Intro
000

Model TCF Realizability Examples Conclusion
000 000000 000000 000000000 o]

A theory of computable functionals

Helmut Schwichtenberg
Mathematisches Institut, LMU, Minchen

Wirzburg, 26. November 2024

1/29

Intro Model TCF Realizability Examples Conclusion
@00 000 000000 000000 000000000 o]

Computational content of proofs

® Proofs may have computational content.

2/29

Intro Model TCF Realizability Examples Conclusion
@00 000 000000 000000 000000000 o]

Computational content of proofs

® Proofs may have computational content.

® One can extract it and obtains a term (~ program).

2/29

Intro Model TCF Realizability Examples Conclusion
@00 000 000000 000000 000000000 o]

Computational content of proofs

® Proofs may have computational content.
® One can extract it and obtains a term (~ program).

® The correctness of this term (~ program) can be proved.

2/29

Intro
€00

Computational content of proofs

® Proofs may have computational content.
® One can extract it and obtains a term (~ program).
® The correctness of this term (~ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

2/29

Intro
€00

Computational content of proofs

® Proofs may have computational content.
® One can extract it and obtains a term (~ program).
® The correctness of this term (~ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2/29

Intro Model TCF Realizability Examples Conclusion
oeo 000 000000 000000 000000000 o]

Language

® Functions of (simple) types, defined by equations.

3/29

Intro
o1 1)

Language

® Functions of (simple) types, defined by equations.

® Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

3/29

Intro
o1 1)

Language

® Functions of (simple) types, defined by equations.

® Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational.

3/29

Intro Model TCF Realizability Examples Conclusion
ooe 000 000000 000000 000000000 o]

Logic

® A constructive extension of classical logic, by adding “strong”
variants of V, 3 to the classical V, 3:

AVB:=(-A—=-B— 1), JA=-VA

4/29

Intro
ooe

Logic

® A constructive extension of classical logic, by adding “strong”
variants of V, 3 to the classical V, 3:

AVB:=(-A—=-B— 1), JA=-VA

® In proof trees (natural deduction) call subtrees with an n.c.
end formula “nc-parts”. Ignore c.r. and n.c. decorations there.

4/29

Intro Model TCF Realizability Examples Conclusion
000 @00 000000 000000 000000000 o]

® What is a proof? We need a theory.

5/29

Model
©00

® What is a proof? We need a theory.

® Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

5/29

Model
©00

® What is a proof? We need a theory.

® Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

e Scott-Ershov model of partial continuous functionals!. ldea:
Infinite objects (“ideals™) given by their finite approximations.

!Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5/29

Model
©00

® What is a proof? We need a theory.

® Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

Scott-Ershov model of partial continuous functionals®. Idea:
Infinite objects (“ideals™) given by their finite approximations.

Ideals: “consistent” and “deductively closed” sets of “tokens”.

!Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5/29

Model
©00

® What is a proof? We need a theory.

® Since we are interested in the computational content of proofs,
it seems best to look for a theory describing a concrete model:

e Scott-Ershov model of partial continuous functionals!. ldea:
Infinite objects (“ideals™) given by their finite approximations.

® |deals: “consistent” and “deductively closed” sets of “tokens”.

® Tokens at base types: “constructor trees” with possibly x.

!Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

5/29

6/29

e {50,5(S5%)} is inconsistent.

6/29

e {50,5(S5%)} is inconsistent.
e {Sx,5(S%)} is an ideal.

6/29

e {50,5(S5%)} is inconsistent.
e {Sx,5(S%)} is an ideal.
® {5%,5(5%),5(50)} is an ideal (“total").

6/29

e {50,5
e {5%,S
o {5x,S
o {5, S

Sx
Sx
Sx
Sx

} is inconsistent.

} is an ideal.

,S(50)} is an ideal (“total”).

,S(5(5%)), ...} is an infinite ideal (“cototal”).

—~~ ~~ —~
— ~— N —

6/29

Intro Model TCF Realizability Examples Conclusion
000 ooe 000000 000000 000000000 o]

Ideals at function types

® can be partial,

7/29

Model
ooe

Ideals at function types
® can be partial,

® are continuous: for every “formal neighborhood” V of f(x) we
can find a formal neighborhood U of x with f[U] C V, and

7/29

Model
ooe

Ideals at function types
® can be partial,

® are continuous: for every “formal neighborhood” V of f(x) we
can find a formal neighborhood U of x with f[U] C V, and

® are computable iff they are given by a recursively enumerable
set of tokens.

