PDE II (Zentralübung)

Problem Sheet 6

In the following, U always denotes an open, bounded subset of \mathbb{R}^n with smooth boundary. Also, let L be a uniformly elliptic second order PDO in divergence form, that is (with $a^{ij} = a^{ji}$, i, j = 1, ..., n)

$$Lu = -\sum_{i,j=1}^{n} \left(a^{ij} u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i u_{x_i} + cu \,. \tag{1}$$

Question 1

Let L be as in (1). Assume $a^{ij} \in C^1(\overline{U})$, $b^i, c \in C(\overline{U})$. Let $f \in C(\overline{U})$.

(a) Assume $u \in C^2(\overline{U})$ is a *classical* solution to

$$\begin{cases} Lu = f & \text{in } U, \\ u = 0 & \text{on } \partial U. \end{cases}$$
(2)

Prove that u is a *weak* solution to (2).

- (b) Assume $u \in H_0^1(U) \cap C^2(\overline{U})$ is a *weak* solution to (2). Prove that u is a *classical* solution to (2).
- (c) How much can one weaken the assumptions and still prove (a) and/or (b)?

Question 2

Let L be as in (1), with $b^i \equiv 0$, and $a^{ij}, c \in L^{\infty}(U)$. Let B be the corresponding bilinear form, and let $f \in L^2(U)$.

(a) Let $I: H_0^1(U) \to \mathbb{R}$ be defined by

$$I[u] := \frac{1}{2}B[u, u] - (f, u) \text{ for } u \in H_0^1(U)$$
.

Assume there exists a minimiser $u_0 \in H_0^1(U)$ for *I*,that is,

$$I[u_0] = \inf_{u \in H_0^1(U)} I[u] = \min_{u \in H_0^1(U)} I[u].$$

Prove that u_0 is a weak solution to (2).

(b) Let $g : \mathbb{R} \to \mathbb{R}$ be continuous and bounded, and let $G(s) := \int_0^s g(t) dt$. Let $J : H_0^1(U) \to \mathbb{R}$ be defined by

$$J[u] := I[u] - \int_U G(u) \, dx \text{ for } u \in H^1_0(U) \, .$$

Assume there exists a minimiser $u_0 \in H_0^1(U)$ for J. Prove that u_0 is a weak solution to the semilinear elliptic equation

$$\begin{cases} Lu = f + g(u) & \text{in } U, \\ u = 0 & \text{on } \partial U. \end{cases}$$
(3)

(Note: An example is the nonlinear Poisson equation $-\Delta u = g(u)$.)

Question 3

Let B be a continuous, coercive, bilinear form on a real Hilbert space H. Let $f, \ell \in H', \ell \neq 0$. Set

$$V := \{h \in H \mid \langle \ell, h \rangle = 0\}.$$

(a) Prove that there exists a unique solution u to

$$\begin{cases} u \in V, \\ B[u, v] = \langle f, v \rangle \text{ for all } v \in V. \end{cases}$$
(4)

(b) Prove that there exists a unique $k \in \mathbb{R}$ such that u satisfies

$$B[u, v] = \langle f + k\ell, v \rangle$$
 for all $v \in H$.

(Hint: If $h \in H$ with $\ell(h) = 1$ then $v - \ell(v)h \in V$ for all $v \in H$.)

(c) Prove that there exists a unique solution u_{ℓ} to

$$\begin{cases} u_{\ell} \in H, \\ B[v, u_{\ell}] = \langle \ell, v \rangle \text{ for all } v \in H , \end{cases}$$

and that $k = -\frac{\langle f, u_\ell \rangle}{\langle \ell, u_\ell \rangle}$.

(d) For $\ell_1, \ell_2, \ldots, \ell_p \in H'$, let

$$V := \{h \in H \mid \langle \ell_i, h \rangle = 0 \text{ for all } i = 1, \dots, p\}.$$

What can be said about the solution u to (4) in this case?

Question 4

Let B be a continuous, coercive, bilinear, symmetric form on a real Hilbert space H. Let $f \in H'$, and let $u \in H$ be the unique solution to

$$B[u, v] = \langle f, v \rangle$$
 for all $v \in H$.

Prove that u is the unique minimiser on H of the functional $J: H \to \mathbb{R}$ given by

$$J[v] := \frac{1}{2}B[u, v] - \langle f, v \rangle.$$