
Intro Model TCF Realizability Examples Conclusion

A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Würzburg, 26. November 2024

1 / 29

Intro Model TCF Realizability Examples Conclusion

Computational content of proofs

• Proofs may have computational content.

• One can extract it and obtains a term (∼ program).

• The correctness of this term (∼ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2 / 29

Intro Model TCF Realizability Examples Conclusion

Computational content of proofs

• Proofs may have computational content.

• One can extract it and obtains a term (∼ program).

• The correctness of this term (∼ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2 / 29

Intro Model TCF Realizability Examples Conclusion

Computational content of proofs

• Proofs may have computational content.

• One can extract it and obtains a term (∼ program).

• The correctness of this term (∼ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2 / 29

Intro Model TCF Realizability Examples Conclusion

Computational content of proofs

• Proofs may have computational content.

• One can extract it and obtains a term (∼ program).

• The correctness of this term (∼ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2 / 29

Intro Model TCF Realizability Examples Conclusion

Computational content of proofs

• Proofs may have computational content.

• One can extract it and obtains a term (∼ program).

• The correctness of this term (∼ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2 / 29

Intro Model TCF Realizability Examples Conclusion

Language

• Functions of (simple) types, defined by equations.

• Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational.

3 / 29

Intro Model TCF Realizability Examples Conclusion

Language

• Functions of (simple) types, defined by equations.

• Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational.

3 / 29

Intro Model TCF Realizability Examples Conclusion

Language

• Functions of (simple) types, defined by equations.

• Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational.

3 / 29

Intro Model TCF Realizability Examples Conclusion

Logic

• A constructive extension of classical logic, by adding “strong”
variants of ∨, ∃ to the classical ∨̃, ∃̃:

A ∨̃ B := (¬A → ¬B → ⊥), ∃̃xA := ¬∀x¬A.

• In proof trees (natural deduction) call subtrees with an n.c.
end formula “nc-parts”. Ignore c.r. and n.c. decorations there.

4 / 29

Intro Model TCF Realizability Examples Conclusion

Logic

• A constructive extension of classical logic, by adding “strong”
variants of ∨, ∃ to the classical ∨̃, ∃̃:

A ∨̃ B := (¬A → ¬B → ⊥), ∃̃xA := ¬∀x¬A.

• In proof trees (natural deduction) call subtrees with an n.c.
end formula “nc-parts”. Ignore c.r. and n.c. decorations there.

4 / 29

Intro Model TCF Realizability Examples Conclusion

• What is a proof? We need a theory.

• Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

• Scott-Ershov model of partial continuous functionals1. Idea:
Infinite objects (“ideals”) given by their finite approximations.

• Ideals: “consistent” and “deductively closed” sets of “tokens”.

• Tokens at base types: “constructor trees” with possibly ∗.

1Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5 / 29

Intro Model TCF Realizability Examples Conclusion

• What is a proof? We need a theory.

• Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

• Scott-Ershov model of partial continuous functionals1. Idea:
Infinite objects (“ideals”) given by their finite approximations.

• Ideals: “consistent” and “deductively closed” sets of “tokens”.

• Tokens at base types: “constructor trees” with possibly ∗.

1Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5 / 29

Intro Model TCF Realizability Examples Conclusion

• What is a proof? We need a theory.

• Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

• Scott-Ershov model of partial continuous functionals1. Idea:
Infinite objects (“ideals”) given by their finite approximations.

• Ideals: “consistent” and “deductively closed” sets of “tokens”.

• Tokens at base types: “constructor trees” with possibly ∗.

1Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5 / 29

Intro Model TCF Realizability Examples Conclusion

• What is a proof? We need a theory.

• Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

• Scott-Ershov model of partial continuous functionals1. Idea:
Infinite objects (“ideals”) given by their finite approximations.

• Ideals: “consistent” and “deductively closed” sets of “tokens”.

• Tokens at base types: “constructor trees” with possibly ∗.

1Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5 / 29

Intro Model TCF Realizability Examples Conclusion

• What is a proof? We need a theory.

• Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

• Scott-Ershov model of partial continuous functionals1. Idea:
Infinite objects (“ideals”) given by their finite approximations.