7/29

Intro Model TCF Realizability Examples Conclusion
[e]e]e} [e]e]e} @00000 000000 000000000 [e]

A common extension T of Godel's T and Plotkin's PCF

8/29

Intro Model TCF Realizability Examples Conclusion
000 000 000000 000000 000000000 o]

A common extension T of Godel's T and Plotkin's PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N = x7 | CT | D™ | (Aer MO)™=7 | (M7= NT)°.

8/29

ntro Model TCF Realizability
000 000 000000 [e]e (o]e]

Conclusion

A common extension T of Godel's T and Plotkin's PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::=x"|CT | D" | (Aer M) 77 | (MT7ONT)7.
Examples: Decidable equality =y: N — N — B

(0=N0) =tt, (Sn =N 0) = ff,
(0 =N Sm) = ff, (Sn=n Sm) = (n=N m).

8/29

Intro Model TCF
000 000 ©00000

tmmp\gs ‘Cr‘onr,\usmn
A common extension T of Godel's T and Plotkin's PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M,N ::=x"|CT | D" | (Aer M) 77 | (MT7ONT)7.
Examples: Decidable equality =y: N — N — B

(0=N0) =tt, (Sn =N 0) = ff,
(0 =N Sm) = ff, (Sn=n Sm) = (n=N m).

Recursion R{: N—=7—=(N—=7—=7) = 7.

R0af = a,
RN(Sn)af = fn(R{ naf).

8/29

Predicates and formulas

P,Qu=X[{Z|A}[I(7,P)|“I(5,P) (predicates),
A B:=Pt |A— B|Y,A (formulas).

The missing logical connectives A, V, 3 are inductively defined.
Totality Ty is inductively defined as the least fixed point (Ifp) of
the clauses

0e Ty, ne Tn— Sne Tn.

Cototality ® Ty is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

€ECTN—=>n=0VIy(n €“°TyAn=Sn).

9/29

:|>

TCF Realizability Examples Conclusion
0e0000 000000 000000000 o]

Predicates and formulas

X |{X|A}Y[1(7,P)|I(F,P) (predicates),
Pt | A— B| VLA (formulas).

9/29

Intro Model TCF Realizability Examples Conclusion
000 000 0e0000 000000 000000000 o]

Predicates and formulas

P.Q = X |{RI A} I(7P) | “I(5,F) (predicates),
A B Pt | A— B| VLA (formulas).

The missing logical connectives A, V, 3 are inductively defined.

9/29

Intro H d 2| TCF Realizability Examples Conclusion
000 0e0000 000000 000000000 o]

Predicates and formulas

P,Qu=X|{X|A}[1(7,P)|“I(5,P) (predicates),
A B Pt | A— B| VLA (formulas).

The missing logical connectives A, V, 3 are inductively defined.
Totality T is inductively defined as the least fixed point (Ifp) of
the clauses

0e Ty, ne Ty — Sne Ty.

9/29

TCF
0®0000

Predicates and formulas

P,Qu=X|{X|A}[1(7,P)|“I(5,P) (predicates),
A B Pt | A— B| VLA (formulas).

The missing logical connectives A, V, 3 are inductively defined.
Totality T is inductively defined as the least fixed point (Ifp) of
the clauses

0e Ty, ne Ty — Sne Ty.

Cototality Ty is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

€ECTN—=>n=0V3y(n €°TyAn=Sn).

9/29

Intro Model TCF Realizability Examples Conclusion
000 000 00e000 000000 000000000 o]

Partiality

e Defined functionals D (and hence terms) can be partial.

10/29

Intro Model TCF ealizability xamples Conclusion

[e]e] le]ele] 000000 0000000

Partiality

e Defined functionals D (and hence terms) can be partial.

® Many D'’s are total (map total arguments into total values).

10/29

TCF
00®000

Partiality

e Defined functionals D (and hence terms) can be partial.

