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Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I View a formula A as a computational problem, of type τ(A),
the type of a potential solution or “realizer” of A.

I Example: ∀n∃m>nPrime(m) has type N→ N.

Express this view via axioms

InvA : A↔ ∃z(z r A) “invariance under relizability”.

Consequences are choice and independence of premise (Troelstra):

∀x∃yA(y)→ ∃f ∀xA(f (x)) for A n.c.

(A→ ∃xB)→ ∃x(A→ B) for A,B n.c.

All these are realized by identities.

2 / 32



Algorithms in constructive proofs

Theorem. Every totally bounded set A ⊆ R has an infimum y .

Proof.
Given ε = 1

2p , let a0 < a1 < · · · < an−1 be an ε-net:
∀x∈A∃i<n(|x − ai |<ε). Let bp = min{ ai | i<n }. y := limp bp.

Corollary. infx∈[a,b] f (x) exists, for f : [a, b]→ R continuous.

Proof.
Given ε, pick a = a0 < a1 < · · · < an−1 = b s.t. ai+1 − ai < ω(ε).
Then f (a0), f (a1), . . . , f (an−1) is an ε-net for f ’s range.

Many f (ai ) need to be computed.

Aim: Get x with f (x) = infy∈[a,b] f (y) and a better algorithm,
assuming convexity.
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Intermediate value theorem
Let a < b be rationals. If f : [a, b]→ R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform modulus of increase

1

2p
< d − c → 1

2p+q
< f (d)− f (c),

then we can find x ∈ [a, b] such that f (x) = 0.

Proof (trisection method).

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 1
2p < d − c , and

f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2
3(d − c),

such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .
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Derivatives

Let f , g : I → R be continuous. g is called derivative of f with
modulus δf : Z+ → N of differentiability if for x , y ∈ I with x < y ,

y ≤ x +
1

2δf (p)
→
∣∣f (y)− f (x)− g(x)(y − x)

∣∣ ≤ 1

2p
(y − x).

A bound on the derivative of f serves as a Lipschitz constant of f :

Lemma (BoundSlope)

Let f : I → R be continuous with derivative f ′. Assume that f ′ is
bounded by M on I . Then for x , y ∈ I with x < y,∣∣f (y)− f (x)

∣∣ ≤ M(y − x).
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Infimum of a convex function

Let f , f ′ : [a, b]→ R (a < b) be continuous and f ′ derivative of f .
Assume that f is strictly convex with witness q, in the sense that
f ′(a) < 0 < f ′(b) and

1

2p
< d − c → 1

2p+q
< f ′(d)− f ′(c).

Then we can find x ∈ (a, b) such that f (x) = infy∈[a,b] f (y).

Proof.

I To obtain x , apply the intermediate value theorem to f ′.

I To prove ∀y∈[a,b](f (x) ≤ f (y)) (this is “non-computational”,
i.e., a Harrop formula) one can use the standard arguments in
classical analysis (Rolle’s theorem, mean value theorem).
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Exact real numbers

can be given in different formats:

I Cauchy sequences (of rationals, with Cauchy modulus).

I Infinite sequences (“streams”) of signed digits {−1, 0, 1}, or

I {−1, 1,⊥} with at most one ⊥ ( “undefined”): Gray code.

Want formally verified algorithms on reals given as streams.

I Consider formal existence proofs M and apply realizability to
extract their computational content.

I Switch between different formate of reals by decoration:
∀xA 7→ ∀ncx (x ∈ coI → A)) (abbreviated ∀ncx∈coIA)

I Computational content of x ∈ coI is a stream representing x .
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Representation of real numbers x ∈ [−1, 1]
Dyadic rationals: ∑

i<k

ai
2i+1

with ai ∈ {−1, 1}.

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

1̄ 1

1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1

with 1̄ := −1. Adjacent dyadics can differ in many digits:

7

16
∼ 11̄11,

9

16
∼ 111̄1̄.
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Cure: flip after 1. Binary reflected (or Gray-) code.

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

L R

L R R L

L R R L L R R L

L R R L L R R L L R R L L R R L

7

16
∼ RRRL,

9

16
∼ RLRL.
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Problem with productivity:

1̄111 + 11̄1̄1̄ · · · = ? (or LRLL . . . + RRRL · · · = ?)

