
Linear two-sorted constructive arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Dipartimento di Informatica, Università degli Studi di Verona,
March 15, 2016

1 / 30

I Proofs may have computational content, which can be
extracted (via realizability).

I Proofs (but not programs) can be checked for correctness.

Issues:

I Need to extend classical to constructive logic.

I Complexity.

2 / 30

Feasible computation with higher types

Gödel’s T (1958): finitely typed λ-terms with structural recursion.

LT(;) (linear two-sorted λ-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones.

LA(;) solves
Heyting Arithmetic

Gödel’s T
=

?

LT(;)

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (like quicksort, treesort).

3 / 30

TreeSort(l) = Flatten(MakeTree(l)),

MakeTree([]) = �,
MakeTree(a :: l) = Insert(a,MakeTree(l)),

Insert(a, �) = Ca(�, �),

Insert(a,Cb(u, v)) =

{
Cb(Insert(a, u), v) if a ≤ b

Cb(u, Insert(a, v)) if b < a,

Flatten(�) = [],

Flatten(Cb(u, v)) = Flatten(u) ∗ (b :: Flatten(v)).

Problem: two recursive calls in Flatten, not allowed in LT(;).
Cure: analysis of Flatten in the computation model.

4 / 30

Constructive logic

I Use →, ∀ only, defined by introduction and elimination rules.

I View ∃xA, A ∨ B, A ∧ B as inductively defined predicates
(with parameters A, B).

I In addition, define classical existence and disjunction by

∃̃xA := ¬∀x¬A,
A ∨̃ B := ¬(¬A ∧ ¬B)

where ¬A := (A→ F) and F := (0 = 1).

5 / 30

Proof terms: assumptions variables, →-rules

Assumption variables: u : A (or uA)

Derivation Term

[u : A]

| M
B →+ uA→ B

(λuAM
B)A→B

| M
A→ B

| N
A →−B

(MA→BNA)B

6 / 30

Proof terms: ∀-rules

Derivation Term

| M
A ∀+ x (var. cond.)∀xA

(λxM
A)∀xA (var. cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

7 / 30

Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+
xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

8 / 30

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and – using D
– a function E (n) representing 2n:

D(0) := 0,

D(S(n)) := S(S(D(n))),

E (0) := 1,

E (S(n)) := D(E (n)).

Problem: previous value E (n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

9 / 30

(ii) Double use of higher type values

Define F as the 2n-th iterate of D:

F (0,m) := D(m),

F (S(n),m) := F (n,F (n,m))
or

F (0) := D,

F (S(n)) := F (n) ◦ F (n).

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

10 / 30

(iii) Marked value types

Define I (n, f) as the n-th iterate f n of f . Thus I (n,D)(m) = 2nm.

I (0, f ,m) := m,

I (S(n), f ,m) := f (I (n, f ,m))
or

I (0, f) := id,

I (S(n), f) := f ◦ I (n, f).

Problem: since D : N ↪→ N, I needs type (N ↪→ N)→ N ↪→ N.
Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(I will be admitted is our setting. This is not the case in Cook and
Kapron’s PVω, since PVω is closed under substitution.)

11 / 30

Linear two-sorted terms
Types are

ρ, σ ::= ι | ρ ↪→ σ | ρ→ σ with ι base type (B, N, ρ× σ, L(ρ)).

ρ is safe if it does not involve the input arrow ↪→.
Variables are typed: input variables x̄ρ and output variables xρ.
Constants are (i) constructors, (ii) recursion operators

RτN : N ↪→ τ → (N ↪→ τ → τ) ↪→ τ

RτL(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ) ↪→ τ
(τ safe),

and (iii) cases operators (τ safe)

CτN : N→ τ → (N ↪→ τ)→ τ,

CτL(ρ) : L(ρ)→ τ → (ρ ↪→ L(ρ) ↪→ τ)→ τ,

Cτρ×σ : ρ× σ → (ρ ↪→ σ ↪→ τ)→ τ.

