PDE II (Zentralübung)

Problem Sheet 10

Question 1

For r > 0, let B_r denote the ball $\{y \in \mathbb{R}^n : |y| < r\} = B(0, r)$. Prove the following:

Theorem. There exists a number M such that: if $u \in H^1(B_R)$ is a weak solution of $-\Delta u = f$ in B_R , for some R > 0, where $f \in L^2(B_R)$, then for all $r \in (0, R)$,

$$||Du||_{L^{2}(B_{r})} \leq M\left((R-r)||f||_{L^{2}(B_{R})} + \frac{1}{(R-r)}||u||_{L^{2}(B_{R})}\right).$$

Question 2

(a) Prove the following theorem:

Theorem. Let $p \ge 1$, $n < \lambda < n + p$, and let U be an open, bounded domain for which there exists some $\delta > 0$ with

$$|B(x_0, r) \cap \overline{U}| \ge \delta r^n$$
 for all $x_0 \in U, r > 0$.

Then a function $u \in L^p(U)$ is contained in $C^{0,\gamma}(\overline{U})$ for $\gamma = \frac{\lambda - n}{p}$ (or in $C^{0,1}(\overline{U})$ in the case $\lambda = n + p$) if and only if there exists a constant $K < \infty$ with

$$\int_{B(x_0,r)\cap U} |u(x) - u_{B(x_0,r)}|^p dx \le K^p r^{\lambda} \quad \text{for all } x_0 \in U, \ r > 0$$

(where $u_{B(x_0,r)}$ is the average of u over the ball $B(x_0,r)$, and we have extended u by 0 on $\mathbb{R}^n \setminus B(x_0,r)$).

(b) Prove the corollary:

Corollary. If for all $0 < r \le R_0$ and all $x_0 \in U$, we have

$$\int_{B(x_0,r)} |u - u_{B(x_0,r)}|^p dx \le cr^{n+p\gamma}$$

with constants c and $0 < \gamma < 1$, then u is locally γ -Hölder continuous in U (this means that u is γ -Hölder continuous in any $V \subset U$).

(*Hint*: You may use Lebesgue's Differentiation Theorem without proof.)

Question 3

Let $u_{\epsilon} = \eta_{\epsilon} * u$ denote the ϵ -mollification of $u \in C(\mathbb{R}^n)$ (see Problem Sheet 1, Question 4). Recall that the γ -Hölder-seminorm of u is defined as

$$[u]_{C^{0,\gamma}(\overline{U})} := \sup_{\substack{x,y \in U \\ x \neq y}} \left\{ \frac{|u(x) - u(y)|}{|x - y|^{\gamma}} \right\},$$

where $\gamma \in (0, 1], U \subset \mathbb{R}^n$ open. Now define

$$H_x^{\gamma}[u; U] := \sup_{y \in U} \left\{ \frac{|u(x) - u(y)|}{|x - y|^{\gamma}} \right\}.$$

We say that u is Hölder continuous at x with respect to U with exponent γ if this is finite. Note that also

$$[u]_{C^{0,\gamma}(\overline{U})} = \sup_{x \in V} H_x^{\gamma}[u;U] \,.$$

(a) Prove the following:

Lemma. Let $u \in C^{0,\gamma}_{\text{loc}}(\mathbb{R}^n)$, $\gamma \in (0,1]$. Then

$$|u_{\epsilon}(x) - u(x)| \le \epsilon^{\gamma} H_x^{\gamma}[u; B(x, \epsilon)]$$

for all $x \in \mathbb{R}^n$.

(b) Prove:

Lemma. Let $u \in C(\mathbb{R}^n)$. If

$$\sup_{\substack{y \in B(x,R)\\0 < \epsilon < R}} \epsilon^{1-\gamma} |Du_{\epsilon}(y)| < +\infty$$

for some $\gamma \in (0, 1]$, R > 0, then u is Hölder continuous at x with respect to B(x, R) with exponent γ . Furthermore

$$H_x^{\gamma}[u; B(x, r)] \le C \sup_{\substack{y \in B(x, R)\\0 < \epsilon < R}} \epsilon^{1-\gamma} |Du_{\epsilon}(y)|$$

with $C = C(\gamma, n, \eta) > 0$.

(c) Prove:

Proposition. There exists $C = C(\gamma, n, \eta) > 0$ such that

$$\frac{1}{C}[u]_{C^{0,\gamma}(\mathbb{R}^n)} \leq \sup_{\substack{y \in \mathbb{R}^n \\ \epsilon > 0}} \epsilon^{1-\gamma} |Du_\epsilon(y)| \leq C[u]_{C^{0,\gamma}(\mathbb{R}^n)}$$

for all $u \in C^{0,\gamma}(\mathbb{R}^n)$.

Remark. This characterisation of $C^{0,\gamma}$ (and $C^{k,\gamma}$) can be used to prove Schauder's estimate (see remark after Theorem 2.27 in the lectures).

Question 4

For $U \subset \mathbb{R}^n$ open, bounded, let $I \colon H^1_0(U) \to \mathbb{R}$ be defined by

$$I[u] := \int_{U} \frac{1}{2} |Du(x)|^2 - f(x)u(x) \, \mathrm{d}x$$

for $u \in H_0^1(U)$, where $f \in L^2(U)$. Prove that there exists a minimiser $u_0 \in H_0^1(U)$ of I, that is

$$I[u_0] = \inf_{u \in H_0^1(U)} I[u] = \min_{u \in H_0^1(U)} I[u] \,.$$

(Hint: Recall from Functional Analysis that a bounded sequence $(u_j) \subset H_0^1(U)$ has a weakly convergent subsequence).