• Ideals: “consistent” and “deductively closed” sets of “tokens”.

• Tokens at base types: “constructor trees” with possibly ∗.

1Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5 / 29

Intro Model TCF Realizability Examples Conclusion

•0 • S∗@
@@

•S0

�
��

• S(S∗)@
@@

•S(S0)

�
��

• S(S(S∗))@
@@

•S(S(S0))

�
��

..
.

• {S0, S(S∗)} is inconsistent.

• {S∗, S(S∗)} is an ideal.

• {S∗, S(S∗),S(S0)} is an ideal (“total”).

• {S∗, S(S∗),S(S(S∗)), . . . } is an infinite ideal (“cototal”).

6 / 29

Intro Model TCF Realizability Examples Conclusion

•0 • S∗@
@@

•S0

�
��

• S(S∗)@
@@

•S(S0)

�
��

• S(S(S∗))@
@@

•S(S(S0))

�
��

..
.

• {S0,S(S∗)} is inconsistent.

• {S∗,S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗, S(S∗),S(S(S∗)), . . . } is an infinite ideal (“cototal”).

6 / 29

Intro Model TCF Realizability Examples Conclusion

•0 • S∗@
@@

•S0

�
��

• S(S∗)@
@@

•S(S0)

�
��

• S(S(S∗))@
@@

•S(S(S0))

�
��

..
.

• {S0,S(S∗)} is inconsistent.

• {S∗,S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗,S(S∗),S(S(S∗)), . . . } is an infinite ideal (“cototal”).

6 / 29

Intro Model TCF Realizability Examples Conclusion

•0 • S∗@
@@

•S0

�
��

• S(S∗)@
@@

•S(S0)

�
��

• S(S(S∗))@
@@

•S(S(S0))

�
��

..
.

• {S0,S(S∗)} is inconsistent.

• {S∗,S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗,S(S∗), S(S(S∗)), . . . } is an infinite ideal (“cototal”).

6 / 29

Intro Model TCF Realizability Examples Conclusion

•0 • S∗@
@@

•S0

�
��

• S(S∗)@
@@

•S(S0)

�
��

• S(S(S∗))@
@@

•S(S(S0))

�
��

..
.

• {S0,S(S∗)} is inconsistent.

• {S∗,S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗,S(S∗), S(S(S∗)), . . . } is an infinite ideal (“cototal”).

6 / 29

Intro Model TCF Realizability Examples Conclusion

Ideals at function types

• can be partial,

• are continuous: for every “formal neighborhood” V of f (x) we
can find a formal neighborhood U of x with f [U] ⊆ V , and

• are computable iff they are given by a recursively enumerable
set of tokens.

7 / 29

Intro Model TCF Realizability Examples Conclusion

Ideals at function types

• can be partial,

• are continuous: for every “formal neighborhood” V of f (x) we
can find a formal neighborhood U of x with f [U] ⊆ V , and

• are computable iff they are given by a recursively enumerable
set of tokens.

7 / 29

Intro Model TCF Realizability Examples Conclusion

Ideals at function types

• can be partial,

• are continuous: for every “formal neighborhood” V of f (x) we
can find a formal neighborhood U of x with f [U] ⊆ V , and

• are computable iff they are given by a recursively enumerable
set of tokens.

7 / 29

Intro Model TCF Realizability Examples Conclusion

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::= xτ | Cτ | Dτ | (λxτM
σ)τ→σ | (Mτ→σNτ)σ.

Examples: Decidable equality =N : N → N → B

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).

Recursion Rτ
N : N → τ → (N → τ → τ) → τ .

Rτ
N0af = a,

Rτ
N(Sn)af = fn(Rτ

Nnaf).

8 / 29

Intro Model TCF Realizability Examples Conclusion

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::= xτ | Cτ | Dτ | (λxτM
σ)τ→σ | (Mτ→σNτ)σ.

Examples: Decidable equality =N : N → N → B

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).

Recursion Rτ
N : N → τ → (N → τ → τ) → τ .

Rτ
N0af = a,

Rτ
N(Sn)af = fn(Rτ

Nnaf).

