## Logic for exact real arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Technische Universität Wien, AB Theoretische Informatik und Logik, 9. November 2016 Kolmogorov 1932: "Zur Deutung der intuitionistischen Logik"

- ▶ View a formula A as a computational problem, of type  $\tau(A)$ , the type of a potential solution or "realizer" of A.
- ▶ Example:  $\forall_n \exists_{m>n} \text{Prime}(m)$  has type  $\mathbb{N} \to \mathbb{N}$ .

Express this view via axioms

$$\operatorname{Inv}_A : A \leftrightarrow \exists_z (z \mathbf{r} A)$$
 "invariance under relizability".

Consequences are choice and independence of premise (Troelstra):

$$\forall_X \exists_y A(y) \to \exists_f \forall_X A(f(x))$$
 for  $A$  n.c.  $(A \to \exists_X B) \to \exists_X (A \to B)$  for  $A, B$  n.c.

All these are realized by identities.

## Algorithms in constructive proofs

Theorem. Every totally bounded set  $A \subseteq \mathbb{R}$  has an infimum y.

#### Proof.

Given 
$$\varepsilon = \frac{1}{2^p}$$
, let  $a_0 < a_1 < \dots < a_{n-1}$  be an  $\varepsilon$ -net:  $\forall_{x \in A} \exists_{i < n} (|x - a_i| < \varepsilon)$ . Let  $b_p = \min\{a_i \mid i < n\}$ .  $y := \lim_p b_p$ .  $\square$ 

Corollary.  $\inf_{x \in [a,b]} f(x)$  exists, for  $f : [a,b] \to \mathbb{R}$  continuous.

#### Proof.

Given 
$$\varepsilon$$
, pick  $a = a_0 < a_1 < \cdots < a_{n-1} = b$  s.t.  $a_{i+1} - a_i < \omega(\varepsilon)$ . Then  $f(a_0), f(a_1), \ldots, f(a_{n-1})$  is an  $\varepsilon$ -net for  $f$ 's range.

Many  $f(a_i)$  need to be computed.

Aim: Get x with  $f(x) = \inf_{y \in [a,b]} f(y)$  and a better algorithm, assuming convexity.

### Intermediate value theorem

Let a < b be rationals. If  $f: [a, b] \to \mathbb{R}$  is continuous with  $f(a) \le 0 \le f(b)$ , and with a uniform modulus of increase

$$\frac{1}{2^p} < d - c \to \frac{1}{2^{p+q}} < f(d) - f(c),$$

then we can find  $x \in [a, b]$  such that f(x) = 0.

## Proof (trisection method).

- 1. Approximate Splitting Principle. Let x, y, z be given with x < y. Then  $z \le y$  or  $x \le z$ .
- 2. IVTAux. Assume  $a \le c < d \le b$ , say  $\frac{1}{2^p} < d c$ , and  $f(c) \le 0 \le f(d)$ . Construct  $c_1, d_1$  with  $d_1 c_1 = \frac{2}{3}(d c)$ , such that  $a \le c \le c_1 < d_1 \le d \le b$  and  $f(c_1) \le 0 \le f(d_1)$ .
- 3. IVTcds. Iterate the step  $c, d \mapsto c_1, d_1$  in IVTAux.

Let  $x = (c_n)_n$  and  $y = (d_n)_n$  with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

### **Derivatives**

Let  $f, g: I \to \mathbb{R}$  be continuous. g is called derivative of f with modulus  $\delta_f: \mathbb{Z}^+ \to \mathbb{N}$  of differentiability if for  $x, y \in I$  with x < y,

$$y \leq x + \frac{1}{2^{\delta_f(p)}} \rightarrow \left| f(y) - f(x) - g(x)(y-x) \right| \leq \frac{1}{2^p}(y-x).$$

A bound on the derivative of f serves as a Lipschitz constant of f:

## Lemma (BoundSlope)

Let  $f: I \to \mathbb{R}$  be continuous with derivative f'. Assume that f' is bounded by M on I. Then for  $x, y \in I$  with x < y,

$$|f(y)-f(x)|\leq M(y-x).$$

#### Infimum of a convex function

Let  $f, f' \colon [a,b] \to \mathbb{R}$  (a < b) be continuous and f' derivative of f. Assume that f is strictly convex with witness q, in the sense that f'(a) < 0 < f'(b) and

$$\frac{1}{2^p} < d - c \to \frac{1}{2^{p+q}} < f'(d) - f'(c).$$

Then we can find  $x \in (a, b)$  such that  $f(x) = \inf_{y \in [a, b]} f(y)$ .

