PDG II (Tutorium)

Tutorial 4

In the following, $U \subset \mathbb{R}^n$ will always denote an open set.

Exercise 1

Assume *U* is bounded. Prove that for all $p \in [1, \infty]$ and all $q \in [1, p]$:

$$||u||_{L^q(U)} \le C||u||_{L^p(U)}$$

and determine C = C(q, p, U).

Exercise 2 Do some of the missing details in the proof of Theorem 1.14 (trace theorem) in the Lecture:

- (a) Prove Young's inequality: Let $1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ for all $a, b \ge 0$.
- (b) Use integration by parts (Gauss-Green theorem) to prove (for notation, see the Lecture):

$$\int_{\{x_n=0\}} \zeta |u|^p \, dx' = - \int_{B^+} \left(\zeta |u|^p \right)_{x_n} dx \, .$$

(c) Prove the inequality (for notation, see the Lecture):

$$-\int_{B^+} (|u|^p \zeta_{x_n} + p|u|^{p-1} (\operatorname{sgn} u) u_{x_n} \zeta) \, dx \le C \int_{B^+} (|u|^p + |Du|^p) \, dx \, .$$

Exercise 3

Prove the General Hölder inequality: let $1 \le p_1, \ldots, p_m \le \infty$, with $\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_m} = 1$, and assume $u_k \in L^{p_k}(U)$ for $k = 1, \ldots, m$. Then

$$\int_{U} |u_1 \cdots u_m| \, dx \le \prod_{k=1}^{m} ||u_k||_{L^{p_k}(U)} \, .$$