PDE II (Zentralübung)

Problem Sheet 1

In the following, $U \subset \mathbb{R}^n$ will always denote an open set.

Definition: for $k \ge 1$, $1 \le p \le \infty$, the *Sobolev Space* $W^{k,p}(U)$ is defined to be the space of functions $u \in L^p(U)$ whose weak partial derivatives $D^{\alpha}u$ exist and are also in $L^p(U)$, for all multi-indices α with $|\alpha| \le k$.

Question 1

(a) Let n = 1 and U = (0, 2). Compute the weak derivative (if it exists) of the following L^1_{loc} functions.

$$u(x) := \begin{cases} x & \text{if } 0 < x \le 1\\ 1 & \text{if } 1 < x < 2 \,, \end{cases} \qquad \quad v(x) := \begin{cases} x & \text{if } 0 < x \le 1\\ 2 & \text{if } 1 < x < 2 \,. \end{cases}$$

(b) Let U = B(0, 1) be the unit ball in \mathbb{R}^n , and

$$u(x) := |x|^{-\alpha}$$
 ($x \in U, x \neq 0$).

For which values of $\alpha > 0$, n, and $p \ge 1$ does u belong to $W^{1,p}(U)$?

Question 2

Assume that $u, v \in W^{k,p}(U)$ and $|\alpha| \leq k$. Prove the following statements:

1. $D^{\alpha}u \in W^{k-|\alpha|,p}(U)$ and $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$ for all multi-indices α, β with $|\alpha| + |\beta| \le k$.

2. For each $\lambda, \mu \in \mathbb{R}, \lambda u + \mu v \in W^{k,p}(U)$ and $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v$ for $|\alpha| \leq k$.

3. If V is an open subset of U, then $u \in W^{k,p}(U)$.

Question 3

Prove the Fundamental Lemma of the Calculus of Variations: if $u \in L^1_{loc}(U)$ and

$$\int_U u\varphi \,\mathrm{d} x = 0 \quad \text{for all } \varphi \in C^\infty_c(U) \,,$$

then u = 0 almost everywhere in U. (You may use the result from question 4 (c)).

Question 4

Let $\eta \in C_c^{\infty}(\mathbb{R}^n)$ satisfy

- (i) $\eta \ge 0, \eta(x) = 0$ if $|x| \ge 1$ (so supp $(\eta) \subset B(0, 1)$).
- (ii) $\int_{\mathbb{R}^n} \eta \, \mathrm{d}x = 1.$

Then, for $\epsilon > 0$, define $\eta_{\epsilon}(x) := \epsilon^{-n} \eta(x/\epsilon)$. Recall from PDE I that η_{ϵ} is said to be a *mollifier*. Recall also that for a function u we define the convolution

$$(\eta_{\epsilon} * u)(x) := \int_{\mathbb{R}^n} \eta_{\epsilon}(x-y)u(y) \,\mathrm{d}y.$$

- (a) Let $1 \le p \le \infty$ and $u \in L^p(U)$. Define u to be zero outside U. Show that $\eta_{\epsilon} * u \in C^{\infty}(\mathbb{R}^n)$. (*Hint:* use difference-quotients, the dominated convergence theorem, and induction).
- (b) Now suppose $u \in C_c(U)$. Show that $\eta_{\epsilon} * u$ converges uniformly to u as $\epsilon \to 0$.
- (c) Now let $1 \le p < \infty$ and $u \in L^p(U)$, with u zero outside U. Show that $\|\eta_{\epsilon} * u u\|_p \to 0$ as $\epsilon \to 0$. (And hence $C^{\infty}(U)$ is dense in $L^p(U)$). You may use without proof the following facts:
 - (i) $C_c(U)$ is dense in $L^p(U)$ for $1 \le p < \infty$.
 - (ii) $\|\eta_{\epsilon} * u\|_{p} \le \|u\|_{p}$.