#### Proof.

- ▶ To obtain x, apply the intermediate value theorem to f'.
- ▶ To prove  $\forall_{y \in [a,b]} (f(x) \leq f(y))$  (this is "non-computational", i.e., a Harrop formula) one can use the standard arguments in classical analysis (Rolle's theorem, mean value theorem).

#### Exact real numbers

#### can be given in different formats:

- Cauchy sequences (of rationals, with Cauchy modulus).
- ▶ Infinite sequences ("streams") of signed digits  $\{-1,0,1\}$ , or
- ▶  $\{-1,1,\bot\}$  with at most one  $\bot$  ( "undefined"): Gray code.

Want formally verified algorithms on reals given as streams.

- ► Consider formal existence proofs *M* and apply realizability to extract their computational content.
- Switch between different formate of reals by decoration:  $\forall_x A \mapsto \forall_x^{\text{nc}} (x \in {}^{\text{co}}I \to A))$  (abbreviated  $\forall_{x \in {}^{\text{co}}I}^{\text{nc}}A)$
- ▶ Computational content of  $x \in {}^{co}I$  is a stream representing x.

## Representation of real numbers $x \in [-1, 1]$

Dyadic rationals:

$$\sum_{i < k} \frac{a_i}{2^{i+1}} \quad \text{with } a_i \in \{-1, 1\}.$$



with  $\overline{1} := -1$ . Adjacent dyadics can differ in many digits:

$$rac{7}{16}\sim 1\overline{1}11, \qquad rac{9}{16}\sim 11\overline{1}\overline{1}.$$

Cure: flip after 1. Binary reflected (or Gray-) code.



Problem with productivity:

$$\overline{1}111 + 1\overline{1}\overline{1}\overline{1} \cdots = ?$$
 (or LRLL... + RRRL... = ?)

What is the first digit? Cure: delay.

► For binary code: add 0. Signed digit code

$$\sum_{i < k} \frac{d_i}{2^{i+1}} \qquad \text{with } d_i \in \{-1, 0, 1\}.$$

Widely used for real number computation. There is a lot of redundancy:  $\bar{1}1$  and  $0\bar{1}$  both denote  $-\frac{1}{4}$ .

For Gray-code: add U (undefined), D (delay), Fin<sub>L/R</sub> (finally left / right). Pre-Gray code.

## Pre-Gray code



After computation in pre-Gray code, one can remove  $\operatorname{Fin}_a$  by

$$U \circ \operatorname{Fin}_{a} \mapsto a \circ R, \qquad D \circ \operatorname{Fin}_{a} \mapsto \operatorname{Fin}_{a} \circ L.$$

Another source of non-uniqueness for infinite sequences:

- (i) RRRLLL...
- (ii) RLRLLL...
- (iii) RUDDDD...

all denote  $\frac{1}{2}$ . From these three infinite sequences remove (i), (ii) and only keep (iii) to denote  $\frac{1}{2}$ . Then, generally,

- ▶ U occurs in a context UDDDD... only, and
- ▶ U appears iff we have a dyadic rational.

Result: unique representation of real numbers by infinite sequences (or streams), called pure Gray code.

## Average for signed digit streams

Goal: extract stream algorithms from proofs. Example: proof that the average of two real numbers in [-1,1] is in [-1,1] again.

- ▶ Need to accomodate streams in our logical framework.
- Model infinite sequences of signed digits (streams) as "objects" in the (free) algebra I given by the constructor C: SD → I → I.
- ightharpoonup SD := {Lft, Mid, Rht}: formal representation of signed digits.

Intuitively, the stream  $d_0, d_1, d_2 \dots$  represents the real number

$$\sum_{i=0}^{\infty} \frac{d_i}{2^{i+1}} \quad \text{with } d_i \in \{-1, 0, 1\}.$$

Conventions: x, y, z reals in [-1, 1], d, e, i, j, k integers, x = y defined equality on reals.

