
Decorating natural deduction

Helmut Schwichtenberg
(j.w.w. Diana Ratiu)

Mathematisches Institut, LMU, München

Dipartimento di Informatica, Università degli Studi di Verona,
March 14 & 15, 2016

1 / 135

I Proofs may have computational content, which can be
extracted (via realizability).

I Proofs can be modified, for adadption of the extracted
program to a changed specification.

I Proofs can be transformed and/or decorated, for efficiency of
the extracted program.

I Proofs (as opposed to programs) can easily be checked for
correctness.

2 / 135

derivation proof term

[u : A]

| M

B →+ uA→ B

(λuAMB)A→B

| M

A→ B

| N

A →−B

(MA→BNA)B

3 / 135

derivation proof term

| M

A ∀+ x (var. cond.)∀xA

(λxMA)∀xA (var. cond.)

| M

∀xA(x) r
∀−

A(r)

(M∀xA(x)r)A(r)

4 / 135

u : ∀x(A→ Px) x
∀−A→ Px v : A →−Px ∀+x∀xPx
→+vA→ ∀xPx

→+u∀x(A→ Px)→ A→ ∀xPx

Variable condition: x is not free in A, ∀x(A→ Px)

λu,v ,x(uxv)

5 / 135

An unnecessary detour via implication:

[A]

| M

B →+
A→ B

| N

A →−B

reduces to

| N

A
| M

B

Under the Curry-Howard correspondence:

(λuM(u))N reduces to M(N)

or in more detail

(λuM(uA)B)A→BNA 7→β M(NA)B .

6 / 135

An unnecessary detour via universal quantification:

| M(x)

A(x)
∀+x∀xA(x) r

∀−
A(r)

reduces to
| M(r)

A(r)

Under the Curry-Howard correspondence:

(λxM(x))r reduces to M(r)

or in more detail

(λxM(xρ)A(x))∀xA(x)rρ 7→β M(r)A(r).

7 / 135

Extend minimal logic by ∃, via

∃+ : ∀x(A→ ∃xA),

∃− : ∃xA→ ∀x(A→ B)→ B (x not free in B).

Given M : ∃xA(x) closed. Normal form of M:

∃+ruA(r).

Witness r can be read off.

To make this uniform (in parameters of ∃xA(x)) requires the
technique of realizability.

8 / 135

Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

9 / 135

1. Logic

2. The model of partial continuous functionals

3. Formulas as problems

4. Computational content of proofs

5. Decorating proofs

10 / 135

Let A, B, C be propositional variables.

(A→ B → C)→ (A→ B)→ A→ C .

Informal proof.

Assume A→ B → C . To show: (A→ B)→ A→ C . So assume
A→ B. To show: A→ C . So finally assume A. To show: C .
Using the third assumption twice we have B → C by the first
assumption, and B by the second assumption. From B → C and B
we then obtain C . Then A→ C , cancelling the assumption on A;
(A→ B)→ A→ C cancelling the second assumption; and the
result follows by cancelling the first assumption.

11 / 135

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v
(A→ B)→ A→ C

→+u
(A→ B → C)→ (A→ B)→ A→ C

12 / 135

(load "~/git/minlog/init.scm")

(add-pvar-name "A" "B" "C" (make-arity))

The proof is generated by the following sequence of commands:

(set-goal "(A -> B -> C) -> (A -> B) -> A -> C")

(assume "u" "v" "w")

(use "u")

(use "w")

(use "v")

(use "w")

(proof-to-expr-with-formulas (current-proof))

u73: A -> B -> C

v74: A -> B

w75: A

(lambda (u73)

(lambda (v74) (lambda (w75) ((u73 w75) (v74 w75)))))
13 / 135

Let P be a unary predicate variable.

∀x(A→ Px)→ A→ ∀xPx .

Informal proof.

Assume ∀x(A→ Px). To show: A→ ∀xPx . So assume A. To
show: ∀xPx . Let x be arbitrary; note that we have not made any
assumptions on x . To show: Px . We have A→ Px by the first
assumption. Hence also Px by the second assumption. Hence
∀xPx . Hence A→ ∀xPx , cancelling the second assumption. Hence
the result, cancelling the first assumption.

14 / 135

u : ∀x(A→ Px) x

A→ Px v : A
Px ∀+x∀xPx

→+vA→ ∀xPx
→+u∀x(A→ Px)→ A→ ∀xPx

Note that the variable condition is satisfied: x is not free in A (and
also not free in ∀x(A→ Px)).

15 / 135

(add-var-name "x" (py "alpha"))

(add-pvar-name "P" (make-arity (py "alpha")))

The proof is generated by the following sequence of commands:

(set-goal "all x(A -> P x) -> A -> all x P x")

(assume "u" "v" "x")

(use "u")

(use "v")

(proof-to-expr-with-formulas (current-proof))

u80: all x(A -> P x)

v81: A

(lambda (u80) (lambda (v81) (lambda (x) ((u80 x) v81))))

16 / 135

Add A ∨ B, A ∧ B and ∃xA. Define

¬A := A→ ⊥, with ⊥ an arbitrary propositional symbol.

Axioms:

∨+0 : A→ A ∨ B

∨+1 : B → A ∨ B

∨− : A ∨ B → (A→ C)→ (B → C)→ C

∧+ : A→ B → A ∧ B

∧− : A ∧ B → (A→ B → C)→ C

∃+ : A→ ∃xA

∃− : ∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)).

17 / 135

Rules for ∨, ∧, ∃

| M

A ∨+0A ∨ B

| M

B ∨+1A ∨ B

| M

A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

| M

A

| N

B ∧+A ∧ B

| M

A ∧ B

[u : A] [v : B]

| N

C ∧− u, v
C

r

| M

A(r)
∃+∃xA(x)

| M

∃xA

[u : A]

| N

B ∃−x , u (var.cond.)
B

18 / 135

` ¬¬∀xA→ ∀x¬¬A

Proof:

u : ¬¬∀xA

v : ¬A
w : ∀xA x

A
⊥ →+w¬∀xA

⊥ →+v¬¬A ∀+x∀x¬¬A
→+u¬¬∀xA→ ∀x¬¬A

19 / 135

` ∃x(A→ B)→ A→ ∃xB with x /∈ FV(A).

Proof:

u : ∃x(A→ B)
x

w : A→ B v : A
B ∃+∃xB

∃−x ,w∃xB
→+vA→ ∃xB

→+u∃x(A→ B)→ A→ ∃xB

20 / 135

∨-conversion:

| M

A ∨+0A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

7→

| M

A
| N

C

21 / 135

∧-conversion:

| M

A

| N

B ∧+A ∧ B

[u : A] [v : B]

| K

C ∧− u, v
C

7→

| M

A

| N

B
| K

C

22 / 135

∃-conversion:

r

| M

A(r)
∃+∃xA(x)

[u : A(x)]

| N

B
∃−x , u

B

7→

| M

A(r)

| N ′

B

Written with derivation terms:

∃−(∃+rM)(λx ,uN(x , u)) 7→β N(r ,M).

23 / 135

∨-permutative conversion:

| M

A ∨ B

| N

C

| K

C
C

| L

C ′
E-rule

D

7→

| M

A ∨ B

| N

C

| L

C ′
E-rule

D

| K

C

| L

C ′
E-rule

D
D

24 / 135

∧-permutative conversion:

| M

A ∧ B

| N

C
C

| K

C ′
E-rule

D

7→

| M

A ∧ B

| N

C

| K

C ′
E-rule

D
D

25 / 135

∃-permutative conversion:

| M

∃xA

| N

B
B

| K

C
E-rule

D

7→

| M

∃xA

| N

B

| K

C
E-rule

D
D

26 / 135

Distinguish two kinds of “exists” and two kinds of “or”:

I the weak or “classical” ones, and

I the strong or “non-classical” ones, with constructive content.

Here both kinds occur together.

A ∨̃ B := ¬A→ ¬B → ⊥, ∃̃xA := ¬∀x¬A.

The strong ones imply the weak ones:

A ∨ B → A ∨̃ B, ∃xA→ ∃̃xA.