What is the first digit? Cure: delay.

I For binary code: add 0. Signed digit code∑
i<k

di
2i+1

with di ∈ {−1, 0, 1}.

Widely used for real number computation. There is a lot of
redundancy: 1̄1 and 01̄ both denote −1

4 .

I For Gray-code: add U (undefined), D (delay), FinL/R (finally
left / right). Pre-Gray code.
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Pre-Gray code

0

1
2

1
4

3
4

3
8

5
8

7
16

9
16

U

U

R

R L
U

FinR

U
R

FinR
D

FinL

R
U

U
L

FinR FinL
D U

L

After computation in pre-Gray code, one can remove Fina by

U ◦ Fina 7→ a ◦ R, D ◦ Fina 7→ Fina ◦ L.
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Another source of non-uniqueness for infinite sequences:

(i) RRRLLL . . .

(ii) RLRLLL . . .

(iii) RUDDDD . . .

all denote 1
2 . From these three infinite sequences remove (i), (ii)

and only keep (iii) to denote 1
2 . Then, generally,

I U occurs in a context UDDDD . . . only, and

I U appears iff we have a dyadic rational.

Result: unique representation of real numbers by infinite sequences
(or streams), called pure Gray code.
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Average for signed digit streams

Goal: extract stream algorithms from proofs. Example: proof that
the average of two real numbers in [−1, 1] is in [−1, 1] again.

I Need to accomodate streams in our logical framework.

I Model infinite sequences of signed digits (streams) as
“objects” in the (free) algebra I given by the constructor
C : SD→ I→ I.

I SD := {Lft,Mid,Rht}: formal representation of signed digits.

Intuitively, the stream d0, d1, d2 . . . represents the real number

∞∑
i=0

di
2i+1

with di ∈ {−1, 0, 1}.

Conventions: x , y , z reals in [−1, 1], d , e, i , j , k integers, x = y
defined equality on reals.
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The predicates I and coI

Inductively define a predicate I by the single clause

∀ncd∈SD∀ncx∈I∀ncy (y =
x + d

2
→ y ∈ I ) (1)

which abbreviates

∀ncd ,x ,y (d ∈ SD→ x ∈ I → y =
x + d

2
→ y ∈ I ).

SD is a (formally inductive) predicate expressing that the integer d
is a signed digit, i.e., |d | ≤ 1.

I ∀ncd ,x ,y : type of “problem” (1) is independent of d , x , y .

I Computational content only arises from inductive predicates,
here SD and I . Hence the type of (1) is SD→ I→ I.
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Dually to I we coinductively define a predicate coI by the (single)
clause

∀ncx∈coI∃rd∈SD∃rx ′∈coI (x =
x ′ + d

2
). (2)

Here

I ∃rdA is an (inductively defined) version of ∃dA, making the
type of ∃rdA independent of d .

I Hence the type of (2) is I→ SD× I: the stream is destructed
into its head and its tail.
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I and coI are defined as fixed points of an operator

Φ(X ) := { x | ∃rd∈SD∃rx ′∈X (x =
x ′ + d

2
) }.

Then

I := µXΦ(X ) least fixed point
coI := νXΦ(X ) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩ X ) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪ X )→ X ⊆ coI coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property Φ(X ) = X ).
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Goal: compute the average of two stream-coded reals. Prove

∀ncx ,x ′∈coI (
x + x ′

2
∈ coI ). (3)

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P,Q of averages, Q with a “carry” i ∈ Z:

P := { x + y

2
| x , y ∈ coI }, Q := { x + y + i

4
| x , y ∈ coI , i ∈ SD2 },

where SD2 is a (formally inductive) predicate expressing that the
integer i is an extended signed digit, i.e., |i | ≤ 2.
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Recall that coI is a fixed point of Φ. Hence coI ⊆ Φ(coI ):

CoIClause : ∀ncx∈coI∃rd∈SD∃rx ′∈coI (x =
x ′ + d

2
). (4)

It suffices to show that Q satisfies (4).

I Then Q ⊆ coI by the greatest-fixed-point axiom for coI .