## The predicates I and col

Inductively define a predicate I by the single clause

$$\forall_{d \in \mathrm{SD}}^{\mathrm{nc}} \forall_{x \in I}^{\mathrm{nc}} \forall_{y}^{\mathrm{nc}} (y = \frac{x + d}{2} \to y \in I)$$
 (1)

which abbreviates

$$\forall_{d,x,y}^{\mathrm{nc}}(d \in \mathrm{SD} \to x \in I \to y = \frac{x+d}{2} \to y \in I).$$

SD is a (formally inductive) predicate expressing that the integer d is a signed digit, i.e.,  $|d| \le 1$ .

- $ightharpoonup \forall_{d,x,y}^{\mathrm{nc}}$ : type of "problem" (1) is independent of d,x,y.
- ▶ Computational content only arises from inductive predicates, here SD and I. Hence the type of (1) is  $SD \rightarrow I \rightarrow I$ .

Dually to I we coinductively define a predicate  ${}^{co}I$  by the (single) clause

$$\forall_{x \in {}^{\text{co}}}^{\text{nc}} \exists_{d \in \text{SD}}^{\text{r}} \exists_{x' \in {}^{\text{co}}}^{\text{r}} (x = \frac{x' + d}{2}). \tag{2}$$

#### Here

- ▶  $\exists_d^r A$  is an (inductively defined) version of  $\exists_d A$ , making the type of  $\exists_d^r A$  independent of d.
- ► Hence the type of (2) is I → SD × I: the stream is destructed into its head and its tail.

I and  ${}^{\mathrm{co}}I$  are defined as fixed points of an operator

$$\Phi(X) := \{ x \mid \exists_{d \in SD}^{r} \exists_{x' \in X}^{r} (x = \frac{x' + d}{2}) \}.$$

Then

$$I := \mu_X \Phi(X)$$
 least fixed point  ${}^{\mathrm{co}}I := \nu_X \Phi(X)$  greatest fixed point

satisfy the (strengthened) axioms

$$\Phi(I \cap X) \subseteq X \to I \subseteq X \qquad \text{induction}$$

$$X \subseteq \Phi({}^{co}I \cup X) \to X \subseteq {}^{co}I \qquad \text{coinduction}$$

("strengthened" because their hypotheses are weaker than the fixed point property  $\Phi(X) = X$ ).

Goal: compute the average of two stream-coded reals. Prove

$$\forall_{x,x'\in^{col}}^{nc}(\frac{x+x'}{2}\in^{col}). \tag{3}$$

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006). Define sets P, Q of averages, Q with a "carry"  $i \in \mathbb{Z}$ :

$$P := \{ \frac{x+y}{2} \mid x, y \in {}^{co}I \}, \quad Q := \{ \frac{x+y+i}{4} \mid x, y \in {}^{co}I, i \in SD_2 \},$$

where  $SD_2$  is a (formally inductive) predicate expressing that the integer i is an extended signed digit, i.e.,  $|i| \le 2$ .

Recall that  ${}^{co}I$  is a fixed point of  $\Phi$ . Hence  ${}^{co}I \subseteq \Phi({}^{co}I)$ :

CoIClause: 
$$\forall_{x \in coj}^{\text{nc}} \exists_{d \in SD}^{\text{r}} \exists_{x' \in coj}^{\text{r}} (x = \frac{x' + d}{2}).$$
 (4)

It suffices to show that Q satisfies (4).

- ▶ Then  $Q \subseteq {}^{co}I$  by the greatest-fixed-point axiom for  ${}^{co}I$ .
- ▶ Since also  $P \subseteq Q$  we obtain  $P \subseteq {}^{co}I$ , which is our claim.
- (4) implies  $P \subseteq Q$ :

$$\forall_{x,y\in{}^{\mathrm{co}}}^{\mathrm{nc}}\exists_{i\in\mathrm{SD}_{2}}^{\mathrm{r}}\exists_{x',y'\in{}^{\mathrm{co}}}^{\mathrm{r}}(\frac{x+y}{2}=\frac{x'+y'+i}{4}).$$