® Many D'’s are total (map total arguments into total values).

Convention:

® Variables %,y ... range over arbitrary (i.e., partial) objects.

10/29

TCF
00®000

Partiality

e Defined functionals D (and hence terms) can be partial.

® Many D'’s are total (map total arguments into total values).

Convention:
® Variables %,y ... range over arbitrary (i.e., partial) objects.

® Variables x, y ... range over total objects.

10/29

TCF
00®000

Partiality

e Defined functionals D (and hence terms) can be partial.

® Many D'’s are total (map total arguments into total values).

Convention:
® Variables %,y ... range over arbitrary (i.e., partial) objects.
® Variables x, y ... range over total objects.

For readability,

VxA(x) abbreviates Vi(Tx — A(X)).

10/29

Intro Model TCF Realizability Examples Conclusion
000 000 000e00 000000 000000000 o]

Equality

There are many variants of equality:

11/29

Intro Model TCF Realizability Examples Conclusion
000 000 000e00 000000 000000000 o]

Equality

There are many variants of equality:
® Decidable equality for base types, for instance =y.

11/29

TCF
000@00

Equality

There are many variants of equality:
® Decidable equality for base types, for instance =y.

e Leibniz equality, inductively defined by the clause ¥, (x = x).

11/29

TCF
000@00

Equality

There are many variants of equality:
® Decidable equality for base types, for instance =y.
e Leibniz equality, inductively defined by the clause ¥, (x = x).

* Pointwise equality?:

(f =150 8) i=Vay(x =r y = fx =5 gy).

2Robin Gandy, On the axiom of extensionality — Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953
11/29

TCF
000@00

Equality

There are many variants of equality:
® Decidable equality for base types, for instance =y.

e Leibniz equality, inductively defined by the clause ¥, (x = x).

* Pointwise equality?:
(f =150 8) i=Vay(x =r y = fx =5 gy).
Extensionality is defined as diagonalization of pointwise equality:

(x € Ext;) := (x =7 x).

2Robin Gandy, On the axiom of extensionality — Part I, JSL 1956 and
Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

11/29

Intro Model TCF Realizability Examples Conclusion
000 000 0000e0 000000 000000000 o]

Properties

e Ext, and T, are equivalent for closed types of level <1.

12/29

Intro Model TCF ealizability xamples Conclusion

O000e0 000000 0000000

Properties

e Ext, and T, are equivalent for closed types of level <1.

® For every closed type 7 the relation = is an equivalence
relation on Ext..

12/29

TCF
0000@0

Properties

e Ext, and T, are equivalent for closed types of level <1.

® For every closed type 7 the relation = is an equivalence
relation on Ext..

® For every term t(X) with extensional constants and free
variables among X we have

%277 t(%) = 1(7),

12/29

TCF
0000@0

Properties

e Ext, and T, are equivalent for closed types of level <1.

® For every closed type 7 the relation = is an equivalence
relation on Ext..

® For every term t(X) with extensional constants and free
variables among X we have

X =5y = t(X) = t(y),
X € Exty — t(X) € Ext,.

12/29

Intro Model TCF Realizability Examples Conclusion
000 000 00000e 000000 000000000 o]

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,

13/29

TCF
00000e

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,
® “computationally relevant” ones /¢, X¢ and

® “non-computational” ones /¢, X"°.

13/29

TCF
00000e

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,
® “computationally relevant” ones /¢, X¢ and
® “non-computational” ones /¢, X"°.
® We use /, X for both.

13/29

TCF
00000e

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,
® “computationally relevant” ones /¢, X¢ and
® “non-computational” ones /¢, X"°.
® We use /, X for both.

This leads to a distinction between c.r. and n.c. formulas.

13/29

TCF
00000e

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,
® “computationally relevant” ones /¢, X¢ and
® “non-computational” ones /¢, X"°.
® We use /, X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

13/29

Realizability
900000

Need “realizability extensions” of c.r. predicates and formulas:

14 /29

Realizability
900000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (7, &) where ¢ is the type variable associated with X.

14 /29

Realizability
900000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (7, &) where ¢ is the type variable associated with X.

e We introduce /" /°°l" for c.r. (co)inductive predicates I/,
e.g.,

Even'00 Even"nm — Even'(5(Sn))(Sm).

