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Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

» View a formula A as a computational problem, of type 7(A),
the type of a potential solution or “realizer” of A.

» Example: V,3p>,Prime(m) has type N — N.

Express this view via axioms
Inva: A< 3,(zr A) “invariance under relizability”.
Consequences are choice and independence of premise (Troelstra):

V3, A(y) = FrVA(f(x)) for A n.c.
(A— 3(B) — 3x(A— B) for A, B n.c.

All these are realized by identities.
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Algorithms in constructive proofs

Theorem. Every totally bounded set A C R has an infimum y.
Proof.

Given € = 2%, let ag < a1 < --- < ap_1 be an e-net:
VieaTdin(|x — ai|<e). Let by = min{ a; | i<n}. y :=limp by, [

Corollary. inf,c[s ) f(x) exists, for f: [a, b] — R continuous.

Proof.
Given ¢, pick a=ag < a1 < -+ < ap—1 = bs.t. aj11 — a; < w(e).
Then f(ag), f(a1),...,f(an—1) is an e-net for f's range. O

Many f(a;) need to be computed.

Aim: Get x with f(x) = inf,¢[, 5 f(y) and a better algorithm,
assuming convexity.
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Intermediate value theorem
Let a < b be rationals. If f: [a, b] — R is continuous with
f(a) <0 < f(b), and with a uniform modulus of increase

1 1
§<d—c—>2p—+q<f(d)—f(c),
then we can find x € [a, b] such that f(x) = 0.

Proof (trisection method).

1. Approximate Splitting Principle. Let x, y, z be given with
x<y. Thenz<yorx<z

2. IVTAux. Assume a < c < d < b, say 2% <d-—c, and
f(c) <0 < f(d). Construct ¢, dy with di —¢; = %(d —¢),
suchthat a<c<c¢ <di <d<band f(c) <0< f(dh).

3. IVTcds. Iterate the step ¢, d — c1,dp in IVTAux.

Let x = (cn)n and y = (dp), with the obvious modulus. As f is
continuous, f(x) =0 = f(y) for the real number x = y. O
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Derivatives

Let f,g: | — R be continuous. g is called derivative of f with
modulus &¢: ZT — N of differentiability if for x,y € I with x < y,

1 1
y S x+ oimy = ) = () — g0y = 0] < 55(r = x).
A bound on the derivative of f serves as a Lipschitz constant of f:

Lemma (BoundSlope)

Let f: | = R be continuous with derivative f'. Assume that f' is
bounded by M on |I. Then for x,y € | with x <y,

[f(y) — F(x)| < M(y — x).
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Infimum of a convex function

Let f,f": [a,b] — R (a < b) be continuous and f’ derivative of f.
Assume that f is strictly convex with witness g, in the sense that
f'(a) < 0 < f'(b) and

1
—<d—-c—

! !/
= s < F(d) = F(c).

Then we can find x € (a, b) such that f(x) = inf,c[, 5 f(y).
Proof.

» To obtain x, apply the intermediate value theorem to f’.

> To prove V¢, 5(f(x) < f(y)) (this is “non-computational”,
i.e., a Harrop formula) one can use the standard arguments in
classmal analysis (Rolle’s theorem, mean value theorem). [
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Exact real numbers

can be given in different formats:
» Cauchy sequences (of rationals, with Cauchy modulus).
» Infinite sequences (“streams”) of signed digits {—1,0,1}, or
» {—1,1, 1} with at most one L ( “undefined”): Gray code.
Want formally verified algorithms on reals given as streams.

» Consider formal existence proofs M and apply realizability to
extract their computational content.

» Switch between different formate of reals by decoration:
ViA = V(x €l — A)) (abbreviated V¢, A)

» Computational content of x € ““/ is a stream representing x.
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Representation of real numbers x € [—1, 1]
Dyadic rationals:

> 5

i<k

with a; € {—1,1}.

with 1 := —1. Adjacent dyadics can differ in many digits:

LY 1111, LN 1111.
16 16
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Cure: flip after 1. Binary reflected (or Gray-) code.
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Problem with productivity:

1111 +1111---=7?  (or LRLL... + RRRL:-- =

What is the first digit? Cure: delay.
» For binary code: add 0. Signed digit code

d; .
> ST with di€ {-1,0,1}.

i<k

Widely used for real number computation. There is a lot of

redundancy: 11 and 01 both denote —%.

> For Gray-code: add U (undefined), D (delay), Fin; g (finally

left / right). Pre-Gray code.
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Pre-Gray code

After computation in pre-Gray code, one can remove Fin, by

UoFin, — aoR, D o Fin,; — Fin, o L.
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Another source of non-uniqueness for infinite sequences:
(i) RRRLLL...
(i) RLRLLL...
(i) RUDDDD....

all denote % From these three infinite sequences remove (i), (ii)
and only keep (iii) to denote 3. Then, generally,

» U occurs in a context UDDDD ... only, and
» U appears iff we have a dyadic rational.