Q satisfies the  $^{co}I$ -clause (4):

$$\forall_{i\in\mathrm{SD}_2}^{\mathrm{nc}}\forall_{x,y\in\mathrm{col}}^{\mathrm{rc}}\exists_{j\in\mathrm{SD}_2}^{\mathrm{r}}\exists_{d\in\mathrm{SD}}^{\mathrm{r}}\exists_{x',y'\in\mathrm{col}}^{\mathrm{r}}(\frac{x+y+i}{4}=\frac{\frac{x'+y'+j}{4}+d}{2}).$$

**Proof**. Using functions  $J, K : \mathbb{Z} \to \mathbb{Z}$  such that

$$\forall_k (k = J(k) + 4K(k)) \quad \forall_k (|J(k)| \le 2) \quad \forall_k (|k| \le 6 \to |K(k)| \le 1)$$

we can relate  $\frac{x+d}{2}$  and  $\frac{x+y+i}{4}$  by

$$\frac{\frac{x+d}{2} + \frac{y+e}{2} + i}{4} = \frac{\frac{x+y+J(d+e+2i)}{4} + K(d+e+2i)}{2}.$$
 (5)

Now (4) gives the claim.

By coinduction we obtain  $Q \subseteq {}^{\mathrm{co}}I$ :

$$\forall_{z}^{\mathrm{nc}}(\exists_{i\in\mathrm{SD}_{2}}^{\mathrm{r}}\exists_{x,y\in\mathrm{col}}^{\mathrm{r}}(z=\frac{x+y+i}{4})\rightarrow z\in\mathrm{col}).$$

This gives our claim

$$\forall_{x,y\in^{co}I}^{\mathrm{nc}}(\frac{x+y}{2}\in^{co}I).$$

Implicit algorithm.  $P \subseteq Q$  computes the first "carry"  $i \in \mathrm{SD}_2$  and the tails of the inputs. Then  $f: \mathbf{SD}_2 \times \mathbf{I} \times \mathbf{I} \to \mathbf{I}$  defined corecursively by

$$f(i, \mathcal{C}_d(v), \mathcal{C}_e(w)) = \mathcal{C}_{K(d+e+2i)}(f(J(d+e+2i), v, w))$$

is called repeatedly and computes the average step by step.

## Average for pre-Gray code

Method essentially the same as for signed digit streams.

- ▶ Only need to insert a different computational content to the predicates expressing how a real *x* is given.
- ▶ Instead of <sup>co</sup>I for signed digit streams we now need two such predicates <sup>co</sup>G and <sup>co</sup>H, corresponding to the two "modes" we have in pre-Gray code.

# Algebras **G** and **H**

We model pre-Gray codes as objects in the (simultaneously defined free) algebras  ${\bf G}$  and  ${\bf H}$  given by the constructors

 $LR_a \colon \mathbf{G} \to \mathbf{G}$ 

 $U\colon \textbf{H}\to \textbf{G}$ 

 $\operatorname{Fin}_a \colon \mathbf{G} \to \mathbf{H}$ 

 $D\colon \textbf{H}\to \textbf{H}$ 

with  $a \in \{-1, 1\}$ .

## Predicates coG and coH

Let

$$\Gamma(X,Y) := \{ x \mid \exists_{x' \in X}^{r} \exists_{a \in PSD}^{r} (x = -a \frac{x' - 1}{2}) \lor \exists_{x' \in Y}^{r} (x = \frac{x'}{2}) \},$$

$$\Delta(X,Y) := \{ x \mid \exists_{x' \in X}^{r} \exists_{a \in PSD}^{r} (x = a \frac{x' + 1}{2}) \lor \exists_{x' \in Y}^{r} (x = \frac{x'}{2}) \}$$

and define

$$(^{\mathrm{co}}\mathsf{G},{^{\mathrm{co}}\!H}) := \nu_{(X,Y)}(\Gamma(X,Y),\Delta(X,Y)) \qquad \text{(greatest fixed point)}$$

Consequences:

$$\forall_{x \in {}^{\text{co}}G}^{\text{nc}} (\exists_{x' \in {}^{\text{co}}G}^{\text{r}} \exists_{a \in \text{PSD}}^{\text{r}} (x = -a \frac{x' - 1}{2}) \lor \exists_{x' \in {}^{\text{co}}H}^{\text{r}} (x = \frac{x'}{2}))$$

$$\forall_{x \in {}^{\text{co}}H}^{\text{nc}} (\exists_{x' \in {}^{\text{co}}G}^{\text{r}} \exists_{a \in \text{PSD}}^{\text{r}} (x = a \frac{x' + 1}{2}) \lor \exists_{x' \in {}^{\text{co}}H}^{\text{r}} (x = \frac{x'}{2}))$$

