A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Würzburg, 26. November 2024

- Proofs may have computational content.
- One can extract it and obtains a term (\sim program).
- The correctness of this term (\sim program) can be proved.

This correctness proof is a formal one and within the underlying theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

- Proofs may have computational content.
- One can extract it and obtains a term (\sim program).
- ullet The correctness of this term (\sim program) can be proved.

This correctness proof is a formal one and within the underlying theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic

- Proofs may have computational content.
- One can extract it and obtains a term (\sim program).
- The correctness of this term (\sim program) can be proved.

This correctness proof is a formal one and within the underlying theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic

- Proofs may have computational content.
- One can extract it and obtains a term (\sim program).
- The correctness of this term (\sim program) can be proved.

This correctness proof is a formal one and within the underlying theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic

- Proofs may have computational content.
- One can extract it and obtains a term (\sim program).
- The correctness of this term (\sim program) can be proved.

This correctness proof is a formal one and within the underlying theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

Language

- Functions of (simple) types, defined by equations.
- Predicates, which are inductively / coinductively defined, by clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational

Language

- Functions of (simple) types, defined by equations.
- Predicates, which are inductively / coinductively defined, by clauses and least / greatest fixed point axioms.

Predicates are marked as

c.r. computationally relevant, or

n.c. non-computational.

Intro

Language

- Functions of (simple) types, defined by equations.
- Predicates, which are inductively / coinductively defined, by clauses and least / greatest fixed point axioms.

Predicates are marked as

- c.r. computationally relevant, or
- n.c. non-computational.

Intro

Logic

• A constructive extension of classical logic, by adding "strong" variants of \vee , \exists to the classical $\tilde{\vee}$, $\tilde{\exists}$:

$$A \tilde{\lor} B := (\neg A \to \neg B \to \bot), \qquad \tilde{\exists}_x A := \neg \forall_x \neg A.$$

 In proof trees (natural deduction) call subtrees with an n.c. end formula "nc-parts". Ignore c.r. and n.c. decorations there Intro

Logic

A constructive extension of classical logic, by adding "strong" variants of ∨, ∃ to the classical ♥, ∃:

$$A \tilde{\lor} B := (\neg A \to \neg B \to \bot), \qquad \tilde{\exists}_{\mathsf{x}} A := \neg \forall_{\mathsf{x}} \neg A.$$

• In proof trees (natural deduction) call subtrees with an n.c. end formula "nc-parts". Ignore c.r. and n.c. decorations there.

- What is a proof? We need a theory.
- Since we are interested in the computational content of proofs, it seems best to look for a theory describing a concrete model:
- Scott-Ershov model of partial continuous functionals¹. Idea: Infinite objects ("ideals") given by their finite approximations.
- Ideals: "consistent" and "deductively closed" sets of "tokens".
- Tokens at base types: "constructor trees" with possibly *.

¹Dana Scott, Outline of a mathematical theory of computation, 1970, and Yuri Ershov, Model *C* of partial continuous functionals, 1984

- What is a proof? We need a theory.
- Since we are interested in the computational content of proofs, it seems best to look for a theory describing a concrete model:
- Scott-Ershov model of partial continuous functionals¹. Idea: Infinite objects ("ideals") given by their finite approximations
- Ideals: "consistent" and "deductively closed" sets of "tokens".
- Tokens at base types: "constructor trees" with possibly *.

¹Dana Scott, Outline of a mathematical theory of computation, 1970, and Yuri Ershov, Model *C* of partial continuous functionals, 1984

- What is a proof? We need a theory.
- Since we are interested in the computational content of proofs, it seems best to look for a theory describing a concrete model:
- Scott-Ershov model of partial continuous functionals¹. Idea: Infinite objects ("ideals") given by their finite approximations.
- Ideals: "consistent" and "deductively closed" sets of "tokens".
- Tokens at base types: "constructor trees" with possibly *.

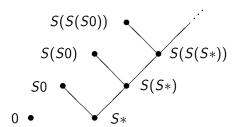
 $^{^{1}}$ Dana Scott, Outline of a mathematical theory of computation, 1970, and Yuri Ershov, Model C of partial continuous functionals, 1984

- What is a proof? We need a theory.
- Since we are interested in the computational content of proofs, it seems best to look for a theory describing a concrete model:
- Scott-Ershov model of partial continuous functionals¹. Idea: Infinite objects ("ideals") given by their finite approximations.
- Ideals: "consistent" and "deductively closed" sets of "tokens".
- Tokens at base types: "constructor trees" with possibly *.