(Put C := ⊥ in ∨− and B := ⊥ in ∃−.)

27 / 135

Since ∃̃x ∃̃yA unfolds into a rather awkward formula we extend the
∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.

Moreover let

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.

This allows to stay in the →,∀ part of the language. Notice that ∧̃
only makes sense in this context, i.e., in connection with ∃̃.

28 / 135

In the definition of derivability in falsity ⊥ plays no role. We can
change this and require ex-falso-quodlibet axioms:

Efq := { ∀~x(⊥ → R~x) | R 6= ⊥}.

A formula A is intuitionistically derivable, written `i A, if Efq ` A.
We write Γ `i B for Γ ∪ Efq ` B.

We may even go further and require stability axioms:

Efq := { ∀~x(¬¬R~x → R~x) | R 6= ⊥}.

A formula A is classically derivable, written `c A, if Stab ` A.
We write Γ `c B for Γ ∪ Stab ` B.

29 / 135

Using the introduction rules one easily proves

`i ⊥ → A

for arbitrary A.

Theorem (Stability, or principle of indirect proof)

(a) ` (¬¬A→ A)→ (¬¬B → B)→ ¬¬(A ∧ B)→ A ∧ B.

(b) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.

(c) ` (¬¬A→ A)→ ¬¬∀xA→ A.

(d) `c ¬¬A→ A for every formula A without ∨, ∃.

30 / 135

(b) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

31 / 135

(c) ` (¬¬A→ A)→ ¬¬∀xA→ A.

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

32 / 135

(d) `c ¬¬A→ A for every formula A without ∨, ∃.

Proof.
Induction on A. The case R~t with R 6= ⊥ is given by Stab. In the
case ⊥ the desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥

In the cases A ∧ B, A→ B and ∀xA use (a), (b) and (c).

33 / 135

Lemma
The following are derivable.

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B),

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B),

(⊥ → B[x :=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A),

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).

Last two simplify a weakly existentially quantified implication
whose premise does not contain the quantified variable. In case the
conclusion does not contain the quantified variable we have

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B),

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).

34 / 135

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B).

Proof.

∃̃xA→ B

u1 : ∀x¬A x
¬A A

⊥ →+u1¬∀x¬A
B

35 / 135

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B).

Proof.

¬¬B → B

¬∀x¬A

u2 : ¬B

∀x(A→ B) x

A→ B u1 : A
B

⊥ →+u1¬A
∀x¬A

⊥ →+u2¬¬B
B

36 / 135

(⊥ → B[x :=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A).

Proof.
Writing B0 for B[x :=c] we have

∀x¬(A→ B) c

¬(A→ B0)

⊥ → B0

A→ ∃̃xB u2 : A

∃̃xB

∀x¬(A→ B) x

¬(A→ B)
u1 : B

A→ B

⊥ →+u1¬B
∀x¬B

⊥
B0 →+u2A→ B0

⊥

37 / 135

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).

Proof.

∃̃x(A→ B)

∀x¬B x
¬B

u1 : A→ B A
B

⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥

38 / 135

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B).

Proof.

¬¬B → B

∃̃x(A→ B)

u2 : ¬B
u1 : A→ B

∀xA x
A

B
⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥ →+u2¬¬B
B

39 / 135

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).
We derive ∀x(⊥ → A)→ (∀xA→ B)→ ∀x¬(A→ B)→ ¬¬A.

∀x¬(Ax → B) x

¬(Ax → B)

∀xAx → B

∀y (⊥ → Ay) y

⊥ → Ay
u1 : ¬Ax u2 : Ax

⊥
Ay

∀yAy

B →+u2Ax → B

⊥ →+u1¬¬Ax
Using this derivation M we obtain

∀x¬(Ax → B) x

¬(Ax → B)

∀xAx → B

∀x(¬¬Ax → Ax) x

¬¬Ax → Ax

| M

¬¬Ax
Ax
∀xAx

B
Ax → B

⊥
Since clearly ` (¬¬A→ A)→ ⊥→ A the claim follows. 40 / 135

A consequence of

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) with x /∈ FV(B)

is the classical derivability of the drinker formula ∃̃x(Px → ∀xPx),
to be read

in every non-empty bar there is a person such that, if this
person drinks, then everybody drinks.

To see this let A := Px and B := ∀xPx .

41 / 135

There is a similar lemma on weak disjunction:

Lemma
The following are derivable.

(A ∨̃ B → C)→ (A→ C) ∧ (B → C),

(¬¬C → C)→ (A→ C)→ (B → C)→ A ∨̃ B → C ,

(⊥ → B)→ (A→ B ∨̃ C)→ (A→ B) ∨̃ (A→ C),

(A→ B) ∨̃ (A→ C)→ A→ B ∨̃ C ,

(¬¬C → C)→ (A→ C) ∨̃ (B → C)→ A→ B → C ,

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).

42 / 135

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).

Proof.

¬(B → C)

⊥ → C

¬(A→ C)

A→ B → C u1 : A
B → C u2 : B

C →+u1A→ C

⊥
C →+u2B → C

⊥

43 / 135

As a corollary we have

`c (A ∨̃ B → C)↔ (A→ C) ∧ (B → C) for C without ∨, ∃,
`i (A→ B ∨̃ C)↔ (A→ B) ∨̃ (A→ C),

`c (A→ C) ∨̃ (B → C)↔ (A→ B → C) for C without ∨, ∃.

∨̃ and ∃̃ satisfy the same axioms as ∨ and ∃, if one restricts the
conclusion of the elimination axioms to formulas without ∨,∃:

` A→ A ∨̃ B, ` B → A ∨̃ B,

`c A ∨̃ B → (A→ C)→ (B → C)→ C (C without ∨,∃),

` A→ ∃̃xA,

`c ∃̃xA→ ∀x(A→ B)→ B (x /∈ FV(B), B without ∨,∃).

44 / 135

`c A ∨̃ B → (A→ C)→ (B → C)→ C for C without ∨, ∃.

Proof.

¬¬C→C

¬A→ ¬B → ⊥

u1 : ¬C
A→C u2 : A

C
⊥ →+u2¬A

¬B → ⊥

u1 : ¬C
B→C u3 : B

C
⊥ →+u3¬B

⊥ →+u1¬¬C
C

45 / 135

`c ∃̃xA→ ∀x(A→ B)→ B for x /∈ FV(B), B without ∨, ∃.

Proof.

¬¬B → B

¬∀x¬A

u1 : ¬B

∀x(A→ B) x

A→ B u2 : A
B

⊥ →+u2¬A
∀x¬A

⊥ →+u1¬¬B
B

46 / 135

Gödel-Gentzen translation Ag

The embedding of classical logic into minimal logic can be
expressed in a different form: as a syntactic translation A 7→ Ag :

(R~t)g := ¬¬R~t for R distinct from ⊥,
⊥g := ⊥,
(A ∨ B)g := Ag ∨̃ Bg ,

(∃xA)g := ∃̃xAg ,

(A ◦ B)g := Ag ◦ Bg for ◦ = →,∧,
(∀xA)g := ∀xAg .

Lemma
` ¬¬Ag → Ag .

47 / 135

Proof of ` ¬¬Ag → Ag .
Induction on A. Case R~t with R distinct from ⊥. To show
¬¬¬¬R~t → ¬¬R~t, which is a special case of ` ¬¬¬B → ¬B.
Case ⊥. Use ` ¬¬⊥ → ⊥.
Case A ∨ B. We must show ` ¬¬(Ag ∨̃ Bg)→ Ag ∨̃ Bg , which is
a special case of ` ¬¬(¬C → ¬D → ⊥)→ ¬C → ¬D → ⊥:

¬¬(¬C → ¬D → ⊥)

u1 : ¬C → ¬D → ⊥ ¬C
¬D → ⊥ ¬D

⊥ →+u1¬(¬C → ¬D → ⊥)

⊥

Case ∃xA. To show ` ¬¬∃̃xAg → ∃̃xAg , which is special case of
` ¬¬¬B → ¬B, because ∃̃xAg is the negation ¬∀x¬Ag .
Case A ∧ B. To show ` ¬¬(Ag ∧ Bg)→ Ag ∧ Bg . By IH
` ¬¬Ag → Ag and ` ¬¬Bg → Bg . Use (a) of the stability thm.
The cases A→ B and ∀xA are similar, using (b) and (c) of the
stability theorem.