14 /29

Realizability
900000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (7, &) where ¢ is the type variable associated with X.

e We introduce /" /°°l" for c.r. (co)inductive predicates I/,
e.g.,

Even'00 Even"nm — Even'(5(Sn))(Sm).

® A predicate or formula C is r-free if it does not contain any of
these X", ' or <9/".

14 /29

Realizability
900000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (7, &) where ¢ is the type variable associated with X.

e We introduce /" /°°l" for c.r. (co)inductive predicates I/,
e.g.,

Even'00 Even"nm — Even'(5(Sn))(Sm).

® A predicate or formula C is r-free if it does not contain any of
these X", ' or <9/".

e A derivation M is r-free if it contains r-free formulas only.

14 /29

Intro
[e]e]e}

Model TCF Realizability
000 000000 000000

Definition (C" for r-free c.r. formulas C)
Let zr C mean C'z.
zr Pt:= P'tz,

w A B
2r (A= B) = Vw(wrA— zwr B)
A—zrB

zr YA =V (zr A).

Examples Conclusion
000000000 o]

if Ais c.r.
if Ais n.c.

15/29

Intro Model TCF Realizability Examples Conclusion
[e]e]e} [e]e]e} 000000 00000 000000000 [e]

Definition (Extracted term for an r-free proof M of a c.r. A)

16 /29

Intro Model TCF Realizability Examples Conclusion
[e]e]e} [e]e]e} 000000 00e000 000000000 [e]

Definition (Extracted term for an r-free proof M of a c.r. A)

et(u?) =27 (1™ uniquely associated to uA),

16 /29

Intro
000

Model TCF Realizability Examples Conclusion
[e]e]e} 000000 00e000 000000000 [e]

Definition (Extracted term for an r-free proof M of a c.r. A)

et(u?) =27 (1™ uniquely associated to uA),

et(A o MEYAE) . | AactUM) i Als cr.
! et(M) if Aisn.c,

16 /29

Intro Model TCF Realizability Examples Conclusion
[e]e]e} [e]e]e} 000000 00e000 000000000 [e]

Definition (Extracted term for an r-free proof M of a c.r. A)

[}
—
—~
<
>
~
1l

zZ(A) uniquely associated to u*),

z
et((Aa MB A—>B . et(l\/l if Ais c.r.
if Ais n.c.,

et(N) if Ais c.r.
et if Aisn.c.,

16 /29

Intro Model Realizability Conclusion

000 [e]e]e} 000000 o]
Definition (Extracted term for an r-free proof M of a c.r. A)
et(u?) =27 (1™ uniquely associated to uA),

Az et(M) if Ais cur.

et((AaMP)A7F) = {et(M) if Aisn.c.

et((MAENAYE) {zt%etw) A

et((AMH>A) = et(M),
et((MVxA(X) t)A(t)) = et(M).

16 /29

Realizability
000e00

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.

17/29

Intro Model TCF Realizability xamples Conclusion

000000 000000C

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.

® et(/) :=C; and et(/7) := R, where the constructor C; and
the recursion operator R refer to +; associated with /.

17/29

Intro Model TCF Realizability —xamples Conclusion

000000 000000C

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.
® et(/) :=C; and et(/7) := R, where the constructor C; and
the recursion operator R refer to +; associated with /.
® et(9) := D and et(°;") := ©°R, where the destructor D
and the corecursion operator ““R refer to ¢; again.

17/29

Realizability
0000e0

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui: C; (i < n). Then we can derive

et(M)rA ifAiscr.
A if Ais n.c.

from assumptions

z,vr G ifGCiscr.
(@ if C; is n.c.

18/29

Realizability
00000e

We express

® Kolmogorov's view of “formulas as problems”3

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

19/29

Realizability
00000e

We express

® Kolmogorov's view of “formulas as problems”3

e Feferman’s dictum “to assert is to realize”*

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

*Constructive theories of functions and classes, Logic Colloquium 78, p.208

19/29

Realizability
00000e

We express
® Kolmogorov's view of “formulas as problems”3
® Feferman’s dictum ‘“to assert is to realize"*

by invariance axioms:

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

*Constructive theories of functions and classes, Logic Colloquium 78, p.208

19/29

Realizability
00000e

We express
® Kolmogorov's view of “formulas as problems”3
® Feferman’s dictum ‘“to assert is to realize"*

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAlly: Vo(zr A— A),
InvExa: A — 3,(zr A).