Result: unique representation of real numbers by infinite sequences
(or streams), called pure Gray code.
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Average for signed digit streams

Goal: extract stream algorithms from proofs. Example: proof that
the average of two real numbers in [—1,1] is in [—1,1] again.

» Need to accomodate streams in our logical framework.

» Model infinite sequences of signed digits (streams) as
“objects” in the (free) algebra | given by the constructor
C:SD—1—1

» SD := {Lft, Mid, Rht}: formal representation of signed digits.

Intuitively, the stream dp, d1,d> ... represents the real number

[e.e]

§:2ﬂ1 with d; € {—1,0,1}.
i=0

Conventions: x,y, z reals in [-1,1], d,e, i, j, k integers, x =y
defined equality on reals.
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The predicates | and

Inductively define a predicate / by the single clause

nc +d
despVxerVy (v _T—U/E/) (1)

which abbreviates
d
de(dESD—>x€I—>y—%—>yEI)

SD is a (formally inductive) predicate expressing that the integer d
is a signed digit, i.e., |d| < 1.

nc
dey

» Computational content only arises from inductive predicates,
here SD and /. Hence the type of (1) is SD — | — L.

type of “problem” (1) is independent of d, x, y.
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Dually to I/ we coinductively define a predicate “°/ by the (single)
clause 'y
x +

=) 2)

nc T T _
vxecol EIdESD EIXIECOI (X —

Here

» 35 A s an (inductively defined) version of 34A, making the
type of 33, A independent of d.

» Hence the type of (2) is | — SD x I: the stream is destructed
into its head and its tail.
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I and ©°I are defined as fixed points of an operator

. . x' +d
O(X) 1= {x | ZhespToex(x = 1) .

Then

= pux®d(X) least fixed point
Cl = vxP(X) greatest fixed point

satisfy the (strengthened) axioms

P(INX)CTX—=1CX induction
XCO(*TUX) =X coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property ®(X) = X).
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Goal: compute the average of two stream-coded reals. Prove

x4+ x'

E,CX/ECOI(T € ). (3)
Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P, Q of averages, @ with a “carry” i € Z:

X+y x+y+l

P:={ | x,y e}, Q={——"—

| x,y € i € SDy},

where SD; is a (formally inductive) predicate expressing that the
integer 7 is an extended signed digit, i.e., |i
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Recall that </ is a fixed point of ®. Hence °/ C &(°/):

/
d
COIClauSGZ \V/Ll(écolafjes[)zlilecol(x - X ; ) (4)

It suffices to show that Q satisfies (4).
» Then Q C ““I by the greatest-fixed-point axiom for /.
» Since also P C @ we obtain P C 9/, which is our claim.
(4) implies P C Q:

x+y X +y +i
vg?yECOIHI;ESDQ Eli’,y’ECOI ( 2 = 4 )
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Q satisfies the “/-clause (4):

e
nc \v/nc Elr E'r ar (X+y+l _ 4 +d)
i€SD, Y x,y€ecol FjeSD, TdeSDIx’ y ecol 2 = 5 :

Proof. Using functions J, K: Z — Z such that
Vid(k = J()+4K(K)) V(| J(K)] < 2) VidlK| <6 = [K(K)| < 1)
we can relate 3¢ and X+ by

pd puge yj AR 4 K(d + e +2i) )
4 2 '

Now (4) gives the claim.
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By coinduction we obtain Q C <°/:

x+y+i
VIZlC(HfGSD23§’y€COI(Z = f) % V4 G CO/).

This gives our claim

X+
gfyew,(Ty e ).

Implicit algorithm. P C Q computes the first “carry” i € SD, and
the tails of the inputs. Then f: SDy x | x I — | defined
corecursively by

f(ia Cd(v)v Ce(W)) = CK(d+e+2i)(f(J(d +e+ 2i)7 v, W))

is called repeatedly and computes the average step by step.
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Average for pre-Gray code

Method essentially the same as for signed digit streams.

> Only need to insert a different computational content to the
predicates expressing how a real x is given.

> Instead of “° for signed digit streams we now need two such
predicates “°G and “°H, corresponding to the two “modes” we
have in pre-Gray code.
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Algebras G and H

We model pre-Gray codes as objects in the (simultaneously defined
free) algebras G and H given by the constructors

LR,:G— G
U:H—>G

Fin,: G—H
D:H—H

with a € {—1,1}.
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Predicates “°G and “°H

Let

r r x'—1 r x'
F(X,Y) = {x| FoexFacpsp(x = —a )V Ty x = E) b

. . x'+1 . X'
A(X,Y) == {x| FvexTacpsp(x = aT) V deey(x = 5)}

and define
(°°G,“°H) := v(x,v)(T(X, Y), A(X, Y)) (greatest fixed point)

Consequences:

xeeoG (Fxrecoc Tacpsp (X = —a > )V Foceop(x = 5))

X/ + 1 X’
wecop (Fxrecog Taepsp (X = 37) V Fyceopy(x = E))
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Lemma (CoGMinus)
V(G (—x) = “Gx),
VIS (©OH(—x) — “Hx).