48 / 135

Theorem

(a) Γ `c A implies Γg ` Ag .

(b) Γg ` Ag implies Γ `c A for Γ,A without ∨,∃.

Proof. (a) Use induction on Γ `c A. For a stability axiom
∀~x(¬¬R~x → R~x) we must derive ∀~x(¬¬¬¬R~x → ¬¬R~x); easy.
For →+, →−, ∀+, ∀−, ∧+ and ∧− the claim follows from the IH,
using the same rule (A 7→ Ag acts as a homomorphism).
For ∨+i , ∨−, ∃+ and ∃− the claim follows from the IH and the
remark above. For example, in case ∃− the IH gives

| M

∃̃xAg
and

u : Ag

| N

Bg

with x /∈ FV(Bg). Now use
` (¬¬Bg → Bg)→ ∃̃xAg → ∀x(Ag → Bg)→ Bg . Its premise
¬¬Bg → Bg is derivable by the lemma above.

49 / 135

Proof of (b): Γg ` Ag implies Γ `c A for Γ,A without ∨,∃.

First note that `c (B ↔ Bg) if B is without ∨, ∃. Now assume
that Γ,A are without ∨,∃. From Γg ` Ag we obtain Γ `c A as
follows. We argue informally. Assume Γ. Then Γg by the note,
hence Ag because of Γg ` Ag , hence A again by the note.

50 / 135

1. Logic

2. The model of partial continuous functionals

3. Formulas as problems

4. Computational content of proofs

5. Decorating proofs

51 / 135

Basic intuition: describe x 7→ f (x) in the infinite (or “ideal”) world
by means of finite approximations.

Given an atomic piece b (a “token”) of information on the value
f (x), we should have a finite set U (a “formal neighborhood”) of
tokens approximating the argument x such that b ∈ f0(U), where
f0 is a finite approximation of f .

52 / 135

Want the constructors to be continuous and with disjoint ranges.
This requires

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

53 / 135

Structural recursion operators:

RτN : N→ τ → (N→ τ → τ)→ τ

given by the defining equations

RτN(0, a, f) = a,

RτN(S(n), a, f) = f (n,RτN(n, a, f)).

Similarly for lists of objects of type ρ we have

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ

with defining equations

RτL(ρ)([], a, f) = a,

RτL(ρ)(x :: `, a, f) = f (x , `,RτL(ρ)(`, a, f)).

54 / 135

The defining equation

Y (f) = f (Y (f))

is admitted as well, and it defines a partial functional.

f of type ρ→ σ is called total if it maps total objects of type ρ to
total objects of type σ.

55 / 135

Natural numbers

(load "~/git/minlog/init.scm")

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(set! COMMENT-FLAG #t)

(display-alg "nat")

(display-pconst "NatPlus")

Normalizing, apply term rewriting rules.

(pp (nt (pt "3+4")))

(pp (nt (pt "Succ n+Succ m+0")))

56 / 135

Defining program constants.

(add-program-constant "Double" (py "nat=>nat"))

(add-computation-rules

"Double 0" "0"

"Double(Succ n)" "Succ(Succ(Double n))")

(pp (nt (pt "Double 3")))

(pp (nt (pt "Double (n+2)")))

Proof by induction, apply term-rewriting-rules.

(set-goal "all n Double n=n+n")

(ind)

;; base

(ng)

(use "Truth")

;; step

(assume "n" "IH")

(ng)

(use "IH")
57 / 135

Boolean-valued functions

(add-program-constant "Odd" (py "nat=>boole"))

(add-program-constant "Even" (py "nat=>boole"))

(add-computation-rules

"Odd 0" "False"

"Even 0" "True"

"Odd(Succ n)" "Even n"

"Even(Succ n)" "Odd n")

(set-goal "all n Even(Double n)")

(ind)

(prop)

(search)

58 / 135

(display-pconst "NatLt")

NatLt

comprules

nat<0 False

0<Succ nat True

Succ nat1<Succ nat2 nat1<nat2

rewrules

nat<Succ nat True

nat<nat False

Succ nat<nat False

nat1+nat2<nat1 False

59 / 135

Quotient and remainder

∀m,n∃q,r (n = (m + 1)q + r ∧ r < m + 1).

Proof.
Induction on n. Base. Pick q = r = 0. Step. By IH have q, r for n.
Argue by cases.

I If r < m let q′ = q and r ′ = r + 1.

I If r = m let q′ = q + 1 and r ′ = 0.

Will be an easy example for program extraction from proofs.

60 / 135

Lists

(load "~/git/minlog/init.scm")

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(libload "list.scm")

(set! COMMENT-FLAG #t)

(add-var-name "x" "a" "b" "c" "d" (py "alpha"))

(add-var-name "xs" "ys" "v" "w" "u" (py "list alpha"))

(add-program-constant

"ListRv" (py "list alpha=>list alpha") t-deg-one)

(add-prefix-display-string "ListRv" "Rv")

(add-computation-rules

"Rv(Nil alpha)" "(Nil alpha)"

"Rv(x::xs)" "Rv xs++x:")

61 / 135

(display-pconst "ListAppd")

We prove that Rv commutes with ++

(set-goal "all v,w Rv(v++w)eqd Rv w++Rv v")

(ind)

;; Base

(ng)

(assume "w")

(use "InitEqD")

;; Step

(assume "a" "v" "IHw" "w")

(ng)

(simp "IHw")

(simp "ListAppdAssoc")

(use "InitEqD")

62 / 135

List reversal

We give an informal existence proof for list reversal.

R([], []),

∀v ,w ,x(Rvw → R(vx , xw)).

View R as an inductive predicate without computational content.

ListInitLastNat : ∀u,y∃v ,x(yu = vx).

ExR : ∀n,v (n = |v | → ∃wRvw).

Proof of ExR.
By induction on the length of v . In the step case, our list is
non-empty, and hence can be written in the form vx . Since v has
smaller length, the IH yields its reversal w . Take xw .

Will be another example for program extraction from proofs.

63 / 135

Binary trees

Nodes in a binary tree can be viewed as lists of booleans, where tt
means left and ff means right. Brouwer-Kleene ordering:

[] << b := ff

p :: a << [] := tt

tt :: a << tt :: b := a << b

tt :: a << ff :: b := tt

ff :: a << tt :: b := ff

ff :: a << ff :: b := a << b

Let Incr(a0 :: a1 :: · · · :: an−1) mean a0 << a1 << . . . << an−1.

ExBK : ∀r∃`(|`| = ||r || ∧ ∀n<|`|((`)n ∈ r) ∧ Incr(`)).

Will be another example for program extraction from proofs.

64 / 135

1. Logic

2. The model of partial continuous functionals

3. Formulas as problems

4. Computational content of proofs

5. Decorating proofs

65 / 135

Formulas as computational problems

I Kolmogorov (1932) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I Example: ∀n∃m>nPrime(m) has type N→ N.

I A 7→ τ(A), a type or the “nulltype” symbol ◦.
I In case τ(A) = ◦ proofs of A have no computational content;

such formulas A are called non-computational (n.c.) or
Harrop formulas; the others computationally relevant (c.r.).

Examples.

τ(∀m,n∃q,r (n = (m + 1)q + r ∧ r < m + 1)) = N→ N→ N×N

τ(∀n,v (n = |v | → ∃wRvw)) = N→ L(N)→ L(N)

τ(∀r∃`(|`| = ||r || ∧ ∀n<|`|((`)n ∈ r) ∧ Incr(`))) = D→ L(L(B))

66 / 135

Decoration

Which of the variables ~x and assumptions ~A are actually used in
the “solution” provided by a proof of

∀~x(~A→ I~r)?

