PDE II (Zentralübung)

Problem Sheet 2

In the following, $U \subset \mathbb{R}^n$ will always denote an open set.

Question 1

Prove the following inequalities:

(a) Assume $1 \le s \le r \le t \le \infty$, $0 < \theta < 1$ and $\frac{1}{r} = \frac{\theta}{s} + \frac{1-\theta}{t}$. Suppose $u \in L^s(U) \cap L^t(U)$. Then $u \in L^r(U)$, and

$$||u||_{L^{r}(U)} \leq ||u||_{L^{s}(U)}^{\theta} ||u||_{L^{t}(U)}^{1-\theta}.$$

(b) Assume $0 < \beta < \gamma \leq 1$ and $u \in C^{0,\beta}(\overline{U}) \cap C^{0,1}(\overline{U})$. Then $u \in C^{0,\gamma}(\overline{U})$, and

$$\|u\|_{C^{0,\gamma}(\overline{U})} \leq \|u\|_{C^{0,\beta}(\overline{U})}^{\frac{1-\gamma}{1-\beta}} \|u\|_{C^{0,1}(\overline{U})}^{\frac{\gamma-\beta}{1-\beta}}.$$

Question 2

Suppose that U is connected, $u \in L^1_{loc}(U)$, and the weak derivatives $D^{\alpha}u$ exist for all $|\alpha| \leq k$. Prove the following: if $D^{\alpha}u = 0$ in U for all $|\alpha| = k$, then u is a polynomial in U of degree at most k - 1.

Question 3

- (a) Let n = 1, and let u: [a, b] → R be a measurable function. Prove that u is absolutely continuous on [a, b] if and only if the weak derivative of u exists and belongs to L¹([a, b]). Moreover, if this is the case, then the weak derivative coincides with the classical derivative almost everywhere.
- (b) Assume that $u \in W^{1,p}([a, b])$ for some 1 . Prove that

$$|u(x) - u(y)| \le |x - y|^{1 - 1/p} \left(\int_a^b |u'|^p \,\mathrm{d}x\right)^{1/p}$$

for almost every $x, y \in [a, b]$.

(c) Under the assumption of (a), prove that for $\alpha := 1 - \frac{1}{n}$,

$$||u||_{C^{0,\alpha}([a,b])} \le |u(x_0)| + C||u'||_{L^p([a,b])}$$

for any $x_0 \in [a, b]$ with a constant C that is independent of x_0 .

Hint: You may use without proof the following facts about absolutely continuous functions:

(i) $u: [a, b] \to \mathbb{R}$ is absolutely continuous if and only if there exists a function $v \in L^1([a, b])$ such that

$$u(x) = u(a) + \int_{a}^{x} v(y) \, \mathrm{d}y, \quad x \in [a, b].$$

(ii) If $u: [a, b] \to \mathbb{R}$ is absolutely continuous, then it is differentiable almost everywhere, and its derivative belongs to $L^1([a, b])$.

Question 4

Assume U is bounded and $U \subset \bigcup_{i=1}^{N} V_i$, where the sets V_i are open. Prove that there exist C^{∞} -functions ζ_i (i = 1, ..., N) such that

- (i) $0 \le \zeta_i \le 1$
- (ii) $\operatorname{supp}(\zeta_i) \subset V_i$ for $i = 1, \ldots, N$
- (iii) $\sum_{i=1}^{N} \zeta_i = 1$ on U.

The functions $\{\zeta_i\}_{i=1}^N$ form a partition of unity.