8 / 29

Intro Model TCF Realizability Examples Conclusion

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::= xτ | Cτ | Dτ | (λxτM
σ)τ→σ | (Mτ→σNτ)σ.

Examples: Decidable equality =N : N → N → B

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).

Recursion Rτ
N : N → τ → (N → τ → τ) → τ .

Rτ
N0af = a,

Rτ
N(Sn)af = fn(Rτ

Nnaf).

8 / 29

Intro Model TCF Realizability Examples Conclusion

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::= xτ | Cτ | Dτ | (λxτM
σ)τ→σ | (Mτ→σNτ)σ.

Examples: Decidable equality =N : N → N → B

(0 =N 0) = tt,

(0 =N Sm) = ff,

(Sn =N 0) = ff,

(Sn =N Sm) = (n =N m).

Recursion Rτ
N : N → τ → (N → τ → τ) → τ .

Rτ
N0af = a,

Rτ
N(Sn)af = fn(Rτ

Nnaf).

8 / 29

Intro Model TCF Realizability Examples Conclusion

Predicates and formulas

P,Q ::= X | { x⃗ | A } | I (ρ⃗, P⃗) | coI (ρ⃗, P⃗) (predicates),

A,B ::= Pt⃗ | A → B | ∀xA (formulas).

The missing logical connectives ∧,∨, ∃ are inductively defined.
Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 29

Intro Model TCF Realizability Examples Conclusion

Predicates and formulas

P,Q ::= X | { x⃗ | A } | I (ρ⃗, P⃗) | coI (ρ⃗, P⃗) (predicates),

A,B ::= Pt⃗ | A → B | ∀xA (formulas).

The missing logical connectives ∧,∨, ∃ are inductively defined.
Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 29

Intro Model TCF Realizability Examples Conclusion

Predicates and formulas

P,Q ::= X | { x⃗ | A } | I (ρ⃗, P⃗) | coI (ρ⃗, P⃗) (predicates),

A,B ::= Pt⃗ | A → B | ∀xA (formulas).

The missing logical connectives ∧,∨, ∃ are inductively defined.
Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 29

Intro Model TCF Realizability Examples Conclusion

Predicates and formulas

P,Q ::= X | { x⃗ | A } | I (ρ⃗, P⃗) | coI (ρ⃗, P⃗) (predicates),

A,B ::= Pt⃗ | A → B | ∀xA (formulas).

The missing logical connectives ∧,∨, ∃ are inductively defined.
Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 29

Intro Model TCF Realizability Examples Conclusion

Predicates and formulas

P,Q ::= X | { x⃗ | A } | I (ρ⃗, P⃗) | coI (ρ⃗, P⃗) (predicates),

A,B ::= Pt⃗ | A → B | ∀xA (formulas).

The missing logical connectives ∧,∨, ∃ are inductively defined.
Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 29

Intro Model TCF Realizability Examples Conclusion

Partiality

• Defined functionals D (and hence terms) can be partial.

• Many D’s are total (map total arguments into total values).

Convention:

• Variables x̂ , ŷ . . . range over arbitrary (i.e., partial) objects.

• Variables x , y . . . range over total objects.

For readability,

∀xA(x) abbreviates ∀x̂(Tx̂ → A(x̂)).

10 / 29

Intro Model TCF Realizability Examples Conclusion

Partiality

• Defined functionals D (and hence terms) can be partial.

• Many D’s are total (map total arguments into total values).

Convention:

• Variables x̂ , ŷ . . . range over arbitrary (i.e., partial) objects.

• Variables x , y . . . range over total objects.

For readability,

∀xA(x) abbreviates ∀x̂(Tx̂ → A(x̂)).

10 / 29

Intro Model TCF Realizability Examples Conclusion

Partiality

• Defined functionals D (and hence terms) can be partial.

• Many D’s are total (map total arguments into total values).

Convention:

• Variables x̂ , ŷ . . . range over arbitrary (i.e., partial) objects.

• Variables x , y . . . range over total objects.

For readability,

∀xA(x) abbreviates ∀x̂(Tx̂ → A(x̂)).