### Lemma (CoGMinus)

$$\forall_x^{\text{nc}}({}^{\text{co}}G(-x) \to {}^{\text{co}}Gx), \ \forall_x^{\text{nc}}({}^{\text{co}}H(-x) \to {}^{\text{co}}Hx).$$

Implicit algorithm.  $f: \mathbf{G} \to \mathbf{G}$  and  $f': \mathbf{H} \to \mathbf{H}$  defined by

$$egin{aligned} f(\operatorname{LR}_a(p)) &= \operatorname{LR}_{-a}(p), \qquad f'(\operatorname{Fin}_a(p)) &= \operatorname{Fin}_{-a}(p), \ f(\operatorname{U}(q)) &= \operatorname{U}(f'(q)), \qquad f'(\operatorname{D}(q)) &= \operatorname{D}(f'(q)). \end{aligned}$$

Using CoGMinus we prove that  ${}^{co}G$  and  ${}^{co}H$  are equivalent.

## Lemma (CoHToCoG)

$$\forall_x^{\rm nc}({}^{\rm co}Hx \to {}^{\rm co}Gx), \\ \forall_x^{\rm nc}({}^{\rm co}Gx \to {}^{\rm co}Hx).$$

Implicit algorithm.  $g: \mathbf{H} \to \mathbf{G}$  and  $h: \mathbf{G} \to \mathbf{H}$ :

$$\begin{split} g(\operatorname{Fin}_a(p)) &= \operatorname{LR}_a(f^-(p)), \qquad h(\operatorname{LR}_a(p)) = \operatorname{Fin}_a(f^-(p)), \\ g(\operatorname{D}(q)) &= \operatorname{U}(q), \qquad \qquad h(\operatorname{U}(q)) = \operatorname{D}(q) \end{split}$$

where  $f^- := cCoGMinus$  (cL denotes the function extracted from the proof of a lemma L). No corecursive call is involved.

The proof of the existence of the average w.r.t. Gray-coded reals is similar to the proof for signed digit stream coded reals. To prove

$$\forall_{x,y\in{}^{\mathrm{co}}G}^{\mathrm{nc}}(\frac{x+y}{2}\in{}^{\mathrm{co}}G)$$

consider again two sets of averages, the second one with a "carry":

$$P := \{ \frac{x+y}{2} \mid x, y \in {}^{co}G \}, \quad Q := \{ \frac{x+y+i}{4} \mid x, y \in {}^{co}G, \ i \in \mathrm{SD}_2 \}.$$

Suffices: Q satisfies the clause coinductively defining  ${}^{co}G$ . Then by the greatest-fixed-point axiom for  ${}^{co}G$  we have  $Q\subseteq {}^{co}G$ . Since also  $P\subseteq Q$  we obtain  $P\subseteq {}^{co}G$ , which is our claim.

### Lemma (CoGAvToAvc)

$$\forall_{x,y\in{}^{\mathrm{co}}G}^{\mathrm{nc}}\exists_{i\in\mathrm{SD}_{2}}^{\mathrm{r}}\exists_{x',y'\in{}^{\mathrm{co}}G}^{\mathrm{r}}(\frac{x+y}{2}=\frac{x'+y'+i}{4}).$$

(Immediate from CoGClause.)

#### Implicit algorithm.

We can easily prove CoGPsdTimes:  $\forall_{a \in PSD}^{nc} \forall_{x \in coG}^{nc} (ax \in coG)$ . Write  $f^*$  for cCoGPsdTimes and s for cCoHToCoG.

$$f(LR_{a}(p), LR_{a'}(p')) = (a + a', f^{*}(-a, p), f^{*}(-a', p')),$$

$$f(LR_{a}(p), U(q)) = (a, f^{*}(-a, p), s(q)),$$

$$f(U(q), LR_{a}(p)) = (a, s(q), f^{*}(-a, p)),$$

$$f(U(q), U(q')) = (0, s(q), s(q')).$$

## Lemma (CoGAvcSatColCl)

$$\forall_{i \in \mathrm{SD}_2}^{\mathrm{nc}} \forall_{x,y \in {}^{\mathrm{co}}G}^{\mathrm{r}} \exists_{j \in \mathrm{SD}_2}^{\mathrm{r}} \exists_{d \in \mathrm{SD}}^{\mathrm{r}} \exists_{x',y' \in {}^{\mathrm{co}}G}^{\mathrm{r}} (\frac{x+y+i}{4} = \frac{\frac{x'+y'+j}{4} + d}{2}).$$