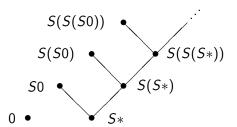
 $^{^{1}}$ Dana Scott, Outline of a mathematical theory of computation, 1970, and Yuri Ershov, Model C of partial continuous functionals, 1984

- What is a proof? We need a theory.
- Since we are interested in the computational content of proofs, it seems best to look for a theory describing a concrete model:
- Scott-Ershov model of partial continuous functionals¹. Idea: Infinite objects ("ideals") given by their finite approximations.
- Ideals: "consistent" and "deductively closed" sets of "tokens".
- Tokens at base types: "constructor trees" with possibly *.

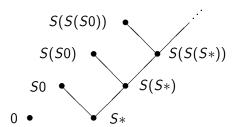
 $^{^{1}}$ Dana Scott, Outline of a mathematical theory of computation, 1970, and Yuri Ershov, Model C of partial continuous functionals, 1984



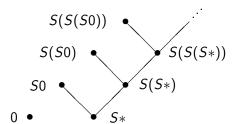
- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").



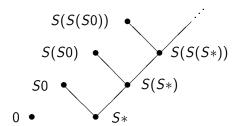
- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").



- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").



- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}\$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").



- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").

Ideals at function types

- can be partial,

Ideals at function types

- can be partial,
- are continuous: for every "formal neighborhood" V of f(x) we can find a formal neighborhood U of x with $f[U] \subseteq V$, and
- are computable iff they are given by a recursively enumerable set of tokens.

Ideals at function types

- can be partial,
- are continuous: for every "formal neighborhood" V of f(x) we can find a formal neighborhood U of x with $f[U] \subseteq V$, and
- are computable iff they are given by a recursively enumerable set of tokens.

Terms: built from (typed) variables and constants (constructors C or defined constants D) by abstraction and application:

$$M, N ::= x^{\tau} \mid C^{\tau} \mid D^{\tau} \mid (\lambda_{x^{\tau}} M^{\sigma})^{\tau \to \sigma} \mid (M^{\tau \to \sigma} N^{\tau})^{\sigma}.$$

Examples: Decidable equality $=_{\mathbb{N}} \colon \mathbb{N} \to \mathbb{N} \to \mathbb{B}$

$$(0 =_{\mathbb{N}} 0) = \text{tt},$$
 $(Sn =_{\mathbb{N}} 0) = \text{ff},$ $(0 =_{\mathbb{N}} Sm) = \text{ff},$ $(Sn =_{\mathbb{N}} Sm) = (n =_{\mathbb{N}} m)$

Recursion $\mathcal{R}_{\mathbb{N}}^{\tau} \colon \mathbb{N} \to \tau \to (\mathbb{N} \to \tau \to \tau) \to \tau$

$$\mathcal{R}^{ au}_{\mathbb{N}}$$
0af = a,
 $\mathcal{R}^{ au}_{\mathbb{N}}(Sn)$ af = fn($\mathcal{R}^{ au}_{\mathbb{N}}$ naf)

Terms: built from (typed) variables and constants (constructors C or defined constants D) by abstraction and application:

$$M, N ::= x^{\tau} \mid C^{\tau} \mid D^{\tau} \mid (\lambda_{x^{\tau}} M^{\sigma})^{\tau \to \sigma} \mid (M^{\tau \to \sigma} N^{\tau})^{\sigma}.$$

Examples: Decidable equality $=_{\mathbb{N}} \colon \mathbb{N} \to \mathbb{N} \to \mathbb{B}$

$$(0 =_{\mathbb{N}} 0) = \text{tt},$$
 $(Sn =_{\mathbb{N}} 0) = \text{ff},$ $(0 =_{\mathbb{N}} Sm) = \text{ff},$ $(Sn =_{\mathbb{N}} Sm) = (n =_{\mathbb{N}} m).$

Recursion $\mathcal{R}_{\mathbb{N}}^{\tau} \colon \mathbb{N} \to \tau \to (\mathbb{N} \to \tau \to \tau) \to \tau$.

$$\mathcal{R}_{\mathbb{N}}^{\tau}$$
0af = a,
 $\mathcal{R}_{\mathbb{N}}^{\tau}(Sn)$ af = $fn(\mathcal{R}_{\mathbb{N}}^{\tau}naf)$