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

*Constructive theories of functions and classes, Logic Colloquium 78, p.208

19/29

Realizability
00000e

We express

® Kolmogorov's view of “formulas as problems”3
e Feferman’s dictum “to assert is to realize”*

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAlly: Vo(zr A— A),
InvExa: A — 3,(zr A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
*Constructive theories of functions and classes, Logic Colloquium 78, p.208

19/29

Examples
©00000000

Real numbers

® Real numbers are given as Cauchy sequences of rationals with
an explicitly given modulus.

;3 ApproxSplitBoole

(set-goal "all x1,x2,x3,p(Real x1 -> Real x2 -> Real x3 ->
Reallt x1 x2 p -> exl boole(
(boole -> x3<<=x2) andi ((boole -> F) -> x1<<=x3)))")

20/29

Intro Model TCF Realizability Examples Conclusion
000 000 000000 000000 0@0000000 o]

Continuous functions

® Continuous functions on the reals are determined by their
values on rationals.

21/29

Intro Model TCF ealizability Examples Conclusion
000 000 00000000 o

Continuous functions

® Continuous functions on the reals are determined by their
values on rationals.

® On closed intervals they come with a modulus of uniform
continuity.

21/29

Examples
00@000000

IV TAux

Let f: I — R be continuous, with a uniform modulus g of increase.
Let a < b be rationals in / such that

a<c<d<b and f(c)<0<f(d).

22/29

Examples
00@000000

IVTAux
Let f: I — R be continuous, with a uniform modulus g of increase.
Let a < b be rationals in / such that
a<c<d<b and f(c)<0<f(d).

Then we can construct ¢;, di with

1
dl—Cl = E(d—c),

such that again

a<c<qag<di<d<b and f(c) <0< f(dh).

22/29

Intro Model TCF Realizability Examples Conclusion
000 000 000000 000000 000800000 o]

Proof.
Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.

23/29

Examples
000®00000

Proof.
Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.
1

From 55 < d — ¢ we obtain 2,,% < bpy1 — by, hence

f(bn) <p+2+q f(bn+1).

23/29

Examples
000®00000

Proof.
Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.
1

From 55 < d — ¢ we obtain 2,,% < bpy1 — by, hence

f(bn) <p+2+q f(bn+1).
® First compare 0 with f(by) < f(b2), using ApproxSplit.

23/29

Examples
000®00000

Proof.
Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.
From 2%, < d — ¢ we obtain 2,,% < bpy1 — by, hence
f(bn) <p+2+q f(bn+1).
® First compare 0 with f(by) < f(b2), using ApproxSplit.

® Incase 0 < f(by) let c; = by = ¢ and di = by.

23/29

Examples
000®00000

Proof.

Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.
From 2%, < d — ¢ we obtain 2,,% < bpy1 — by, hence
f(bn) <p+2+q f(bn+1).

® First compare 0 with f(by) < f(b2), using ApproxSplit.

® Incase 0 < f(by) let c; = by = ¢ and di = by.

® In case f(b1) < 0 compare 0 with f(bp) < f(b3), using

ApproxSplit again.

23/29

Examples
000®00000

Proof.

Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.
From 2%, < d — ¢ we obtain 2,,% < bpy1 — by, hence
f(bn) <p+2+q f(bn+1).
® First compare 0 with f(by) < f(b2), using ApproxSplit.
® Incase 0 < f(by) let c; = by = ¢ and di = by.
® In case f(b1) < 0 compare 0 with f(bp) < f(b3), using
ApproxSplit again.

® Incase 0 < f(b3) let ¢; = by and di = bs.

23/29

Examples
000®00000

Proof.

Let by = ¢ and b1 = b, + %(d —¢) for n < 3, hence by = d.