To express this we split each of →, ∀ into two variants:

I a “computational” one →c,∀c and

I a “non-computational” one →nc, ∀nc (with restricted rules)

and consider
∀nc~x ∀

c
~y (~A→nc ~B →c X~r).

This will lead to a different (simplified) algebra ιI associated with
the inductive predicate I .

67 / 135

Decorated predicates and formulas

Distinguish two sorts of predicate variables, computationally
relevant ones X ,Y ,Z . . . and non-computational ones X̂ , Ŷ , Ẑ

P,Q ::= X | X̂ | {~x | A } | µc/ncX (∀c/nc~xi
((Aiν)ν<ni →

c/nc X~ri))i<k

A,B ::= P~r | A→c B | A→nc B | ∀cxA | ∀ncx A

with k ≥ 1 and ~xi all free variables in (Aiν)ν<ni →c/nc X~ri . In the
µc/nc case we require that X occurs only “strictly positive” in the
formulas Aiν , i.e., never on the left hand side of an implication.

I We usually write →, ∀, µ for →c, ∀c, µc.

I In the clauses of an n.c. inductive predicate µncX
~K decorations

play no role; hence we write →,∀ for →c/nc, ∀c/nc.

68 / 135

The type τ(C) of a formula or predicate C
τ(C) type or the “nulltype symbol” ◦. Extend use of ρ→ σ to ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Assume a global injective assignment of a type variable ξ to every
c.r. predicate variable X . Let τ(C) := ◦ if C is non-computational.
In case C is c.r. let

τ(P~r) := τ(P),

τ(A→ B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀xρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A),

τ(X) := ξ,

τ({~x | A }) := τ(A),

τ(µX (∀nc~xi ∀~yi (~Ai →nc ~Bi → X~ri))i<k︸ ︷︷ ︸
I

) := µξ(τ(~yi)→ τ(~Bi)→ ξ)i<k︸ ︷︷ ︸
ιI

.

ιI is the algebra associated with I .
69 / 135

We define when a predicate or formula is non-computational (n.c.)
(or Harrop):

I X̂ is n.c. but X is not,

I {~x | A } is n.c. if A is,

I µncX
~K is n.c. but µX ~K is not,

I P~r is n.c. if P is,

I A→c/nc B is n.c. if B is, and

I ∀c/ncx A is n.c. if A is.

The other predicates and formulas are computationally relevant
(c.r.).

70 / 135

To avoid unnecessarily complex types we extend the use of ρ× σ
to the nulltype sumbol ◦ by

(ρ× ◦) := ρ, (◦ × σ) := σ, (◦ × ◦) := ◦.

Moreover we identify the unit type U with ◦.

71 / 135

For the even numbers we now have two variants:

EvenI := µX (X 0,∀ncn (Xn→ X (S(Sn)))),

EvenInc := µncX (X 0, ∀n(Xn→ X (S(Sn)))).

In Minlog this is written as

(add-ids

(list (list "EvenI" (make-arity (py "nat")) "algEvenI"))

’("EvenI 0" "InitEvenI")

’("allnc n(EvenI n -> EvenI(n+2))" "GenEvenI"))

(add-ids

(list (list "EvenNc" (make-arity (py "nat"))))

’("EvenNc 0" "InitEvenNc")

’("all n(EvenNc n -> EvenNc(n+2))" "GenEvenNc"))

Generally for every c.r. inductive predicate I (i.e., defined as µX ~K)
we have an n.c. variant I nc defined as µncX

~K .

72 / 135

Since decorations can be inserted arbitrarily and parameter
predicates can be either n.c. or c.r. we obtain many variants of
inductive predicates. For the existential quantifier we have

ExDY := µX (∀x(Yx → X)),

ExLY := µX (∀x(Yx →nc X)).

ExRY := µX (∀ncx (Yx → X)),

ExUY := µncX (∀ncx (Yx →nc X)).

Here D is for “double”, L for “left”, R for “right” and U for
“uniform”. We will use the abbreviations

∃dxA := ExD{x |A},

∃lxA := ExL{x |A},

∃rxA := ExR{x |A},

∃uxA := ExU{x |A}.

73 / 135

For intersection we only consider the nullary case (i.e.,
conjunction). Then

CapDY ,Z := µX (Y → Z → X),

CapLY ,Z := µX (Y → Z →nc X),

CapRY ,Z := µX (Y →nc Z → X),

CapUY ,Z := µncX (Y →nc Z →nc X).

We use the abbreviations

A ∧d B := CapD{|A},{|B},

A ∧l B := CapL{|A},{|B},

A ∧r B := CapR{|A},{|B},

A ∧u B := CapU{|A},{|B}.

74 / 135

For union: nullary case only (i.e., disjunction). Then

CupDY ,Z := µX (Y → X , Z → X),

CupLY ,Z := µX (Y → X , Z →nc X),

CupRY ,Z := µX (Y →nc X , Z → X),

CupUY ,Z := µX (Y →nc X , Z →nc X),

CupNCY ,Z := µncX (Y → X , Z → X).

The final nc-variant is used to suppress even the information which
clause has been used. We use the abbreviations

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNC{|A},{|B}.

For Leibniz equality we take the definition

EqD := µncX (∀xXxx). 75 / 135

Logical rules for the decorated connectives

We need to adapt our logical rules to →,→nc and ∀,∀nc.

I The introduction and elimination rules for →, ∀ remain, and

I the elimination rules for →nc, ∀nc remain.

The introduction rules for →nc, ∀nc are restricted: the abstracted
(assumption or object) variable must be “non-computational”:

Simultaneously with a derivation M we define the sets CV(M) and
CA(M) of computational object and assumption variables of M, as
follows.

76 / 135

Let MA be a derivation. If A is non-computational (n.c.) then
CV(MA) := CA(MA) := ∅. Otherwise:

CV(cA) := ∅ (cA an axiom),

CV(uA) := ∅,
CV((λuAMB)A→B) := CV((λuAMB)A→

ncB) := CV(M),

CV((MA→BNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxMA)∀xA) := CV((λxMA)∀
nc
x A) := CV(M) \ {x},

CV((M∀xA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀
nc
x A(x)r)A(r)) := CV(M),

and similarly

77 / 135

CA(cA) := ∅ (cA an axiom),

CA(uA) := {u},
CA((λuAMB)A→B) := CA((λuAMB)A→

ncB) := CA(M) \ {u},
CA((MA→BNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxMA)∀xA) := CA((λxMA)∀
nc
x A) := CA(M),

CA((M∀xA(x)r)A(r)) := CA((M∀
nc
x A(x)r)A(r)) := CA(M).

The introduction rules for →nc and ∀nc then are

I If MB is a derivation and uA /∈ CA(M) then (λuAMB)A→
ncB

is a derivation.

I If MA is a derivation, x is not free in any formula of a free
assumption variable of M and x /∈ CV(M), then (λxMA)∀

nc
x A

is a derivation.

78 / 135

Decorated axioms

Consider a c.r. inductive predicate

I := µX (∀c/nc~xi
((Aiν(X))ν<ni →

c/nc X~ri))i<k .

Then for every i < k we have a clause (or introduction axiom

I+i : ∀c/nc~xi
((Aiν(I))ν<ni →

c/nc I~ri).

Moreover, we have an elimination axiom

I− : ∀nc~x (I~x → (∀c/nc~xi
((Aiν(I ∩d X))ν<ni →

c/nc X~ri))i<k → X~x).

79 / 135

For example

(ExD{x |A})
+
0 : ∀x(A→ ∃dxA),

(ExL{x |A})
+
0 : ∀x(A→nc ∃lxA),

(ExR{x |A})
+
0 : ∀ncx (A→ ∃rxA),

(ExU{x |A})
+
0 : ∀ncx (A→nc ∃uxA).

When { x | A } is clear from the context we abbreviate

(∃d)+ := (ExD{x |A})
+
0 ,

(∃l)+ := (ExL{x |A})
+
0 ,

(∃r)+ := (ExR{x |A})
+
0 ,

(∃u)+ := (ExU{x |A})
+
0 .