Terms: built from (typed) variables and constants (constructors C or defined constants D) by abstraction and application:

$$M, N ::= x^{\tau} \mid C^{\tau} \mid D^{\tau} \mid (\lambda_{x^{\tau}} M^{\sigma})^{\tau \to \sigma} \mid (M^{\tau \to \sigma} N^{\tau})^{\sigma}.$$

Examples: Decidable equality $=_{\mathbb{N}} : \mathbb{N} \to \mathbb{N} \to \mathbb{B}$

$$(0 =_{\mathbb{N}} 0) = \text{tt},$$
 $(Sn =_{\mathbb{N}} 0) = \text{ff},$ $(0 =_{\mathbb{N}} Sm) = \text{ff},$ $(Sn =_{\mathbb{N}} Sm) = (n =_{\mathbb{N}} m).$

Recursion $\mathcal{R}_{\mathbb{N}}^{\tau} \colon \mathbb{N} \to \tau \to (\mathbb{N} \to \tau \to \tau) \to \tau$

$$\mathcal{R}^{ au}_{\mathbb{N}}$$
0af = a,
 $\mathcal{R}^{ au}_{\mathbb{N}}(Sn)$ af = fn($\mathcal{R}^{ au}_{\mathbb{N}}$ naf)

Terms: built from (typed) variables and constants (constructors C or defined constants D) by abstraction and application:

$$M, N ::= x^{\tau} \mid C^{\tau} \mid D^{\tau} \mid (\lambda_{x^{\tau}} M^{\sigma})^{\tau \to \sigma} \mid (M^{\tau \to \sigma} N^{\tau})^{\sigma}.$$

Examples: Decidable equality $=_{\mathbb{N}} : \mathbb{N} \to \mathbb{N} \to \mathbb{B}$

$$(0 =_{\mathbb{N}} 0) = \text{tt},$$
 $(Sn =_{\mathbb{N}} 0) = \text{ff},$ $(0 =_{\mathbb{N}} Sm) = \text{ff},$ $(Sn =_{\mathbb{N}} Sm) = (n =_{\mathbb{N}} m).$

Recursion $\mathcal{R}^{\tau}_{\mathbb{N}} \colon \mathbb{N} \to \tau \to (\mathbb{N} \to \tau \to \tau) \to \tau$.

$$\mathcal{R}_{\mathbb{N}}^{\tau}$$
0af = a,
 $\mathcal{R}_{\mathbb{N}}^{\tau}(Sn)$ af = $fn(\mathcal{R}_{\mathbb{N}}^{\tau}naf)$.

$$P, Q ::= X \mid \{\vec{x} \mid A\} \mid I(\vec{\rho}, \vec{P}) \mid {}^{co}I(\vec{\rho}, \vec{P})$$
 (predicates).

$$A, B ::= P\vec{t} \mid A \to B \mid \forall_{x} A$$
 (formulas).

The missing logical connectives \land, \lor, \exists are inductively defined. Totality $T_{\mathbb{N}}$ is inductively defined as the least fixed point (Ifp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality ${}^{co}T_{\mathbb{N}}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{co}T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{co}T_{\mathbb{N}} \wedge n \equiv Sn')$$

$$\begin{array}{ll} P,\,Q ::= X \mid \{\,\vec{x} \mid A\,\} \mid I(\vec{\rho},\vec{P}\,) \mid {}^{\mathrm{co}}I(\vec{\rho},\vec{P}\,) & \text{(predicates),} \\ A,\,B ::= P\vec{t} \mid A \to B \mid \forall_{\mathsf{x}}A & \text{(formulas).} \end{array}$$

The missing logical connectives \land, \lor, \exists are inductively defined. Totality $T_{\mathbb{N}}$ is inductively defined as the least fixed point (Ifp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality ${}^{co}T_{\mathbb{N}}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{co}T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{co}T_{\mathbb{N}} \wedge n \equiv Sn')$$

$$P, Q ::= X \mid \{\vec{x} \mid A\} \mid I(\vec{\rho}, \vec{P}) \mid {}^{co}I(\vec{\rho}, \vec{P})$$
 (predicates),
$$A, B ::= P\vec{t} \mid A \to B \mid \forall_{\mathsf{x}} A$$
 (formulas).

The missing logical connectives \land, \lor, \exists are inductively defined.

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

$$n \in {}^{co}T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{co}T_{\mathbb{N}} \wedge n \equiv Sn')$$

$$P, Q ::= X \mid \{\vec{x} \mid A\} \mid I(\vec{\rho}, \vec{P}) \mid {}^{co}I(\vec{\rho}, \vec{P})$$
 (predicates),
$$A, B ::= P\vec{t} \mid A \to B \mid \forall_{\mathsf{x}} A$$
 (formulas).