12 / 30

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms ρ ↪→ σ and ρ→ σ:

x̄ρ | xρ | C ρ (constant) |
(λx̄ρr

σ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρr

σ)ρ→σ | (rρ→σsρ)σ (higher type output vars in r , s distinct,

r does not start with Cτι) |
Cτι t~r (h.t. output vars in FV(t) not in ~r)

with as many ri as there are constructors of ι. s is an input term if

I all its free variables are input variables, or else

I s is of higher type and all its higher type free variables are
input variables.

13 / 30

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

I terminal nodes labelled by a variable or constant,

I abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

I application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

14 / 30

I The size ||d || of a parse dag d is the number of nodes in it.

I A parse dag is conformal if (i) every node with in-degree
greater than 1 is of base type, and (ii) every maximal path to
a bound variable x passes through the same binding λx -node.

I A parse dag is h-affine if every higher type variable occurs at
most once in the dag, except in the alternatives of a cases
operator.

We identify a parse dag with the term it represents.

15 / 30

Steps requiring 1 time unit:

I Creation of a node given its label and pointers to successors.

I Deletion of a node.

I Given a pointer to an interior node, to obtain a pointer to one
of its successors.

I Test on the type and the label of a node, and on the variable
or constant in case the node is terminal.

16 / 30

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let l be a numeral of type L(N). Then #(l ∗ l ′) = O(|l |).

For #Flatten(u) we use a size function for numerals u of type T:

|| � || := 0,

||Ca(u, v)|| := 2||u||+ ||v ||+ 3.

Lemma. Let u be a numeral of type T. Then

#Flatten(u) = O(||u||).

17 / 30

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

I RD-free if it contains neither recursion constants R nor
Flatten, and

I simple if it contains no higher type input variables.

Simple terms closed under reduction, subterms, application.

Lemma (Simplicity)

Let t be a base type term whose free variables are of base type.
Then nf(t) is simple.

18 / 30

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most ||t||, can be computed from t in time O(||t||2).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(||t||2), and ||nf(t)|| ≤ ||t||.

19 / 30

(λx̄r(x̄))s with x̄ of base type

x̄ x̄

r

λx̄

s

7→

s

r

20 / 30

Lemma (RD-elimination)

Let t(~x) be a simple term of safe type. There is a polynomial Pt

such that: if ~r are safe type RD-free closed simple terms and the
free variables of t(~r) are output variables, then in time Pt(||~r ||)
one can compute an RD-free simple term rdf(t;~x ;~r) such that
t(~r)→∗ rdf(t;~x ;~r).

Proof.
By induction on ||t|| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||u||).

Theorem (Normalization)

Let t : N� . . .N� N (with �∈ {↪→,→}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

21 / 30

Linear two-sorted arithmetic LA(;)

I LA(;)-formulas are

I (~r) | A ↪→ B | A→ B | ∀x̄ρA | ∀xρA (~r terms from T).

I Define τ(A) by

τ(A ↪→ B) := (τ(A) ↪→ τ(B)), τ(∀x̄ρA) := (ρ ↪→ τ(A)),

τ(A→ B) := (τ(A)→ τ(B)), τ(∀xρA) := (ρ→ τ(A)).

I A is safe if τ(A) is safe, i.e., ↪→-free.

22 / 30

Linear two-sorted arithmetic LA(;) (ctd.)

I The induction axiom for N is

Indn̄,A : ∀n̄(A(0)→ ∀m̄(A(m̄)→ A(Sm̄)) ↪→ A(n̄N))

with A safe.

I It has the type of the recursion operator which will realize it:

N ↪→ τ → (N ↪→ τ → τ) ↪→ τ where τ = τ(A) is safe.

23 / 30

Treesort in LA(;) + Flatten

A tree u is sorted if the list Flatten(u) is sorted. We recursively
define a function I inserting an element a into a tree u such that, if
u is sorted, then so is I(a, u):

I(a, �) := Ca(�, �),

I(a,Cb(u, v)) :=

{
Cb(I(a, u), v) if a ≤ b,

Cb(u, I(a, v)) if b < a

and, using I, a function S sorting a list l into a tree:

S([]) := �, S(a :: l) := I(a, S(l)).

