PDG I (Zentralübung)

Problem Sheet 13

Question 1

Let $1 \le p \le \infty$. Let *I* be an open interval in \mathbb{R} . We shall prove that there exists a bounded linear operator $P: W^{1,p}(I) \to W^{1,p}(\mathbb{R})$, called an *extension operator*, satisfying:

- (i) $Pu|_I = u$ for all $u \in W^{1,p}(I)$,
- (ii) $||Pu||_{L^p(\mathbb{R})} \le C ||u||_{L^p(I)}$,
- (iii) $||Pu||_{W^{1,p}(\mathbb{R})} \le C ||u||_{W^{1,p}(I)},$

where C > 0 depends only on I.

(a) First suppose $I = (0, \infty)$. Show that the operator P given by

$$(Pu)(x) = \begin{cases} u(x) & \text{if } x \ge 0, \\ u(-x) & \text{if } x < 0, \end{cases}$$

satisfies the required properties.

(b) Now suppose I = (0, 1). Fix a function $\eta \in C^1(\mathbb{R}), 0 \le \eta \le 1$, such that

$$\eta(x) = \begin{cases} 1 & \text{if } x < 1/4, \\ 0 & \text{if } x > 3/4. \end{cases}$$

Now let $u \in W^{1,p}((0,1))$, and define

$$(Qu)(x) = \begin{cases} u(x) & \text{if } 0 < x < 1 \,, \\ 0 & \text{if } x > 1 \,. \end{cases}$$

Show that $\eta(Qu) \in W^{1,p}((0,\infty))$, and $(\eta(Qu))' = \eta'(Qu) + \eta(Q(u'))$.

(c) Use parts (a) and (b) to define P satisfying the required properties for u ∈ W^{1,p}((0,1)).
Hint: Write u = ηu + (1 − η)u. Extend and reflect each of these two terms in different directions.

Question 2

Suppose $u \in W^{1,p}((0,\infty))$, where $1 \le p < \infty$. Show that

$$\lim_{x\to\infty} u(x) = 0\,.$$

Hint: Use Theorems 61 and 62 from the lectures.

Question 3

Let I be an open interval in \mathbb{R} , and $u, v \in W^{1,p}(I)$, for $1 \leq p < \infty$. Show that the product $uv \in W^{1,p}(I)$, and

$$(uv)' = u'v + uv'.$$

(*Remark:* Note that this type of result does **not** hold in general in higher dimensions!)

Question 4

Consider the following ordinary differential equation with boundary data:

$$\begin{cases} -(pu')' + ru' + qu = f & \text{in } (0,1) \\ u(0) = u(1) = 0 \,. \end{cases}$$

Here, $f, r, q \in C([0, 1])$, and $p \in C^1([0, 1])$. Assume furthermore that for some fixed $\alpha > 0$ we have

$$p \ge \alpha$$
, $q \ge 1$, $r^2 < 4\alpha$, on $[0, 1]$

Prove that there exists a unique classical solution u to this problem.

Deadline for handing in: 0800 Wednesday 28 January

Please put solutions in Box 17, 1st floor (near the library)