The missing logical connectives \land, \lor, \exists are inductively defined. Totality $T_{\mathbb{N}}$ is inductively defined as the least fixed point (lfp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality ${}^{co}T_{\mathbb{N}}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{co}T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{co}T_{\mathbb{N}} \wedge n \equiv Sn')$$

$$P, Q ::= X \mid \{\vec{x} \mid A\} \mid I(\vec{\rho}, \vec{P}) \mid {}^{co}I(\vec{\rho}, \vec{P})$$
 (predicates),
$$A, B ::= P\vec{t} \mid A \to B \mid \forall_{\mathsf{x}} A$$
 (formulas).

The missing logical connectives \land, \lor, \exists are inductively defined. Totality $T_{\mathbb{N}}$ is inductively defined as the least fixed point (Ifp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality ${}^{\rm co}T_{\mathbb N}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{\mathrm{co}} T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{\mathrm{co}} T_{\mathbb{N}} \wedge n \equiv Sn').$$

Partiality

- Defined functionals D (and hence terms) can be partial.

- Variables \hat{x}, \hat{y} ... range over arbitrary (i.e., partial) objects.
- Variables x, y . . . range over total objects.

$$\forall_x A(x)$$
 abbreviates $\forall_{\hat{x}} (T\hat{x} \to A(\hat{x}))$

Partiality

- Defined functionals D (and hence terms) can be partial.
- Many D's are total (map total arguments into total values).

Convention

- Variables \hat{x}, \hat{y} ... range over arbitrary (i.e., partial) objects.
- Variables $x, y \dots$ range over total objects.

For readability,

$$\forall_{\mathsf{x}} A(\mathsf{x})$$
 abbreviates $\forall_{\hat{\mathsf{x}}} (T\hat{\mathsf{x}} \to A(\hat{\mathsf{x}}))$

Partiality

- Defined functionals *D* (and hence terms) can be partial.
- Many D's are total (map total arguments into total values).

Convention:

- Variables \hat{x}, \hat{y} ... range over arbitrary (i.e., partial) objects.
- Variables $x, y \dots$ range over total objects.

For readability,

$$\forall_x A(x)$$
 abbreviates $\forall_{\hat{x}} (T\hat{x} \to A(\hat{x}))$

Partiality

- Defined functionals D (and hence terms) can be partial.
- Many D's are total (map total arguments into total values).

Convention:

- Variables \hat{x}, \hat{y} ... range over arbitrary (i.e., partial) objects.
- Variables x, y . . . range over total objects.

$$\forall_x A(x)$$
 abbreviates $\forall_{\hat{x}} (T\hat{x} \to A(\hat{x}))$

Partiality

- Defined functionals *D* (and hence terms) can be partial.
- Many D's are total (map total arguments into total values).

Convention:

- Variables \hat{x}, \hat{y} ... range over arbitrary (i.e., partial) objects.
- Variables $x, y \dots$ range over total objects.

For readability,

$$\forall_{x} A(x)$$
 abbreviates $\forall_{\hat{x}} (T\hat{x} \to A(\hat{x})).$

There are many variants of equality:

- Pointwise equality²:

$$(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$$

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x)$$

There are many variants of equality:

- Decidable equality for base types, for instance $=_{\mathbb{N}}$.
- Pointwise equality²:

$$(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$$

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x)$$

There are many variants of equality:

- Decidable equality for base types, for instance $=_{\mathbb{N}}$.
- Leibniz equality, inductively defined by the clause $\forall_x (x \equiv x)$.
- Pointwise equality²:

$$(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$$

Extensionality is defined as diagonalization of pointwise equality:

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x)$$

²Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

There are many variants of equality:

- Decidable equality for base types, for instance =_N.
- Leibniz equality, inductively defined by the clause $\forall_x (x \equiv x)$.
- Pointwise equality²:

$$(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$$

Extensionality is defined as diagonalization of pointwise equality:

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x)$$

 $^{^2}$ Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

There are many variants of equality:

- Decidable equality for base types, for instance $=_{\mathbb{N}}$.
- Leibniz equality, inductively defined by the clause $\forall_x (x \equiv x)$.
- Pointwise equality²:

$$(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$$

Extensionality is defined as diagonalization of pointwise equality:

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x).$$

 $^{^2{\}rm Robin}$ Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

- Ext $_{\tau}$ and $^{\rm co}T_{\tau}$ are equivalent for closed types of level \leq 1.
- For every closed type τ the relation $\dot{=}_{\tau}$ is an equivalence relation on $\operatorname{Ext}_{\tau}$.
- For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$\vec{x} \doteq_{\vec{\rho}} \vec{y} \to t(\vec{x}) \doteq_{\tau} t(\vec{y})$$

 $\vec{x} \in \operatorname{Ext}_{\vec{\rho}} \to t(\vec{x}) \in \operatorname{Ext}_{\tau}.$

- $\operatorname{Ext}_{\tau}$ and $\operatorname{co} T_{\tau}$ are equivalent for closed types of level ≤ 1 .
- For every closed type τ the relation $\dot{=}_{\tau}$ is an equivalence relation on $\operatorname{Ext}_{\tau}$.
- For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$\vec{x} \doteq_{\vec{\rho}} \vec{y} \to t(\vec{x}) \doteq_{\tau} t(\vec{y})$$

 $\vec{x} \in \operatorname{Ext}_{\vec{\rho}} \to t(\vec{x}) \in \operatorname{Ext}_{\tau}.$

- $\operatorname{Ext}_{\tau}$ and $\operatorname{co} T_{\tau}$ are equivalent for closed types of level ≤ 1 .
- For every closed type τ the relation $\dot{=}_{\tau}$ is an equivalence relation on $\operatorname{Ext}_{\tau}$.
- For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$ec{x} \doteq_{ec{
ho}} ec{y}
ightarrow t(ec{x}) \doteq_{ au} t(ec{y}), \ ec{x} \in \operatorname{Ext}_{ec{
ho}}
ightarrow t(ec{x}) \in \operatorname{Ext}_{ au}.$$

- $\operatorname{Ext}_{\tau}$ and $\operatorname{co} T_{\tau}$ are equivalent for closed types of level ≤ 1 .
- For every closed type τ the relation $\dot{=}_{\tau}$ is an equivalence relation on $\operatorname{Ext}_{\tau}$.
- For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$ec{x} \doteq_{ec{
ho}} ec{y}
ightarrow t(ec{x}) \doteq_{ au} t(ec{y}), \ ec{x} \in \operatorname{Ext}_{ec{
ho}}
ightarrow t(ec{x}) \in \operatorname{Ext}_{ au}.$$

We have two sorts of inductive predicates and predicate variables,

- "computationally relevant" ones I^c, X^c and
- "non-computational" ones $I^{\rm nc}$, $X^{\rm nc}$.
- We use I. X for both.

We have two sorts of inductive predicates and predicate variables,

- ullet "computationally relevant" ones $I^{
 m c}$, $X^{
 m c}$ and
- "non-computational" ones $I^{\rm nc}$, $X^{\rm nc}$.
- We use *I*, *X* for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to "fine tune" the computational content of a proof

We have two sorts of inductive predicates and predicate variables,

- ullet "computationally relevant" ones $I^{
 m c}$, $X^{
 m c}$ and
- "non-computational" ones $I^{\rm nc}$, $X^{\rm nc}$.
- We use *I*, *X* for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to "fine tune" the computational content of a proof

We have two sorts of inductive predicates and predicate variables,

- "computationally relevant" ones I^c , X^c and
- "non-computational" ones I^{nc} , X^{nc} .
- We use *I*, *X* for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to "fine tune" the computational content of a proof

We have two sorts of inductive predicates and predicate variables,

- "computationally relevant" ones I^c , X^c and
- "non-computational" ones $I^{\rm nc}$, $X^{\rm nc}$.
- We use *I*, *X* for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to "fine tune" the computational content of a proof.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable X^r of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/col^r for c.r. (co)inductive predicates I/col, e.g.,

Even^r00 Even^r
$$nm \to \text{Even}^{r}(S(Sn))(Sm)$$

- A predicate or formula C is **r**-free if it does not contain any of these $X^{\mathbf{r}}$, $I^{\mathbf{r}}$ or $^{\mathrm{co}}I^{\mathbf{r}}$.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable $X^{\mathbf{r}}$ of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/^{co}I^r for c.r. (co)inductive predicates I/^{co}I, e.g.,