(As in ColAvcSatColCl we need functions J, K with JKProp (5):

$$\frac{\frac{x+d}{2} + \frac{y+e}{2} + i}{4} = \frac{\frac{x+y+J(d+e+2i)}{4} + K(d+e+2i)}{2}.$$

Then CoGClause gives the claim.)

Implicit algorithm.

$$\begin{split} f(i, \operatorname{LR}_{a}(p), \operatorname{LR}_{a'}(p')) &= (J(a+a'+2i), K(a+a'+2i), f^{*}(-a, p), f^{*}(-a', p')) \\ f(i, \operatorname{LR}_{a}(p), \operatorname{U}(q)) &= (J(a+2i), K(a+2i), f^{*}(-a, p), s(q)), \\ f(i, \operatorname{U}(q), \operatorname{LR}_{a}(p)) &= (J(a+2i), K(a+2i), s(q), f^{*}(-a, p)), \\ f(i, \operatorname{U}(q), \operatorname{U}(q')) &= (J(2i), K(2i), s(q), s(q')). \end{split}$$

## Lemma (CoGAvcToCoG)

$$\forall_{z}^{\text{nc}}(\exists_{x,y\in{}^{\text{co}}G}^{\text{r}}\exists_{i\in\text{SD}_{2}}^{\text{r}}(z=\frac{x+y+i}{4})\rightarrow{}^{\text{co}}G(z)),$$
  
$$\forall_{z}^{\text{nc}}(\exists_{x,y\in{}^{\text{co}}G}^{\text{r}}\exists_{i\in\text{SD}_{2}}^{\text{r}}(z=\frac{x+y+i}{4})\rightarrow{}^{\text{co}}H(z)).$$

In the proof we need a lemma:

SdDisj: 
$$\forall_{d \in SD}^{nc}(d = 0 \lor^{r} \exists_{a \in PSD}^{r}(d = a)).$$

Here  $\vee^r$  is an (inductively defined) variant of  $\vee$  where only the content of the right hand side is kept.

### Implicit algorithm.

$$\begin{split} g(i,p,p') &= \text{let } (i_1,d,p_1,p_1') = \text{cCoGAvcSatCoICl}(i,p,p') \text{ in } \\ & \text{case cSdDisj}(d) \text{ of } \\ & 0 \to \text{U}(h(i_1,p_1,p_1')) \\ & a \to \text{LR}_a(g(-ai_1,f^*(-a,p_1),f^*(-a,p_1'))), \\ & h(i,p,p') = \text{let } (i_1,d,p_1,p_1') = \text{cCoGAvcSatCoICl}(i,p,p') \text{ in } \\ & \text{case cSdDisj}(d) \text{ of } \\ & 0 \to \text{D}(h(i_1,p_1,p_1')) \\ & a \to \text{Fin}_a(g(-ai_1,f^*(-a,p_1),f^*(-a,p_1'))). \end{split}$$

## Theorem (CoGAverage)

$$\forall_{x,y\in{}^{\mathrm{co}}G}^{\mathrm{nc}}(\frac{x+y}{2}\in{}^{\mathrm{co}}G).$$

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.

### Conclusion

- 1. Constructive analysis, with constructions  $\sim$  good algorithms.
- 2. Exact real arithmetic.
  - Want formally verified algorithms on real numbers given as streams (signed digits or pre-Gray code).
  - ► Consider formal existence proofs *M* and apply realizability to extract their computational content.
  - Switch between different representations of reals by labelling  $\forall_x$  as  $\forall_x^{\rm nc}$  and relativise x to a coinductive predicate whose computational content is a stream representing x.
  - ▶ The desired algorithm is obtained as the extracted term et(M) of the existence proof M.
  - Verification by (automatically generated) formal soundness proof of the realizability interpretation.