 3

Aufgabe 1. Seien $h, r \in \mathbb{R}_{>0}$. Berechnen Sie Krümmung und Torsion der Schraubenlinie:

$$\gamma: [0, 2\pi] \longrightarrow \mathbb{R}^3$$

$$t \longmapsto (r\cos(t), r\sin(t), \frac{h}{2\pi}t)$$

Aufgabe 2. Sei $\gamma: I \longrightarrow \mathbb{R}^3$ eine nach Bogenlänge parametrisierte C^3 -Kurve sodass $\|\ddot{\gamma}(t)\| \neq 0 \ \forall t \in I$. Zeigen Sie: Falls für die Torsion $\tau = 0$ gilt, so liegt γ in einer Ebene.

Aufgabe 3. Sei $\gamma: I \longrightarrow \mathbb{R}^2$ eine ebene nach Bogenlänge parametrisierte Kurve, die in der Kreisscheibe vom Radius R verläuft (d.h. $\|\gamma(t)\| \le R$ für alle $t \in I$). In $t_0 \in I$ berühre die Kurve den Rand der Kreisscheibe, d.h. $\|\gamma(t_0)\| = R$. Zeigen Sie, dass für die Krümmung die folgende Ungleichung gilt:

$$\|\kappa(t_0)\| \ge \frac{1}{R}$$

Hinweis: Betrachten Sie $\frac{d}{dt}|_{t=t_0} \|\gamma(t)\|^2$ und $\frac{d^2}{dt^2} \|\gamma(t)\|^2$.

Aufgabe 4. Sei $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^2$ eine *T*-periodische, nach Bogenlänge parametrisierte C^1 -Kurve, die eingebettet ist $(\gamma(t) = \gamma(s) \Rightarrow t - s \in \mathbb{Z}T)$ und

$$A := \left\{ \left(\begin{array}{c} t_1 \\ t_2 \end{array} \right) \middle| 0 \le t_1 \le t_2 \le T \right\} \subset \mathbb{R}^2.$$

Zeigen Sie:

- i) Die Menge A ist sternförmig bezüglich jedes ihrer Punkte.
- ii) Die Funktion e, definiert durch

$$e: A \longrightarrow S^{1} \subset \mathbb{R}^{2}$$

$$(t_{1}, t_{2}) \longmapsto \begin{cases} \frac{\gamma(t_{2}) - \gamma(t_{1})}{\|\gamma(t_{2}) - \gamma(t_{1})\|} & \text{falls } t_{1} < t_{2} \text{ und } (t_{1}, t_{2}) \neq (0, T) \\ \dot{\gamma}(t) & \text{falls } t_{1} = t_{2} = t \\ -\dot{\gamma}(0) & \text{falls } (t_{1}, t_{2}) = (0, T). \end{cases}$$

ist stetig.