24 / 30

We represent I, S by (n.c.) inductive definitions of their graphs.
Write I(a, u, u′) for I(a, u) = u′ and S(l , u) for S(l) = u. Clauses:

I(a, �,Ca(�, �)),

a ≤ b → I(a, u, u′)→ I(a,Cb(u, v),Cb(u′, v)),

b < a→ I(a, v , v ′)→ I(a,Cb(u, v),Cb(u, v ′)),

S([], �),
S(l , u)→ I(a, u, u′)→ S(a :: l , u′).

25 / 30

I We would like to derive ∃uS(l , u) in LA(;) + Flatten.

I However, this is not possible.

I All we can get is |l | ≤ n→ ∃uS(l , u) (n an input parameter).

Lemma (Tree insertion)

∀a,n,u(|u| ≤ n→ ∃u′I(a, u, u′)).

Proof. Fix a. Do induction on n.

Let tli (l) be the tail of the list l of length i , if i < |l |, and l else.

Lemma (Treesort)

∀l ,n,m(m ≤ n→ ∃uS(tlmin(m,|l |)(l), u)).

Proof. Fix l , n. Do induction on m.

26 / 30

Extraction from tree insertion lemma

[a,n](Rec nat=>bbin=>bbin)n([u]C a Emp Emp)

([n1,h,u][if (Ht u<=n1)

(h u)

[if (a<=Lb u)

(C Lb u(h L u)R u)

(C Lb u L u(h R u))]])

Represents the function f of type N→ N ↪→ T→ T defined by

f (a, 0, u) := Ca(�, �),

f (a, n + 1, u) :=


f (a, n, u) if |u| ≤ n,

CLb(u)(f (a, n, L(u)),R(u)) if n < |u|, a ≤ Lb(u),

CLb(u)(L(u), f (a, n,R(u))) if n < |u|, Lb(u) < a

with Lb(u), L(u),R(u) label and left and right subtree of u 6= �.

27 / 30

Extraction from treesort lemma

[l,n,m](Rec nat=>bbin)m Emp

([m1,u][if (Lh l<=m1)

u

[if m1

(C Head(1 tl l)Emp Emp)

([n2][if (Head(Succ m1 tl l)<=Lb u)

(C Lb u(cIns Head(Succ m1 tl l)m1 L u)R u)

(C Lb u L u(cIns Head(Succ m1 tl l)m1 R u))])]])

Represents the function g of type L(N)→ N ↪→ N ↪→ T with

g(l , n, 0) := �, g(l , n,m + 1) :=
u if |l | ≤ m,

Chd(tl1(l))(�, �), if 0 = m < |l |,
CLb(u)(f (a,m, L(u)),R(u)) if 0 < m < |l | and a ≤ Lb(u)

CLb(u)(L(u), f (a,m,R(u))) if 0 < m < |l | and Lb(u) < a

where u := g(l , n,m) and a := hd(tlm+1(l)). 28 / 30

Specializing the Treesort Lemma to l , n, n we obtain

|l | ≤ n→ ∃uS(l , u).

Let S̄(l , l ′) express that l ′ is multiset-equal to l and sorted. One
easily proves S(l , u)→ S̄(l ,Flatten(u)) and gets

|l | ≤ n→ ∃l ′ S̄(l , l ′)

in LA(;) + Flatten. The term extracted from the proof represents
the function h of type L(N)→ N ↪→ L(N) with

h(l , n) := Flatten(g(l , n, n))

and thus the treesort algorithm.

29 / 30

Conclusion

I Constructive logic (and arithmetic) can and should be seen as
an extension of the classical setup.

I Using the realizability interpretation of proofs one can extract
computational content.

I Verification can be automated: there is an internal proof of
the soundness theorem.

30 / 30