I Since also P ⊆ Q we obtain P ⊆ coI , which is our claim.

(4) implies P ⊆ Q:

∀ncx ,y∈coI∃ri∈SD2
∃rx ′,y ′∈coI (

x + y

2
=

x ′ + y ′ + i

4
).

18 / 32



Q satisfies the coI -clause (4):

∀nci∈SD2
∀ncx ,y∈coI∃rj∈SD2

∃rd∈SD∃rx ′,y ′∈coI (
x + y + i

4
=

x ′+y ′+j
4 + d

2
).

Proof. Using functions J,K : Z→ Z such that

∀k(k = J(k)+4K (k)) ∀k(|J(k)| ≤ 2) ∀k(|k| ≤ 6→ |K (k)| ≤ 1)

we can relate x+d
2 and x+y+i

4 by

x+d
2 + y+e

2 + i

4
=

x+y+J(d+e+2i)
4 + K (d + e + 2i)

2
. (5)

Now (4) gives the claim.

19 / 32



By coinduction we obtain Q ⊆ coI :

∀ncz (∃ri∈SD2
∃rx ,y∈coI (z =

x + y + i

4
)→ z ∈ coI ).

This gives our claim

∀ncx ,y∈coI (
x + y

2
∈ coI ).

Implicit algorithm. P ⊆ Q computes the first “carry” i ∈ SD2 and
the tails of the inputs. Then f : SD2 × I× I→ I defined
corecursively by

f (i ,Cd(v),Ce(w)) = CK(d+e+2i)(f (J(d + e + 2i), v ,w))

is called repeatedly and computes the average step by step.
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Average for pre-Gray code

Method essentially the same as for signed digit streams.

I Only need to insert a different computational content to the
predicates expressing how a real x is given.

I Instead of coI for signed digit streams we now need two such
predicates coG and coH, corresponding to the two “modes” we
have in pre-Gray code.
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Algebras G and H

We model pre-Gray codes as objects in the (simultaneously defined
free) algebras G and H given by the constructors

LRa : G→ G

U : H→ G

Fina : G→ H

D : H→ H

with a ∈ {−1, 1}.
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Predicates coG and coH

Let

Γ(X ,Y ) := { x | ∃rx ′∈X∃ra∈PSD(x = −ax
′ − 1

2
) ∨ ∃rx ′∈Y (x =

x ′

2
) },

∆(X ,Y ) := { x | ∃rx ′∈X∃ra∈PSD(x = a
x ′ + 1

2
) ∨ ∃rx ′∈Y (x =

x ′

2
) }

and define

(coG , coH) := ν(X ,Y )(Γ(X ,Y ),∆(X ,Y )) (greatest fixed point)

Consequences:

∀ncx∈coG (∃rx ′∈coG∃ra∈PSD(x = −ax
′ − 1

2
) ∨ ∃rx ′∈coH(x =

x ′

2
))

∀ncx∈coH(∃rx ′∈coG∃ra∈PSD(x = a
x ′ + 1

2
) ∨ ∃rx ′∈coH(x =

x ′

2
))
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Lemma (CoGMinus)

∀ncx (coG (−x)→ coGx),

∀ncx (coH(−x)→ coHx).

Implicit algorithm. f : G→ G and f ′ : H→ H defined by

f (LRa(p)) = LR−a(p), f ′(Fina(p)) = Fin−a(p),

f (U(q)) = U(f ′(q)), f ′(D(q)) = D(f ′(q)).
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Using CoGMinus we prove that coG and coH are equivalent.

Lemma (CoHToCoG)

∀ncx (coHx → coGx),

∀ncx (coGx → coHx).

Implicit algorithm. g : H→ G and h : G→ H:

g(Fina(p)) = LRa(f −(p)), h(LRa(p)) = Fina(f −(p)),

g(D(q)) = U(q), h(U(q)) = D(q)

where f − := cCoGMinus (cL denotes the function extracted from
the proof of a lemma L). No corecursive call is involved.
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The proof of the existence of the average w.r.t. Gray-coded reals is
similar to the proof for signed digit stream coded reals. To prove

∀ncx ,y∈coG (
x + y

2
∈ coG )

consider again two sets of averages, the second one with a “carry”:

P := { x + y

2
| x , y ∈ coG }, Q := { x + y + i

4
| x , y ∈ coG , i ∈ SD2 }.