80 / 135

For an n.c. inductive predicate Î the introduction axioms (Î)+i are

formed similarly. However, the elimination axiom (Î)− needs to be
restricted to non-computational competitor predicates X̂ , except
when Î is given by a one-clause-nc definition (i.e., with only one
clause involving →nc, ∀nc only). Examples:

I Leibniz equality EqD, and

I uniform variants ExU and AndU of the existential quantifier
and conjunction.

81 / 135

Recall that totality for the natural numbers was defined by the
clauses

TotalNatZero : TotalNat 0

TotalNatSucc : ∀ncn̂ (TotalNat n̂→ TotalNat(Succ n̂))

Using ∀n∈TPn to abbreviate ∀ncn̂ (TNn̂→ Pn̂), the elimination
axiom for TotalNat can be written as

Indn,A(n) : ∀n∈T (A(0)→ ∀n∈T (A(n)→ A(Sn))→ A(nN)).

This is the usual induction axiom for natural numbers. We further
abbreviate ∀n∈TPn by ∀nPn, where using n rather than n̂ indicates
the n is meant to be restricted to the totality predicate T .

82 / 135

1. Logic

2. The model of partial continuous functionals

3. Formulas as problems

4. Computational content of proofs

5. Decorating proofs

83 / 135

Brouwer-Heyting-Kolmogorov

I p proves A→ B if and only if p is a construction transforming
any proof q of A into a proof p(q) of B.

I p proves ∀xρA(x) if and only if p is a construction such that
for all aρ, p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

84 / 135

Every constructive proof of an existential theorem contains – by
the very meaning of “constructive proof” – a construction of a
solution in terms of the parameters of the problem. To get hold of
such a solution we have two methods.
Write-and-verify. Guided by our understanding of how the
constructive proof works we directly write down a program to
compute the solution, and then formally prove (“verify”) that this
indeed is the case.
Prove-and-extract. Formalize the constructive proof, and then
extract the computational content of this proof in the form of a
realizing term t. The soundness theorem guarantees (and even
provides a formal proof) that t is a solution to the problem.

85 / 135

Realizability
For every predicate or formula C we define an n.c. predicate C r.
For n.c. C let

C r := C .

In case C is c.r. the arity of C r is (τ(C), ~σ) with ~σ the arity of C .
For c.r. formulas define

(P~r)r := { u | P ru~r }

(A→ B)r :=

{
{ u | ∀v (Arv → B r(uv)) } if A is c.r.

{ u | A→ B ru } if A is n.c.

(A→nc B)r := { u | A→ B ru }
(∀xA)r := { u | ∀xAr(ux) }

(∀ncx A)r := { u | ∀xAru }.

For c.r. predicates: given n.c. X r for all predicate variables X .

{~x | A }r := { u,~x | Aru }.

86 / 135

Consider a c.r. inductive predicate

I := µX (∀c/nc~xi
((Aiν)ν<ni →

c/nc X~ri))i<k .

~Y : all predicate variables strictly positive in some Aiν except X .
Define the witnessing predicate with free predicate variables ~Y r by

I r := µncX r(∀~xi ,~ui ((Ar
iνuiν)ν<ni → X r(Ci~xi~ui)~ri))i<k

with the understanding that

(i) uiν occurs only when Aiν is c.r., and it occurs as an argument
in Ci~xi~ui only if Aiν is c.r. and followed by →, and

(ii) only those xij with ∀cxij occur as arguments in Ci~xi~ui .

We write u r A for Aru (u realizes A).

87 / 135

For the even numbers we obtain

Even := µX (X 0,∀ncn (Xn→ X (S(Sn))))

Evenr := µncX r(X r00, ∀n,m(X rmn→ X r(Sm)(S(Sn)))).

Axiom (Invariance under realizability)

InvA : A↔ ∃lu(u r A) for c.r. formulas A.

Lemma
For c.r. formulas A we have

(λuu) r (A→ ∃lu(u r A)),

(λuu) r (∃lu(u r A)→ A).

88 / 135

From the invariance axioms we can derive

Theorem (Choice)

∀x∃lyA(y)→ ∃lf ∀xA(fx) for A n.c.

∀x∃dyA(y)→ ∃df ∀xA(fx) for A c.r.

Theorem (Independence of premise). Assume x /∈ FV(A).

(A→ ∃lxB)→ ∃lx(A→ B) for A,B n.c.

(A→nc ∃lxB)→ ∃lx(A→ B) for B n.c.

(A→ ∃dxB)→ ∃dx (A→ B) for A n.c., B c.r.

(A→nc ∃dxB)→ ∃dx (A→ B) for B c.r.

89 / 135

Extracted terms
For derivations MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := v
τ(A)
u (v

τ(A)
u uniquely associated to uA),

et((λuAMB)A→B) :=

{
λ
τ(A)
vu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxρMA)∀xA) := λρxet(M),

et((M∀xA(x)r)A(r)) := et(M)r ,

et((λuAMB)A→
ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρMA)∀
nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

90 / 135

Extracted terms for the axioms.

I Let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both Ci and R refer to the algebra ιI associated with I .

I For the invariance axioms we take identities.

Theorem (Soundness)

Let M be a derivation of a c.r. formula A from assumptions ui : Ci

(i < n). Then we can derive et(M) r A from assumptions vui r Ci

in case Ci is c.r. and Ci otherwise.

Proof.
By induction on M.

91 / 135

Quotient and remainder

Recall QR : ∀m,n∃q,r (n = (m + 1)q + r ∧ r < m + 1).

(define eterm

(proof-to-extracted-term (theorem-name-to-proof "QR")))

To display this term it is helpful to first add a variable name p for
pairs of natural numbers and then normalize.

(add-var-name "p" (py "nat@@nat"))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

This “normalized extracted term” neterm is the program we are
looking for. To display it we write:

(pp neterm)

92 / 135

The output will be:

[n,n0](Rec nat=>nat@@nat)n0(0@0)

([n1,p][if (right p<n)

(left p@Succ right p)

(Succ left p@0)])

Here [n,n0] denotes abstraction on the variables n,n0, usually
written by use of the λ notation. In more familiar terms:

f (m, 0) = 0@0

f (m, n+1) =

{
left(f (m, n))@right(f (m, n))+1 if right(f (m, n)) < m

left(f (m, n)) + 1@0 else

93 / 135

List reversal
Recall

ListInitLastNat : ∀u,y∃v ,x(yu = vx).

ExR : ∀n,v (n = |v | → ∃wRvw).

(define eterm (proof-to-extracted-term proof))

(add-var-name "f" (py "list nat=>list nat"))

(add-var-name "p" (py "list nat@@nat"))

(define neterm (rename-variables (nt eterm)))

This “normalized extracted term” neterm is the program we are
looking for. To display it we write (pp neterm):

[x](Rec nat=>list nat=>list nat)x([v](Nil nat))

([x0,f,v]

[if v

(Nil nat)

([x1,v0][let p (cListInitLastNat v0 x1)

(right p::f left p)])])

94 / 135

I animate / deanimate. Suppose a proof M of uses a lemma L.
Then cL may appear in et(M). We may or may not add
computation rules for cL.

I To obtain the let expression in the term above, we have used
implicitly the “identity lemma” Id : P → P; its realizer has
the form λf ,x(fx). If Id is not animated, the extracted term
has the form cId(λxM)N, which is printed as [let x N M].

95 / 135

The term contains the constant cListInitLastNat denoting the
content of the auxiliary proposition, and in the step the function
defined recursively calls itself via f. The underlying algorithm
defines an auxiliary function g by

g(0, v) := [],

g(n + 1, []) := [],

g(n + 1, xv) := let wy = xv in y :: g(n,w)

and gives the result by applying g to |v | and v . It clearly takes
quadratic time.

96 / 135

Binary trees

Recall

ExBK : ∀r∃`(|`| = ||r || ∧ ∀n<|`|((`)n ∈ r) ∧ Incr(`)).