10 / 29

Intro Model TCF Realizability Examples Conclusion

Partiality

• Defined functionals D (and hence terms) can be partial.

• Many D’s are total (map total arguments into total values).

Convention:

• Variables x̂ , ŷ . . . range over arbitrary (i.e., partial) objects.

• Variables x , y . . . range over total objects.

For readability,

∀xA(x) abbreviates ∀x̂(Tx̂ → A(x̂)).

10 / 29

Intro Model TCF Realizability Examples Conclusion

Partiality

• Defined functionals D (and hence terms) can be partial.

• Many D’s are total (map total arguments into total values).

Convention:

• Variables x̂ , ŷ . . . range over arbitrary (i.e., partial) objects.

• Variables x , y . . . range over total objects.

For readability,

∀xA(x) abbreviates ∀x̂(Tx̂ → A(x̂)).

10 / 29

Intro Model TCF Realizability Examples Conclusion

Equality

There are many variants of equality:

• Decidable equality for base types, for instance =N.

• Leibniz equality, inductively defined by the clause ∀x(x ≡ x).

• Pointwise equality2:

(f
.
=τ→σ g) := ∀x ,y (x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

(x ∈ Extτ) := (x
.
=τ x).

2Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11 / 29

Intro Model TCF Realizability Examples Conclusion

Equality

There are many variants of equality:

• Decidable equality for base types, for instance =N.

• Leibniz equality, inductively defined by the clause ∀x(x ≡ x).

• Pointwise equality2:

(f
.
=τ→σ g) := ∀x ,y (x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

(x ∈ Extτ) := (x
.
=τ x).

2Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11 / 29

Intro Model TCF Realizability Examples Conclusion

Equality

There are many variants of equality:

• Decidable equality for base types, for instance =N.

• Leibniz equality, inductively defined by the clause ∀x(x ≡ x).

• Pointwise equality2:

(f
.
=τ→σ g) := ∀x ,y (x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

(x ∈ Extτ) := (x
.
=τ x).

2Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11 / 29

Intro Model TCF Realizability Examples Conclusion

Equality

There are many variants of equality:

• Decidable equality for base types, for instance =N.

• Leibniz equality, inductively defined by the clause ∀x(x ≡ x).

• Pointwise equality2:

(f
.
=τ→σ g) := ∀x ,y (x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

(x ∈ Extτ) := (x
.
=τ x).

2Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11 / 29

Intro Model TCF Realizability Examples Conclusion

Equality

There are many variants of equality:

• Decidable equality for base types, for instance =N.

• Leibniz equality, inductively defined by the clause ∀x(x ≡ x).

• Pointwise equality2:

(f
.
=τ→σ g) := ∀x ,y (x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

(x ∈ Extτ) := (x
.
=τ x).

2Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11 / 29

Intro Model TCF Realizability Examples Conclusion

Properties

• Extτ and coTτ are equivalent for closed types of level ≤1.

• For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

• For every term t(x⃗) with extensional constants and free
variables among x⃗ we have

x⃗
.
=ρ⃗ y⃗ → t(x⃗)

.
=τ t(y⃗),

x⃗ ∈ Extρ⃗ → t(x⃗) ∈ Extτ .

12 / 29

Intro Model TCF Realizability Examples Conclusion

Properties

• Extτ and coTτ are equivalent for closed types of level ≤1.

• For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

• For every term t(x⃗) with extensional constants and free
variables among x⃗ we have

x⃗
.
=ρ⃗ y⃗ → t(x⃗)

.
=τ t(y⃗),

x⃗ ∈ Extρ⃗ → t(x⃗) ∈ Extτ .

12 / 29

Intro Model TCF Realizability Examples Conclusion

Properties

• Extτ and coTτ are equivalent for closed types of level ≤1.

• For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

• For every term t(x⃗) with extensional constants and free
variables among x⃗ we have

x⃗
.
=ρ⃗ y⃗ → t(x⃗)

.
=τ t(y⃗),

x⃗ ∈ Extρ⃗ → t(x⃗) ∈ Extτ .