Suffices: Q satisfies the clause coinductively defining coG . Then by
the greatest-fixed-point axiom for coG we have Q ⊆ coG . Since also
P ⊆ Q we obtain P ⊆ coG , which is our claim.
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Lemma (CoGAvToAvc)

∀ncx ,y∈coG∃ri∈SD2
∃rx ′,y ′∈coG (

x + y

2
=

x ′ + y ′ + i

4
).

(Immediate from CoGClause.)

Implicit algorithm.
We can easily prove CoGPsdTimes: ∀nca∈PSD∀ncx∈coG (ax ∈ coG ).
Write f ∗ for cCoGPsdTimes and s for cCoHToCoG.

f (LRa(p),LRa′(p
′)) = (a + a′, f ∗(−a, p), f ∗(−a′, p′)),

f (LRa(p),U(q)) = (a, f ∗(−a, p), s(q)),

f (U(q),LRa(p)) = (a, s(q), f ∗(−a, p)),

f (U(q),U(q′)) = (0, s(q), s(q′)).
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Lemma (CoGAvcSatCoICl)

∀nci∈SD2
∀ncx ,y∈coG∃rj∈SD2

∃rd∈SD∃rx ′,y ′∈coG (
x + y + i

4
=

x ′+y ′+j
4 + d

2
).

(As in CoIAvcSatCoICl we need functions J,K with JKProp (5):

x+d
2 + y+e

2 + i

4
=

x+y+J(d+e+2i)
4 + K (d + e + 2i)

2
.

Then CoGClause gives the claim.)

Implicit algorithm.

f (i ,LRa(p),LRa′(p
′))=(J(a+a′+2i),K (a+a′+2i), f ∗(−a, p), f ∗(−a′, p′)),

f (i ,LRa(p),U(q))=(J(a + 2i),K (a + 2i), f ∗(−a, p), s(q)),

f (i ,U(q),LRa(p))=(J(a + 2i),K (a + 2i), s(q), f ∗(−a, p)),

f (i ,U(q),U(q′))=(J(2i),K (2i), s(q), s(q′)).
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Lemma (CoGAvcToCoG)

∀ncz (∃rx ,y∈coG∃ri∈SD2
(z =

x + y + i

4
)→ coG (z)),

∀ncz (∃rx ,y∈coG∃ri∈SD2
(z =

x + y + i

4
)→ coH(z)).

In the proof we need a lemma:

SdDisj : ∀ncd∈SD(d = 0 ∨r ∃ra∈PSD(d = a)).

Here ∨r is an (inductively defined) variant of ∨ where only the
content of the right hand side is kept.
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Implicit algorithm.

g(i , p, p′) = let (i1, d , p1, p
′
1) = cCoGAvcSatCoICl(i , p, p′) in

case cSdDisj(d) of

0→ U(h(i1, p1, p
′
1))

a→ LRa(g(−ai1, f ∗(−a, p1), f ∗(−a, p′1))),

h(i , p, p′) = let (i1, d , p1, p
′
1) = cCoGAvcSatCoICl(i , p, p′) in

case cSdDisj(d) of

0→ D(h(i1, p1, p
′
1))

a→ Fina(g(−ai1, f ∗(−a, p1), f ∗(−a, p′1))).
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Theorem (CoGAverage)

∀ncx ,y∈coG (
x + y

2
∈ coG ).

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.
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Conclusion

1. Constructive analysis, with constructions ∼ good algorithms.
2. Exact real arithmetic.

I Want formally verified algorithms on real numbers given as
streams (signed digits or pre-Gray code).

I Consider formal existence proofs M and apply realizability to
extract their computational content.

I Switch between different representations of reals by labelling
∀x as ∀ncx and relativise x to a coinductive predicate whose
computational content is a stream representing x .

I The desired algorithm is obtained as the extracted term et(M)
of the existence proof M.

I Verification by (automatically generated) formal soundness
proof of the realizability interpretation.
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