(define eterm (proof-to-extracted-term

(theorem-name-to-proof "ExBK")))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

The result is

[r](Rec bin=>list list boole)r(Nil boole):

([r0,as,r1,as0]((Cons boole)True map as)++

((Cons boole)False map as0)++(Nil boole):)

97 / 135

Computational content of classical proofs

Well known: from ` ∃̃yG with G quantifier-free one can read off
an instance.

I Idea for a proof: replace ⊥ anywhere in the derivation by ∃yG .

I Then the end formula ∀y (G → ⊥)→ ⊥ is turned into

∀y (G → ∃yG)→ ∃yG ,

and since the premise is trivially provable, we have the claim.

Unfortunately, this simple argument is not quite correct.

I G may contain ⊥, hence changes under ⊥ 7→ ∃yG .

I we may have used axioms or lemmata involving ⊥ (e.g.,
⊥ → P), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something
useful.

98 / 135

Use the arithmetical falsity F rather than the logical one, ⊥. Let
AF denote the result of substituting ⊥ by F in A. Assume

DF → D,

(GF → ⊥)→ G → ⊥.
(1)

Using (1) we can now correct the argument: from the given
derivation of D → ∀y (G → ⊥)→ ⊥ we obtain

DF → ∀y (GF → ⊥)→ ⊥,

since DF → D and (GF → ⊥)→ G → ⊥. Substituting ⊥ by ∃yGF

gives
DF → ∀y (GF → ∃yGF)→ ∃yGF.

Since ∀y (GF → ∃yGF) is derivable we obtain DF → ∃yGF.

Therefore we need to pick our assumptions D and goal formulas G
from appropriately chosen sets D and G which guarantee (1).

99 / 135

An easy way to achieve this is to replace in D and G every atomic
formula P different from ⊥ by its double negation (P → ⊥)→ ⊥.
This corresponds to the original A-translation of Friedman (1978).
However, then the computational content of the resulting
constructive proof is unnecessarily complex, since each occurrence
of ⊥ gets replaced by the c.r. formula ∃yGF.

Goal: eliminate unnecessary double negations. To this end we
define sets D and G of formulas which ensure that their elements
D ∈ D and G ∈ G satisfy the DG-property (1).

100 / 135

D, G, R and I are generated by the clauses

I R, P, I → D, ∀xD ∈ D.

I I , ⊥, R → G , D0 → G ∈ G.

I ⊥, G → R, ∀xR ∈ R.

I P, D → I , ∀x I ∈ I.

Let AF := A[⊥ := F], and ¬A, ¬⊥A abbreviate A→ F, A→ ⊥.

Lemma (Ishihara (2000))

We have derivations from F→ ⊥ and F→ P of

DF → D,

G → ¬⊥¬⊥GF,

¬⊥¬RF → R,

I → IF.

101 / 135

We give some examples of definite and goal formulas. Keep in
mind that R ⊆ D and I ⊆ G.

I P ∈ D ∩ I.

I ⊥ ∈ R ∩ G.

I P → ⊥ ∈ R ∩ G.

I (P → ⊥)→ ⊥ ∈ R ∩ G.

Lemma
C ∈ D ∩ G for C quantifier-free such that no implication in C has
⊥ as its final conclusion, and C ∈ R (∈ I) if and only if ⊥ is (is
not) the final conclusion of C.

102 / 135

List reversal, weak form
From the clauses

InitR : R([], []),

GenR : ∀v ,w ,x(Rvw → R(vx , xw)).

we prove

∀v ∃̃wRvw (:= ∀v (∀w (Rvw → ⊥)→ ⊥)).

Fix R, v and assume InitR, GenR and the “false” assumption
u : ∀w¬Rvw ; goal: ⊥. To this end we prove that all initial
segments of v are non-revertible, which contradicts InitR. More
precisely, from u and GenR we prove

∀v2A(v2) with A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)

by Ind(v2). For v2 = [] this follows from u0 : v1 [] = v and u. For
the step, assume u1 : v1(xv2) = v , fix w and assume u2 : Rv1w .
Goal: ⊥. We use the IH with v1x and xw to obtain ⊥. This
requires (i) (v1x)v2 = v and (ii) R(v1x , xw). But (i) follows from
u1 using properties of append, and (ii) follows from u2 using GenR.

103 / 135

We formalize this proof, to prepare it for the refined A-translation.
The following lemmata will be used:

Compat′ : ∀ncv ,w (v =d w → Xw → Xv),

EqToEqD : ∀v ,w (v = w → v =d w).

The proof term is

M :=λR,vλuInitRλuGenRλ
∀w¬Rvw
u (

Indv2,A(v2)vRvMBaseMStep [] Truth[] v=v [] uInitR)

with

MBase := λv1λ
v1[]=v
u0 (

Compat′ { v | ∀w¬Rvw }R v v1 v (EqToEqD v1vu0)u),

MStep := λx ,v2λ
A(v2)
u0 λv1λ

v1(xv2)=v
u1 λwλ

Rv1w
u2 (

u0(v1x)u1(xw)(uGenRv1wxu2)).

104 / 135

Have M : ∀v ∃̃wRvw from InitR : D1 and GenR : D2, with
D1 := R([], []) and D2 := ∀v ,w ,x(Rvw → R(vx , xw)).

I We can replace ⊥ throughout by ∃wRvw .

I ∃̃wRvw := ¬∀w¬Rvw := ∀w (Rvw → ⊥)→ ⊥ is turned into
∀w (Rvw → ∃wRvw)→ ∃wRvw .

I Premise is an instance of ∃+; hence we obtain M∃ : ∃wRvw .

I Neither the Di nor an axiom has ⊥ in its uninstantiated
formulas, hence correctness is not affected by the substitution.

The term neterm extracted in Minlog is

[R,v]

(Rec list nat=>list nat=>list nat=>list nat)v([v0,v1]v1)

([x,v0,g,v1,v2]g(v1++x:)(x::v2)) (Nil nat) (Nil nat)

with g a variable for binary functions on lists. In fact, the
underlying algorithm defines an auxiliary function h by

h([], v1, v2) := v2, h(xv , v1, v2) := h(v , v1x , xv2)

and gives the result by applying h to the original list and twice [].

105 / 135

I The second argument of h is not needed.

I Its presence makes the algorithm quadratic rather than linear,
because in each recursion step v1x is computed, and the list
append function is defined by recursion on its first argument.

I We will be able to get rid of this superfluous second argument
by decorating the proof.

I It will turn out that in the proof (by induction on v2) of the
formula A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)), the variable v1
is not used computationally.

I Hence, in the decorated version of the proof, we can use ∀ncv1 .

106 / 135

1. Logic

2. The model of partial continuous functionals

3. Formulas as problems

4. Computational content of proofs

5. Decorating proofs

107 / 135

Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract et(M) will contain the extract et(Ld).

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened lemma L : A ∨u B.

I Since et(L) is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract et(Ld) has disappeared.

108 / 135

Decoration algorithm

I Seq(M) of a proof M consists of its context and end formula.

I The proof pattern P(M) of a proof M is the result of marking
in c.r. parts of M (i.e., not above a n.c. formula) all
occurrences of implications and universal quantifiers as n.c.
(some restrictions apply on axioms and theorems).

I A formula D extends C if D is obtained from C by changing
some →nc, ∀nc into →, ∀.

I A proof N extends M if (i) N and M are the same up to
variants of →, ∀ in their formulas, and (ii) every formula in
c.r. parts of M is extended by the corresponding one in N.

109 / 135

Decoration algorithm (ctd.)

I Assumption: For every axiom or theorem A and every
decoration variant C of A we have another axiom or theorem
whose formula D extends C , and D is the least among those
extensions.

I Example: Induction

A′(0)→c/nc ∀c/ncn (A′′(n)→c/nc A′′′(n+1)))→c/nc ∀c/ncn A′′′′(n).

Let A be the lub (w.r.t. deco) of A′, . . . ,A′′′′. Extended axiom:

A(0)→ ∀n(A(n)→ A(n + 1)))→ ∀nA(n).

110 / 135

Decoration algorithm (ctd.)