12 / 29

Intro Model TCF Realizability Examples Conclusion

Properties

• Extτ and coTτ are equivalent for closed types of level ≤1.

• For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

• For every term t(x⃗) with extensional constants and free
variables among x⃗ we have

x⃗
.
=ρ⃗ y⃗ → t(x⃗)

.
=τ t(y⃗),

x⃗ ∈ Extρ⃗ → t(x⃗) ∈ Extτ .

12 / 29

Intro Model TCF Realizability Examples Conclusion

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

• “computationally relevant” ones I c, X c and

• “non-computational” ones I nc, X nc.

• We use I , X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13 / 29

Intro Model TCF Realizability Examples Conclusion

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

• “computationally relevant” ones I c, X c and

• “non-computational” ones I nc, X nc.

• We use I , X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13 / 29

Intro Model TCF Realizability Examples Conclusion

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

• “computationally relevant” ones I c, X c and

• “non-computational” ones I nc, X nc.

• We use I , X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13 / 29

Intro Model TCF Realizability Examples Conclusion

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

• “computationally relevant” ones I c, X c and

• “non-computational” ones I nc, X nc.

• We use I , X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13 / 29

Intro Model TCF Realizability Examples Conclusion

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

• “computationally relevant” ones I c, X c and

• “non-computational” ones I nc, X nc.

• We use I , X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13 / 29

Intro Model TCF Realizability Examples Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ρ⃗ an n.c. predicate variable X r of
arity (ρ⃗, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm → Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

14 / 29

Intro Model TCF Realizability Examples Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ρ⃗ an n.c. predicate variable X r of
arity (ρ⃗, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm → Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

14 / 29

Intro Model TCF Realizability Examples Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ρ⃗ an n.c. predicate variable X r of
arity (ρ⃗, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm → Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

14 / 29

Intro Model TCF Realizability Examples Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ρ⃗ an n.c. predicate variable X r of
arity (ρ⃗, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm → Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

14 / 29

Intro Model TCF Realizability Examples Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ρ⃗ an n.c. predicate variable X r of
arity (ρ⃗, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm → Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

14 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (C r for r-free c.r. formulas C)

Let z r C mean C rz .

z r Pt⃗ := P r t⃗z ,

z r (A → B) :=

{
∀w (w r A → zw r B) if A is c.r.

A → z r B if A is n.c.

z r ∀xA := ∀x(z r A).

15 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.,

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.,

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

16 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.,

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.,

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

16 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.,

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.,

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

16 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.,

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.,

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

16 / 29

Intro Model TCF Realizability Examples Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.,

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.,

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

16 / 29

Intro Model TCF Realizability Examples Conclusion

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate I .

• et(I+i) := Ci and et(I−) := R, where the constructor Ci and
the recursion operator R refer to ιI associated with I .

• et(coI−) := D and et(coI+i) := coR, where the destructor D
and the corecursion operator coR refer to ιI again.

17 / 29

Intro Model TCF Realizability Examples Conclusion

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate I .

• et(I+i) := Ci and et(I−) := R, where the constructor Ci and
the recursion operator R refer to ιI associated with I .

• et(coI−) := D and et(coI+i) := coR, where the destructor D
and the corecursion operator coR refer to ιI again.

17 / 29

Intro Model TCF Realizability Examples Conclusion

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate I .

• et(I+i) := Ci and et(I−) := R, where the constructor Ci and
the recursion operator R refer to ιI associated with I .

• et(coI−) := D and et(coI+i) := coR, where the destructor D
and the corecursion operator coR refer to ιI again.