Even^r00 Even^r
$$nm \to \text{Even}^{r}(S(Sn))(Sm)$$

- A predicate or formula C is **r**-free if it does not contain any of these $X^{\mathbf{r}}$, $I^{\mathbf{r}}$ or $^{\mathrm{co}}I^{\mathbf{r}}$.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable $X^{\mathbf{r}}$ of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/^{co}I^r for c.r. (co)inductive predicates I/^{co}I, e.g.,

Even
$$row order 100$$
 Even $row order 100$ Even ro

- A predicate or formula C is **r**-free if it does not contain any of these $X^{\mathbf{r}}$, $I^{\mathbf{r}}$ or $^{\mathrm{co}}I^{\mathbf{r}}$.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable $X^{\mathbf{r}}$ of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/^{co}I^r for c.r. (co)inductive predicates I/^{co}I, e.g.,

Even
$$r = 00$$
 Even $r = r = 0$ Even $r = 0$.

- A predicate or formula C is **r**-free if it does not contain any of these $X^{\mathbf{r}}$, $I^{\mathbf{r}}$ or ${}^{\mathrm{co}}I^{\mathbf{r}}$.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable $X^{\mathbf{r}}$ of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/^{co}I^r for c.r. (co)inductive predicates I/^{co}I, e.g.,

Even
$$r \circ 00$$
 Even $r \circ mm \to \text{Even}^r(S(Sn))(Sm)$.

- A predicate or formula C is **r**-free if it does not contain any of these $X^{\mathbf{r}}$, $I^{\mathbf{r}}$ or ${}^{\mathrm{co}}I^{\mathbf{r}}$.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

Definition (C^r for **r**-free c.r. formulas C)

Let z r C mean $C^r z$.

$$z \mathbf{r} P \vec{t} := P^{\mathbf{r}} \vec{t} z,$$

$$z \mathbf{r} (A \to B) := \begin{cases} \forall_w (w \mathbf{r} A \to zw \mathbf{r} B) & \text{if } A \text{ is c.r.} \\ A \to z \mathbf{r} B & \text{if } A \text{ is n.c.} \end{cases}$$

$$z \mathbf{r} \forall_x A := \forall_x (z \mathbf{r} A).$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A) \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M). \end{array}$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M). \end{cases}$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M), \end{cases}$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M). \end{cases}$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.,} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M). \end{array}$$

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate I.

- $\operatorname{et}(I_i^+) := \operatorname{C}_i$ and $\operatorname{et}(I^-) := \mathcal{R}$, where the constructor C_i and the recursion operator \mathcal{R} refer to ι_I associated with I.
- $\operatorname{et}({}^{\operatorname{co}}I^{-}) := D$ and $\operatorname{et}({}^{\operatorname{co}}I_{i}^{+}) := {}^{\operatorname{co}}\mathcal{R}$, where the destructor D and the corecursion operator ${}^{\operatorname{co}}\mathcal{R}$ refer to ι_{I} again.

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate I.

- $\operatorname{et}(I_i^+) := \operatorname{C}_i$ and $\operatorname{et}(I^-) := \mathcal{R}$, where the constructor C_i and the recursion operator \mathcal{R} refer to ι_I associated with I.
- $\operatorname{et}({}^{\operatorname{co}}I^{-}) := D$ and $\operatorname{et}({}^{\operatorname{co}}I_{i}^{+}) := {}^{\operatorname{co}}\mathcal{R}$, where the destructor D and the corecursion operator ${}^{\operatorname{co}}\mathcal{R}$ refer to ι_{I} again.

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate I.

- $\operatorname{et}(I_i^+) := \operatorname{C}_i$ and $\operatorname{et}(I^-) := \mathcal{R}$, where the constructor C_i and the recursion operator \mathcal{R} refer to ι_I associated with I.
- $\operatorname{et}({}^{\operatorname{co}}I^{-}) := D$ and $\operatorname{et}({}^{\operatorname{co}}I_{i}^{+}) := {}^{\operatorname{co}}\mathcal{R}$, where the destructor D and the corecursion operator ${}^{\operatorname{co}}\mathcal{R}$ refer to ι_{I} again.

Theorem (Soundness)

Let M be an **r**-free derivation of a formula A from assumptions u_i : C_i (i < n). Then we can derive

$$\begin{cases} et(M) \ r \ A & if \ A \ is \ c.r. \\ A & if \ A \ is \ n.c. \end{cases}$$

from assumptions

$$\begin{cases} z_{u_i} \mathbf{r} \ C_i & \text{if } C_i \text{ is c.r.} \\ C_i & \text{if } C_i \text{ is n.c.} \end{cases}$$

- Kolmogorov's view of "formulas as problems"³

For **r**-free c.r. formulas A we require as axioms

InvAll_A:
$$\forall_z (z \mathbf{r} A \to A)$$
,
InvEx_A: $A \to \exists_z (z \mathbf{r} A)$.

³Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

- Kolmogorov's view of "formulas as problems" ³
- Feferman's dictum "to assert is to realize" ⁴

by invariance axioms

For **r**-free c.r. formulas A we require as axioms

InvAll_A:
$$\forall_z (z \mathbf{r} A \to A)$$
,
InvEx_A: $A \to \exists_z (z \mathbf{r} A)$.

³Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

⁴Constructive theories of functions and classes, Logic Colloquium 78, p.208

- Kolmogorov's view of "formulas as problems" ³
- Feferman's dictum "to assert is to realize" ⁴

by invariance axioms:

For **r**-free c.r. formulas A we require as axioms

InvAll_A:
$$\forall_z (z \mathbf{r} A \to A)$$
,
InvEx_A: $A \to \exists_z (z \mathbf{r} A)$.

³Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

⁴Constructive theories of functions and classes, Logic Colloquium 78, p.208

- Kolmogorov's view of "formulas as problems" ³
- Feferman's dictum "to assert is to realize" ⁴

by invariance axioms:

For \mathbf{r} -free c.r. formulas A we require as axioms

$$\operatorname{InvAll}_A : \forall_z (z \mathbf{r} A \to A),$$

 $\operatorname{InvEx}_A : A \to \exists_z (z \mathbf{r} A).$

³Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

⁴Constructive theories of functions and classes, Logic Colloquium 78, p.208

- Kolmogorov's view of "formulas as problems"³
- Feferman's dictum "to assert is to realize" ⁴

by invariance axioms:

For \mathbf{r} -free c.r. formulas A we require as axioms

$$\operatorname{InvAll}_A : \forall_z (z \mathbf{r} A \to A),$$

$$\operatorname{InvEx}_A : A \to \exists_z (z \mathbf{r} A).$$

³Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

⁴Constructive theories of functions and classes, Logic Colloquium 78, p.208

Real numbers

 Real numbers are given as Cauchy sequences of rationals with an explicitly given modulus.

```
;; ApproxSplitBoole
(set-goal "all x1,x2,x3,p(Real x1 -> Real x2 -> Real x3 ->
    RealLt x1 x2 p -> exl boole(
    (boole -> x3<<=x2) andi ((boole -> F) -> x1<<=x3)))")</pre>
```

Continuous functions

- Continuous functions on the reals are determined by their values on rationals.
- On closed intervals they come with a modulus of uniform

Continuous functions

- Continuous functions on the reals are determined by their values on rationals.
- On closed intervals they come with a modulus of uniform continuity.

IVTAux

Let $f: I \to \mathbb{R}$ be continuous, with a uniform modulus q of increase. Let a < b be rationals in I such that

$$a \le c < d \le b$$
 and $f(c) \le 0 \le f(d)$.

Then we can construct c_1 , d_1 with

$$d_1-c_1=\frac{1}{2}(d-c),$$

such that again

$$a \le c \le c_1 < d_1 \le d \le b$$
 and $f(c_1) \le 0 \le f(d_1)$

IVTAux

Let $f: I \to \mathbb{R}$ be continuous, with a uniform modulus q of increase. Let a < b be rationals in I such that

$$a \le c < d \le b$$
 and $f(c) \le 0 \le f(d)$.

Then we can construct c_1 , d_1 with

$$d_1-c_1=\frac{1}{2}(d-c),$$

such that again

$$a \le c \le c_1 < d_1 \le d \le b$$
 and $f(c_1) \le 0 \le f(d_1)$.

Let $b_0=c$ and $b_{n+1}=b_n+\frac{1}{4}(d-c)$ for $n\leq 3$, hence $b_4=d$.

From $\frac{1}{2^p} < d - c$ we obtain $\frac{1}{2^{p+2}} \le b_{n+1} - b_n$, hence $f(b_n) <_{p+2+q} f(b_{n+1})$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

- First compare 0 with $f(b_1) < f(b_2)$, using ApproxSplit.
- In case $0 \le f(b_2)$ let $c_1 = b_0 = c$ and $d_1 = b_2$.
- In case $f(b_1) \le 0$ compare 0 with $f(b_2) < f(b_3)$, using ApproxSplit again.
- In case $0 \le f(b_3)$ let $c_1 = b_1$ and $d_1 = b_3$.
- In case $f(b_2) \le 0$ let $c_1 = b_2$ and $d_1 = b_4 = d$.