Theorem (Ratiu & S., 2010)

Under the assumption above, for every proof pattern U and every
extension of its sequent Seq(U) we can find a decoration M∞ of U
such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.

111 / 135

Case (→nc)−. Consider a proof pattern

Φ, Γ

| U

A→nc B

Γ,Ψ

| V

A
(→nc)−

B

Given: extension Π,∆,Σ⇒ D of Φ, Γ,Ψ⇒ B. Alternating steps:
I IHa(U) for extension Π,∆⇒ A→ncD 7→ decoration M1 of U

whose sequent Π1,∆1 ⇒ C1 →c/nc D1 extends
Π,∆⇒ A→ncD (→c/nc∈ {→nc,→}). Suffices if A is n.c.:
extension ∆1,Σ⇒ C1 of V is a proof (in n.c. parts of a proof
→nc, ∀nc and →, ∀ are identified). For A c.r:

I IHa(V) for the extension ∆1,Σ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →c/nc D1 7→ decoration M3 of U
whose sequent Π3,∆3 ⇒ C3→c/ncD3 extends
Π1,∆2 ⇒ C2→c/ncD1.

I IHa(V) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

112 / 135

List reversal: decoration of the weak existence proof

We present our proof in more detail, particularly by writing proof
trees with formulas. The decoration algorithm then is applied to its
proof pattern with the sequent consisting of the context
InitR : R([], []) and GenR : ∀v ,w ,x(Rvw → R(vx , xw)) and the end
formula ∀v∃wRvw . Relevant axioms: list induction, CompatRev
and ∃+.

CompatRev : ∀ncR,v ,v1,v2(v1 =d v2 → ∀w¬∃Rv2w → ∀w¬∃Rv1w),

∃+ : ∀ncR,v∀w (Rvw → ∃wRvw)

with A(v2) := ∀ncv1 (v1v2=v → ∀w¬∃Rv1w) and
¬∃Rv1w := Rv1w → ∃wRvw .

113 / 135

Ind v R v
A([])→ ∀x ,v2(A(v2)→ A(xv2))→ A(v))

| MB

A([])

∀x ,v2(A(v2)→ A(xv2))→ A(v)

| MS

∀x ,v2(A(v2)→ A(xv2))

∀v1(v1v = v → ∀w¬∃Rv1w) (= A(v))

where

Ind : ∀ncv ,R∀w (A([])→ ∀x ,v2(A(v2)→ A(xv2))→ A(w))

A(v2) := ∀v1(v1v2 = v → ∀w¬∃Rv1w)

¬∃B := B → ∃wRvw

Applied to [], Truth, [] and InitR this gives ∃wRvw .

114 / 135

MB

CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w

∃+ R v

∀w¬∃Rvw

∀w¬∃Rv1w →+u1
v1 [] = v → ∀w¬∃Rv1w

∀v1(v1 [] = v → ∀w¬∃Rv1w) (= A([]))

with N1 involving EqToEqD : ∀v ,w (v = w → v =d w), and

CompatRev : ∀ncR,v ,v1,v2(v1 =d v2 → ∀w¬∃Rv2w → ∀w¬∃Rv1w)

∃+ : ∀ncR,v∀w (Rvw → ∃wRvw)

¬∃B := B → ∃wRvw

115 / 135

MS

[u0 : A(v2)] v1x

(v1x)v2=v → ∀w¬∃R(v1x ,w) [u1 : v1(xv2)=v]

∀w¬∃R(v1x ,w) xw

¬∃R(v1x , xw)

[u2 : Rv1w]

| N2

R(v1x , xw)

∃wRvw →+u2¬∃Rv1w

∀w¬∃Rv1w →+u1
v1(xv2) = v → ∀w¬∃Rv1w

∀ncv1 (v1(xv2)=v → ∀w¬∃Rv1w) (=A(xv2))
→+

A(v2)→ A(xv2)

∀x ,v2(A(v2)→ A(xv2))

with N2 involving GenR : ∀v ,w ,x(Rvw → R(vx , xw)).

116 / 135

Ind v R v

Â([])→nc∀x ,v2(Â(v2)→ncÂ(xv2))→ncÂ(v))

|MB

Â([])

∀x ,v2(Â(v2)→nc Â(xv2))→nc Â(v)

| MS

∀x ,v2(Â(v2)→ncÂ(xv2))

∀ncv1 (v1v = v → ∀ncw ¬∃Rv1w) (= Â(v))

where

Ind : ∀ncv ,R∀w (Â([])→ ∀x ,v2(Â(v2)→ Â(xv2))→ Â(w))

Â(v2) := ∀ncv1 (v1v2 = v → ∀ncw ¬∃Rv1w)

¬∃B := B → ∃wRvw

Applied to [], Truth, [] and InitR this gives ∃wRvw .

117 / 135

CompatRev R v v1 v

v1 =d v → ∀ncw ¬∃Rvw → ∀ncw ¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀ncw ¬∃Rvw → ∀ncw ¬∃Rv1w

∃+ R v

∀ncw ¬∃Rvw

∀ncw ¬∃Rv1w
→+u1

v1 [] = v → ∀ncw ¬∃Rv1w

∀ncv1 (v1 [] = v → ∀ncw ¬∃Rv1w) (= Â([]))

with

CompatRev : ∀ncR,v ,v1,v2(v1 =d v2 → ∀ncw ¬∃Rv2w → ∀ncw ¬∃Rv1w)

∃+ : ∀ncR,v∀w (Rvw → ∃wRvw)

¬∃B := B → ∃wRvw

118 / 135

CompatRev R v v1 v

v1 =d v → ∀w¬∃Rvw → ∀w¬∃Rv1w

[u1 : v1 [] = v]

| N1

v1 [] =d v

∀w¬∃Rvw → ∀w¬∃Rv1w

∃+ R v

∀w¬∃Rvw

∀w¬∃Rv1w →+u1
v1 [] = v → ∀w¬∃Rv1w

∀ncv1 (v1 [] = v → ∀w¬∃Rv1w) (= A′([]))

with

CompatRev : ∀ncR,v ,v1,v2(v1 =d v2 → ∀w¬∃Rv2w → ∀w¬∃Rv1w)

∃+ : ∀ncR,v∀w (Rvw → ∃wRvw)

¬∃B := B → ∃wRvw

119 / 135

Ind v R v

Â([])→ ∀x ,v2(Â(v2)→ Â(xv2))→ Â(v))

|MB

A′([])

∀x ,v2(Â(v2)→nc Â(xv2))→nc Â(v)

| MS

∀x ,v2(Â(v2)→ncÂ(xv2))

∀ncv1 (v1v = v → ∀ncw ¬∃Rv1w) (= Â(v))

where

Â(v2) := ∀ncv1 (v1v2 = v → ∀ncw ¬∃Rv1w)

A′(v2) := ∀ncv1 (v1v2 = v → ∀w¬∃Rv1w)

¬∃B := B → ∃wRvw

Applied to [], Truth, [] and InitR this gives ∃wRvw .

120 / 135

Ind v R v
A′([])→ ∀x ,v2(A′(v2)→ A′(xv2))→ A′(v))

|MB

A′([])

∀x ,v2(A′(v2)→ A′(xv2))→ A′(v)

| MS

∀ncx ,v2(Â(v2)→ncÂ(xv2))

∀ncv1 (v1v = v → ∀ncw ¬∃Rv1w) (= Â(v))

where

Â(v2) := ∀ncv1 (v1v2 = v → ∀ncw ¬∃Rv1w)

A′(v2) := ∀ncv1 (v1v2 = v → ∀w¬∃Rv1w)

¬∃B := B → ∃wRvw

Applied to [], Truth, [] and InitR this gives ∃wRvw .