From 2%, < d — ¢ we obtain 2,,% < bpy1 — by, hence

f(bn) <p+2+q f(bn+1).
® First compare 0 with f(by) < f(b2), using ApproxSplit.
® Incase 0 < f(by) let c; = by = ¢ and di = by.
® In case f(b1) < 0 compare 0 with f(bp) < f(b3), using
ApproxSplit again.
® Incase 0 < f(b3) let ¢; = by and di = bs.
® Incase f(by) <O0let g = by and dy = by = d. O

23/29

Examples
0000@0000

VT

Let f: | — R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in / such that f(a) <0 < f(b).
Then we can find x € [a, b] such that f(x) = 0.

24/29

Examples
0000@0000

VT

Let f: | — R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in / such that f(a) <0 < f(b).
Then we can find x € [a, b] such that f(x) = 0.

Proof.
Iterating the construction in IVTAux, we construct two sequences
(¢n)n and (dp), of rationals such that for all n

a=c¢q<a<--<c¢<d, <---<dy <dg= b,
f(cn) <0 < f(dp),

1
2n

dn—cn=—(b—a).

24/29

Examples
0000@0000

VT

Let f: | — R be continuous, with a uniform modulus of increase.
Let a < b be rational numbers in / such that f(a) <0 < f(b).
Then we can find x € [a, b] such that f(x) = 0.

Proof.
Iterating the construction in IVTAux, we construct two sequences
(¢n)n and (dp), of rationals such that for all n

a=c<a<--<<d, < <dy <dp= b,
f(cn) <0< f(dn),

1
dn—ch= E(b_ a).
Let x,y be given by the Cauchy sequences (c,), and (d,), with
the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the
real number x = y. O

24 /29

Examples
000008000

Example of a continuous function

We represent the continuous real function x> — 2 on [1,2] by its
values on the rationals:

(add-program-constant "SqRtTwo" (py "cont"))
(add-computation-rules
"SqRtTwo"

"ContConstr 1 2([a,n]a*a-2) ([plZero) ([plp+3)~1 2")

;3 SqRtTwoApprox
(set-goal
"exr x(Real x andr SqRtTwo x===0 andr
all r exl c abs(c+ “x)<<=(1#2*xr))")

25 /29

Examples
000000800

(add-sound "SqRtTwoApprox")

;3 ok, SqRtTwoApproxSound has been added as a new theorem:
;5 ... with computation rule

;3 cSqRtTwoApprox eqd

;3 cRealApprox

;3 (cIVTFinal (ContConstr 1 2([a,n]a*a+IntN 2)
HH ([plZero) ([plp+3)IntN 1 2)1 1)

26 /29

Examples
000000080

(terms-to-haskell-program
"~/temp/sqrttwo.hs"
(list (list (pt "cSqRtTwoApprox") "sqrtwo")))

;3 $ ghci sqrttwo.hs

;3 *Main> cSqRtTwoApprox 50
;5 1592262918131443 % 1125899906842624

(exact->inexact 1592262918131443/1125899906842624)
;5 1.414213562373095

(sqrt 2)
;5 1.4142135623730951

At 50 we already have 15 correct decimal digits.

27 /29

Intro Model TCF Realizability Examples Conclusion
000 000 000000 000000 00000000e o]

Further aplications in constructive analysis.

28/29

Examples
00000000@

Further aplications in constructive analysis.

® Verified algorithms for arithmetic on stream-represented real
numbers.

28/29

Examples
00000000@

Further aplications in constructive analysis.

® Verified algorithms for arithmetic on stream-represented real
numbers.

® Functional equation of the exponential function.

28/29

Examples
00000000@

Further aplications in constructive analysis.

® Verified algorithms for arithmetic on stream-represented real
numbers.

® Functional equation of the exponential function.

® Verified algorithm to find for a given real x some p such that

28 /29

Conclusion
°

Conclusion

® In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

29/29

Conclusion
°

Conclusion

® In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

® The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification™).
This is automated in Minlog.

29/29

Conclusion
°

Conclusion

® In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

® The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification™).
This is automated in Minlog.

® Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

29/29

Conclusion
°

Conclusion

In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

The soundness theorem provides a formal verification in TCF
that the extracted term realizes the formula (“specification™).
This is automated in Minlog.

Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

29 /29

	Intro
	Model
	TCF
	Realizability
	Examples
	Conclusion