17 / 29

Intro Model TCF Realizability Examples Conclusion

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui : Ci (i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

18 / 29

Intro Model TCF Realizability Examples Conclusion

We express

• Kolmogorov’s view of “formulas as problems”3

• Feferman’s dictum “to assert is to realize”4

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A → A),

InvExA : A → ∃z(z r A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
4Constructive theories of functions and classes, Logic Colloquium 78, p.208

19 / 29

Intro Model TCF Realizability Examples Conclusion

We express

• Kolmogorov’s view of “formulas as problems”3

• Feferman’s dictum “to assert is to realize”4

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A → A),

InvExA : A → ∃z(z r A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
4Constructive theories of functions and classes, Logic Colloquium 78, p.208

19 / 29

Intro Model TCF Realizability Examples Conclusion

We express

• Kolmogorov’s view of “formulas as problems”3

• Feferman’s dictum “to assert is to realize”4

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A → A),

InvExA : A → ∃z(z r A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
4Constructive theories of functions and classes, Logic Colloquium 78, p.208

19 / 29

Intro Model TCF Realizability Examples Conclusion

We express

• Kolmogorov’s view of “formulas as problems”3

• Feferman’s dictum “to assert is to realize”4

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A → A),

InvExA : A → ∃z(z r A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
4Constructive theories of functions and classes, Logic Colloquium 78, p.208

19 / 29

Intro Model TCF Realizability Examples Conclusion

We express

• Kolmogorov’s view of “formulas as problems”3

• Feferman’s dictum “to assert is to realize”4

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A → A),

InvExA : A → ∃z(z r A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
4Constructive theories of functions and classes, Logic Colloquium 78, p.208

19 / 29

Intro Model TCF Realizability Examples Conclusion

Real numbers

• Real numbers are given as Cauchy sequences of rationals with
an explicitly given modulus.

;; ApproxSplitBoole

(set-goal "all x1,x2,x3,p(Real x1 -> Real x2 -> Real x3 ->

RealLt x1 x2 p -> exl boole(

(boole -> x3<<=x2) andi ((boole -> F) -> x1<<=x3)))")

20 / 29

Intro Model TCF Realizability Examples Conclusion

Continuous functions

• Continuous functions on the reals are determined by their
values on rationals.

• On closed intervals they come with a modulus of uniform
continuity.

21 / 29

Intro Model TCF Realizability Examples Conclusion

Continuous functions

• Continuous functions on the reals are determined by their
values on rationals.

• On closed intervals they come with a modulus of uniform
continuity.

21 / 29

Intro Model TCF Realizability Examples Conclusion

IVTAux

Let f : I → R be continuous, with a uniform modulus q of increase.
Let a < b be rationals in I such that

a ≤ c < d ≤ b and f (c) ≤ 0 ≤ f (d).

Then we can construct c1, d1 with

d1 − c1 =
1

2
(d − c),

such that again

a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

22 / 29

Intro Model TCF Realizability Examples Conclusion

IVTAux

Let f : I → R be continuous, with a uniform modulus q of increase.
Let a < b be rationals in I such that

a ≤ c < d ≤ b and f (c) ≤ 0 ≤ f (d).

Then we can construct c1, d1 with

d1 − c1 =
1

2
(d − c),

such that again

a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

22 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

Proof.
Let b0 = c and bn+1 = bn +

1
4(d − c) for n ≤ 3, hence b4 = d .

From 1
2p < d − c we obtain 1

2p+2 ≤ bn+1 − bn, hence
f (bn) <p+2+q f (bn+1).

• First compare 0 with f (b1) < f (b2), using ApproxSplit.

• In case 0 ≤ f (b2) let c1 = b0 = c and d1 = b2.

• In case f (b1) ≤ 0 compare 0 with f (b2) < f (b3), using
ApproxSplit again.

• In case 0 ≤ f (b3) let c1 = b1 and d1 = b3.

• In case f (b2) ≤ 0 let c1 = b2 and d1 = b4 = d .

23 / 29

Intro Model TCF Realizability Examples Conclusion

IVT
Let f : I → R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in I such that f (a) ≤ 0 ≤ f (b).
Then we can find x ∈ [a, b] such that f (x) = 0.

Proof.
Iterating the construction in IVTAux, we construct two sequences
(cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f (cn) ≤ 0 ≤ f (dn),

dn − cn =
1

2n
(b − a).

Let x , y be given by the Cauchy sequences (cn)n and (dn)n with
the obvious modulus. As f is continuous, f (x) = 0 = f (y) for the
real number x = y .

24 / 29

Intro Model TCF Realizability Examples Conclusion

IVT
Let f : I → R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in I such that f (a) ≤ 0 ≤ f (b).
Then we can find x ∈ [a, b] such that f (x) = 0.