IVT

Let $f: I \to \mathbb{R}$ be continuous, with a uniform modulus of increase. Let a < b be rational numbers in I such that $f(a) \le 0 \le f(b)$. Then we can find $x \in [a, b]$ such that f(x) = 0.

Proof

Iterating the construction in IVTAux, we construct two sequences $(c_n)_n$ and $(d_n)_n$ of rationals such that for all n

$$a = c_0 \le c_1 \le \dots \le c_n < d_n \le \dots \le d_1 \le d_0 = b$$
,
 $f(c_n) \le 0 \le f(d_n)$,
 $d_n - c_n = \frac{1}{2^n}(b - a)$.

Let x, y be given by the Cauchy sequences $(c_n)_n$ and $(d_n)_n$ with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

IVT

Let $f: I \to \mathbb{R}$ be continuous, with a uniform modulus of increase. Let a < b be rational numbers in I such that $f(a) \le 0 \le f(b)$. Then we can find $x \in [a, b]$ such that f(x) = 0.

Proof.

Iterating the construction in IVTAux, we construct two sequences $(c_n)_n$ and $(d_n)_n$ of rationals such that for all n

$$a = c_0 \le c_1 \le \dots \le c_n < d_n \le \dots \le d_1 \le d_0 = b,$$

 $f(c_n) \le 0 \le f(d_n),$
 $d_n - c_n = \frac{1}{2^n}(b - a).$

Let x, y be given by the Cauchy sequences $(c_n)_n$ and $(d_n)_n$ with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

IVT

Let $f: I \to \mathbb{R}$ be continuous, with a uniform modulus of increase. Let a < b be rational numbers in I such that $f(a) \le 0 \le f(b)$. Then we can find $x \in [a, b]$ such that f(x) = 0.

Proof.

Iterating the construction in IVTAux, we construct two sequences $(c_n)_n$ and $(d_n)_n$ of rationals such that for all n

$$a = c_0 \le c_1 \le \dots \le c_n < d_n \le \dots \le d_1 \le d_0 = b,$$

 $f(c_n) \le 0 \le f(d_n),$
 $d_n - c_n = \frac{1}{2^n}(b - a).$

Let x, y be given by the Cauchy sequences $(c_n)_n$ and $(d_n)_n$ with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

Example of a continuous function

We represent the continuous real function $x^2 - 2$ on [1,2] by its values on the rationals:

```
(add-sound "SqRtTwoApprox")
  ok, SqRtTwoApproxSound has been added as a new theorem:
;; ... with computation rule
  cSqRtTwoApprox eqd
  cRealApprox
   (cIVTFinal(ContConstr 1 2([a,n]a*a+IntN 2)
             ([p]Zero)([p]p+3)IntN 1 2)1 1)
;;
```

```
(terms-to-haskell-program
 "~/temp/sqrttwo.hs"
 (list (list (pt "cSqRtTwoApprox") "sqrtwo")))
;; $ ghci sqrttwo.hs
;; *Main> cSqRtTwoApprox 50
:: 1592262918131443 % 1125899906842624
(exact->inexact 1592262918131443/1125899906842624)
;; 1.414213562373095
(sgrt 2)
;; 1.4142135623730951
```

At 50 we already have 15 correct decimal digits.

- Verified algorithms for arithmetic on stream-represented real numbers
- Functional equation of the exponential function.
- Verified algorithm to find for a given real x some p such that

$$\frac{1}{2^p} \le e^x$$

- Verified algorithms for arithmetic on stream-represented real numbers.
- Functional equation of the exponential function.
- Verified algorithm to find for a given real x some p such that

$$\frac{1}{2^p} \le e^x$$

Further aplications in constructive analysis.

- Verified algorithms for arithmetic on stream-represented real numbers.
- Functional equation of the exponential function.
- Verified algorithm to find for a given real x some p such that

$$\frac{1}{2^p} \le e^x$$

- Verified algorithms for arithmetic on stream-represented real numbers.
- Functional equation of the exponential function.
- Verified algorithm to find for a given real x some p such that

$$\frac{1}{2^p} \le e^x$$
.

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The soundness theorem provides a formal verification in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The soundness theorem provides a formal verification in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much
- For efficiency, in a second step one can translate the extracted

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The soundness theorem provides a formal verification in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The soundness theorem provides a formal verification in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.