121 / 135

[u0 : Â(v2)] v1x

(v1x)v2=v → ∀ncw ¬∃R(v1x ,w) [u1 : v1(xv2)=v]

∀ncw ¬∃R(v1x ,w) xw

¬∃R(v1x , xw)

[u2 : Rv1w]

| N2

R(v1x , xw)

∃wRvw →+u2¬∃Rv1w

∀ncw ¬∃Rv1w
→+u1

v1(xv2) = v → ∀ncw ¬∃Rv1w

∀ncv1 (v1(xv2)=v → ∀ncw ¬∃Rv1w) (=Â(xv2))
→+

Â(v2)→nc Â(xv2)

∀ncx ,v2(Â(v2)→nc Â(xv2))

This P(MS) with extension ∀x ,v2(A′(v2)→ A′(xv2)) yields

122 / 135

[u0 : A′(v2)] v1x

(v1x)v2=v → ∀w¬∃R(v1x ,w) [u1 : v1(xv2)=v]

∀w¬∃R(v1x ,w) xw

¬∃R(v1x , xw)

[u2 : Rv1w]

| N2

R(v1x , xw)

∃wRvw →+u2¬∃Rv1w

∀w¬∃Rv1w →+u1
v1(xv2) = v → ∀w¬∃Rv1w

∀ncv1 (v1(xv2)=v → ∀w¬∃Rv1w) (=A′(xv2))
→+

A′(v2)→ A′(xv2)

∀x ,v2(A′(v2)→ A′(xv2))

123 / 135

Finally

Ind v R v
A′([])→ ∀x ,v2(A′(v2)→ A′(xv2))→ A′(v)

|MB

A′([])

∀x ,v2(A′(v2)→ A′(xv2))→ A′(v)

| MS

∀x ,v2(A′(v2)→ A′(xv2))

∀ncv1 (v1v = v → ∀w¬∃Rv1w) (= A′(v))

where

A′(v2) := ∀ncv1 (v1v2 = v → ∀w¬∃Rv1w)

¬∃B := B → ∃wRvw

Applied to [], Truth, [] and InitR this gives ∃wRvw .

124 / 135

The extracted term neterm then is

[R,v](Rec list nat=>list nat=>list nat)v([v0]v0)

([x,v0,f,v1]f(x::v1))(Nil nat)

with f a variable for unary functions on lists. To run this algorithm
one normalizes the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))

The returned value is the reverted list 4::3::2::1:. This time,
the underlying algorithm defines an auxiliary function g by

g([],w) := w , g(x :: v ,w) := g(v , x :: w)

and gives the result by applying g to the original list and []. In
conclusion, we have obtained (by machine extraction from an
automated decoration of a weak existence proof) the standard
linear algorithm for list reversal, with its use of an accumulator.

125 / 135

Fibonacci numbers

An application of decoration occurs when one derives double
induction

∀n(Qn→ Q(Sn)→ Q(S(Sn)))→ ∀n(Q0→ Q1→ Qn)

in continuation passing style, i.e., not directly, but using as an
intermediate assertion (proved by induction)

∀n,m((Qn→ Q(Sn)→ Q(n + m))→ Q0→ Q1→ Q(n + m)).

After decoration, the formula becomes

∀n∀ncm ((Qn→ Q(Sn)→ Q(n + m))→ Q0→ Q1→ Q(n + m)).

126 / 135

This can be applied to obtain a continuation based tail recursive
definition of the Fibonacci function, from a proof of its totality.
Let G be the (n.c.) graph of the Fibonacci function, defined by the
clauses

G (0, 0), G (1, 1),

∀n,v ,w (G (n, v)→ G (Sn,w)→ G (S(Sn), v + w)).

From these assumptions one can easily derive

∀n∃vG (n, v),

using double induction (proved in continuation passing style). The
term extracted from this proof is

[n](Rec nat=>nat=>(nat=>nat=>nat)=>nat=>nat=>nat)n([n0,k]k)

([n0,p,n1,k]p(Succ n1)([n2,n3]k n3(n2+n3)))

applied to 0, ([n0,n1]n0), 0 and 1.

127 / 135

Unclean aspect: that the recursion operator has value type

nat=>(nat=>nat=>nat)=>nat=>nat=>nat

rather than (nat=>nat=>nat)=>nat=>nat=>nat, which would
correspond to an iteration. We can repair this by decoration. After
decoration, the extracted term becomes

[n](Rec nat=>(nat=>nat=>nat)=>nat=>nat=>nat)n([k]k)

([n0,p,k]p([n1,n2]k n2(n1+n2)))

applied to ([n0,n1]n0), 0 and 1 (k, p are variables of type
nat=>nat=>nat and (nat=>nat=>nat)=>nat=>nat=>nat,
respectively.) This is iteration in continuation passing style: the
functional F recursively defined by

F (0, k) := k

F (n + 1, k) := F (n, λn,n′(k(n′, n + n′)))

is applied to n, the left projection λn0,n1n0 and 0, 1.

128 / 135

Example: Euler’s ϕ, or avoiding factorization

Let P(n) mean “n is prime”. Consider

Fact : ∀n(P(n) ∨r ∃m,k>1(n = mk)) factorization,

PTest : ∀n(P(n) ∨u ∃m,k>1(n = mk)) prime number test.

Euler’s ϕ has the properties{
ϕ(n) = n − 1 if P(n),

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀n(ϕ(n) = n − 1 ∨u ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.

129 / 135

Example: Euler’s ϕ, or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

Fact : ∀n(P(n) ∨r ∃m,k>1(n = mk)),

PTest : ∀n(P(n) ∨u ∃m,k>1(n = mk))

and have a proof of ∀n(ϕ(n) = n− 1∨u ϕ(n) < n− 1) from Fact.

I The decoration algorithm arrives at Fact with goal

P(n) ∨u ∃m,k>1(n = mk).

I PTest fits as well, and it has ∨u rather than ∨r, hence is
preferred.

130 / 135

(define decnproof (fully-decorate nproof "Fact" "PTest"))

(proof-to-expr-with-formulas decnproof) =>

Elim: allnc n((C n -> F) oru C n ->

((C n -> F) -> phi n=n--1 oru phi n<n--1) ->

(C n --> phi n=n--1 oru phi n<n--1) ->

phi n=n--1 oru phi n<n--1)

PTest: all n((C n -> F) oru C n)

Intro: allnc n(phi n=n--1 -> phi n=n--1 oru phi n<n--1)

EulerPrime: allnc n((C n -> F) -> phi n=n--1)

Intro: allnc n(phi n<n--1 -> phi n=n--1 oru phi n<n--1)

EulerComp: allnc n(C n -> phi n<n--1)

(lambda (n)

((((Elim n) (PTest n))

(lambda (u1542) ((Intro n) ((EulerPrime n) u1542))))

(lambda (u1544) ((Intro n) ((EulerComp n) u1544)))))

(pp (nt (proof-to-extracted-term decnproof))) => cPTest

131 / 135

Example: Maximal Scoring Segment (MSS)

I Let X be linearly ordered by �. Given seg : N→ N→ X .
Want: maximal segment

∀n∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)).

I Example: Regions with high G ,C content in DNA.

X := {G ,C ,A,T},
g : N→ X (gene),

f : N→ Z, f (i) :=

{
1 if g(i) ∈ {G ,C},
−1 if g(i) ∈ {A,T},

seg(i , k) = f (i) + · · ·+ f (k).

132 / 135

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀n(∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)) ∧
∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If �, take the new i , k to be j , n + 1. Else take the old i , k .

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.

133 / 135

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n + 1:
∀n∃j≤n+1∀j ′≤n+1(seg(j ′, n + 1) � seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀n∀m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n + 1) � seg(j , n + 1)).

I Use ESn : ∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)) and the additional
assumption of monotonicity

∀i ,j ,n(seg(i , n) � seg(j , n)→ seg(i , n + 1) � seg(j , n + 1)).

Proceed by cases on seg(j , n + 1) � seg(n + 1, n + 1).
If �, take n + 1, else the previous j .

134 / 135

Example: MSS (ctd.)

Could decoration help to find the better proof? Have lemmas L:

∀n∀m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))

and LMon:

Mon→ ∀n(ESn → ∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))).

I The decoration algorithm arrives at L with goal

∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1)).

I LMon fits as well, its assumptions Mon and ESn are in the
context, and it is less extended (∀ncm≤n+1 rather than ∀m≤n+1),
hence is preferred.

135 / 135