Implicit algorithm. f: G — G and f': H — H defined by

f(LRa(p)) = LR-a(p), f/(Fina(P)) = Fin_,(p),
f(U(a)) = U(f'(9)), f'(D(q)) = D(f'(q)).
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Using CoGMinus we prove that °°G and “°H are equivalent.

Lemma (CoHToCoG)

VR2(“OHx — ©Gx),
V2°(%Gx — Hx).

Implicit algorithm. g: H — G and h: G — H:

g(Fina(p)) = LRa(fi(p)% h(LRa(p)) = ana(ff(p))’
g(D(q)) = U(q), h(U(q)) = D(q)

where f~ := ¢cCoGMinus (cL denotes the function extracted from
the proof of a lemma L). No corecursive call is involved.
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The proof of the existence of the average w.r.t. Gray-coded reals is
similar to the proof for signed digit stream coded reals. To prove

X+Yy
gfyeCOG(T € “G)

consider again two sets of averages, the second one with a “carry”:

X+Yy X+y+/

€%}, Q={——"—|x,y€“G, ieSDy}.

Suffices: @ satisfies the clause coinductively defining “°G. Then by

the greatest-fixed-point axiom for “°G we have @ C “°G. Since also
P C @ we obtain P C °°G, which is our claim.
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Lemma (CoGAvToAvc)

x+y X +y +i
vx yECOGHIESDQ §<’ ! GCOG( 2 - 4 )

(Immediate from CoGClause.)

Implicit algorithm.

We can easily prove CoGPsdTimes: V¢ pgp Vigeo(ax € ©G).

Write f* for cCoGPsdTimes and s for cCoHToCoG.

f(LRa(p), LRy (p")) = (a + &, f*(=a,p). (=2, p')),
f(LRa(p), U(q)) = (a, f*(=a, p), ( ));
f(U(g), LRa(p)) = (a, s(q), f'( a,p));
f(U(a), U(q")) = (0, 5(q), s(q))-
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Lemma (CoGAvcSatColCl)

: "ty +j
x+y+i i +d

nc nc T T T
7ESD, Vx.yeeoG 3jeSD, JdesD In yreeog ( 1 = 5 )-

(As in ColAvcSatColCl we need functions J, K with JKProp (5):

xid oyhe g by RAReR) | (g e 4 2i)

4 2
Then CoGClause gives the claim.)

Implicit algorithm.

f(i,LRa(p), LR (p))=(J(a+a +2i), K(a+a'+2i), f*(—a, p), F* (=2, p')
f(i,LRa(p), U(q))=(J(a + 2/), K(a + 2i), f*(—a, p), 5(q)),
f(i,U(q), LRa(p))=(J(a + 2/), K(a + 2i), s(q), f*(—a, p)),
F(i, U(q), U(q'))=(J(2i), K(2i),5(q), s(q))-
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Lemma (CoGAvcToCoG)

nc T T X + y + i CO,

vz (Elx,yGCOGzlieSDz(Z = 4 ) - G(Z))a
T r r X + y + i

V2 GayeccTiesp, (2 = ————) = “H(2)).

In the proof we need a lemma:
SleSJ \V/I;CGSD(d =0 \/r HEGPSD(d = a))

Here V" is an (inductively defined) variant of \V where only the
content of the right hand side is kept.
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Implicit algorithm.

g(i,p,p') =let (i1, d, p1,py) = cCoGAvcSatColCl(i, p, p') in
case ¢SdDisj(d) of
0 — U(h(ir, p1, 1))
a — LRa(g(—ai1, f*(~a, p1), f* (=2, p1))),

h(i,p,p') = let (i1, d, p1, pi) = cCoGAvcSatColCl(i, p, p’) in
case cSdDisj(d) of
0 — D(h(i, p1, p1))
a — Fin,(g(—ait, f*(—a, p1), F*(—a, p}))).
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Theorem (CoGAverage)
n Xty
Viyewoe(—— € 76).

Implicit algorithm. Compose cCoGAvToAvc with cCoGAvcToCoG.
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Conclusion

1. Constructive analysis, with constructions ~ good algorithms.
2. Exact real arithmetic.

>

Want formally verified algorithms on real numbers given as
streams (signed digits or pre-Gray code).

Consider formal existence proofs M and apply realizability to
extract their computational content.

Switch between different representations of reals by labelling
Vy as V3¢ and relativise x to a coinductive predicate whose
computational content is a stream representing x.

The desired algorithm is obtained as the extracted term et(M)
of the existence proof M.

Verification by (automatically generated) formal soundness
proof of the realizability interpretation.
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