PDE II (Zentralübung)

Problem Sheet 4

In the following, $U \subset \mathbb{R}^n$ will always denote an open set.

Question 1

Let U be bounded, with a C^1 boundary. Show that a "typical" function $u \in L^p(U)$ $(1 \le p < \infty)$ does not have a trace on ∂U . More precisely, prove there does not exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U)$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\overline{U}) \cap L^p(U)$.

Question 2

Assume that U is bounded and there exists a smooth vector field α such that $\alpha \cdot \nu \geq 1$ along ∂U , where ν as usual denotes the outward unit normal. Assume $1 \leq p < \infty$.

Apply the Gauss-Green Theorem to $\int_{\partial U} |u|^p \alpha \cdot \nu \, dS$, to derive a new proof of the trace inequality

$$\int_{\partial U} |u|^p \, dS \le C \int_U |Du|^p + |u|^p \, dx$$

for all $u \in C^1(\overline{U})$.

Question 3

(a) Integrate by parts to prove

$$||Du||_{L^p} \le C ||u||_{L^p}^{1/2} ||D^2u||_{L^p}^{1/2}$$

for $2 \le p < \infty$ and all $u \in C_c^{\infty}(U)$.

Hint:
$$\int_U |Du|^p dx = \sum_{i=1}^n \int_U u_{x_i} u_{x_i} |Du|^{p-2} dx.$$

(b) Prove

$$||Du||_{L^{2p}} \le C ||u||_{L^{\infty}}^{1/2} ||D^2u||_{L^p}^{1/2}$$

for $1 \leq p < \infty$ and all $u \in C_c^{\infty}(U)$.

Question 4

Prove Remark 1.13 from the lectures (for notation, see the lecture notes): if ∂U is C^2 , then E is a bounded linear operator $E: W^{2,p}(U) \to W^{2,p}(\mathbb{R}^n)$.