Proof.
Iterating the construction in IVTAux, we construct two sequences
(cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f (cn) ≤ 0 ≤ f (dn),

dn − cn =
1

2n
(b − a).

Let x , y be given by the Cauchy sequences (cn)n and (dn)n with
the obvious modulus. As f is continuous, f (x) = 0 = f (y) for the
real number x = y .

24 / 29

Intro Model TCF Realizability Examples Conclusion

IVT
Let f : I → R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in I such that f (a) ≤ 0 ≤ f (b).
Then we can find x ∈ [a, b] such that f (x) = 0.

Proof.
Iterating the construction in IVTAux, we construct two sequences
(cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f (cn) ≤ 0 ≤ f (dn),

dn − cn =
1

2n
(b − a).

Let x , y be given by the Cauchy sequences (cn)n and (dn)n with
the obvious modulus. As f is continuous, f (x) = 0 = f (y) for the
real number x = y .

24 / 29

Intro Model TCF Realizability Examples Conclusion

Example of a continuous function

We represent the continuous real function x2 − 2 on [1, 2] by its
values on the rationals:

(add-program-constant "SqRtTwo" (py "cont"))

(add-computation-rules

"SqRtTwo"

"ContConstr 1 2([a,n]a*a-2)([p]Zero)([p]p+3)~1 2")

;; SqRtTwoApprox

(set-goal

"exr x(Real x andr SqRtTwo x===0 andr

all r exl c abs(c+ ~x)<<=(1#2**r))")

25 / 29

Intro Model TCF Realizability Examples Conclusion

(add-sound "SqRtTwoApprox")

;; ok, SqRtTwoApproxSound has been added as a new theorem:

;; ... with computation rule

;; cSqRtTwoApprox eqd

;; cRealApprox

;; (cIVTFinal(ContConstr 1 2([a,n]a*a+IntN 2)

;; ([p]Zero)([p]p+3)IntN 1 2)1 1)

26 / 29

Intro Model TCF Realizability Examples Conclusion

(terms-to-haskell-program

"~/temp/sqrttwo.hs"

(list (list (pt "cSqRtTwoApprox") "sqrtwo")))

;; $ ghci sqrttwo.hs

;; *Main> cSqRtTwoApprox 50

;; 1592262918131443 % 1125899906842624

(exact->inexact 1592262918131443/1125899906842624)

;; 1.414213562373095

(sqrt 2)

;; 1.4142135623730951

At 50 we already have 15 correct decimal digits.

27 / 29

Intro Model TCF Realizability Examples Conclusion

Further aplications in constructive analysis.

• Verified algorithms for arithmetic on stream-represented real
numbers.

• Functional equation of the exponential function.

• Verified algorithm to find for a given real x some p such that

1

2p
≤ ex .

28 / 29

Intro Model TCF Realizability Examples Conclusion

Further aplications in constructive analysis.

• Verified algorithms for arithmetic on stream-represented real
numbers.

• Functional equation of the exponential function.

• Verified algorithm to find for a given real x some p such that

1

2p
≤ ex .

28 / 29

Intro Model TCF Realizability Examples Conclusion

Further aplications in constructive analysis.

• Verified algorithms for arithmetic on stream-represented real
numbers.

• Functional equation of the exponential function.

• Verified algorithm to find for a given real x some p such that

1

2p
≤ ex .

28 / 29

Intro Model TCF Realizability Examples Conclusion

Further aplications in constructive analysis.

• Verified algorithms for arithmetic on stream-represented real
numbers.

• Functional equation of the exponential function.

• Verified algorithm to find for a given real x some p such that

1

2p
≤ ex .

28 / 29

Intro Model TCF Realizability Examples Conclusion

Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

29 / 29

Intro Model TCF Realizability Examples Conclusion

Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

29 / 29

Intro Model TCF Realizability Examples Conclusion

Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

29 / 29

Intro Model TCF Realizability Examples Conclusion

Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

29 / 29

	Intro
	Model
	TCF
	Realizability
	Examples
	Conclusion

