Intro
0000

Model TCF Realizability Examples
000 0000000 000000 0000

A theory of computable functionals

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

Verona, 22. March 2024

e
o

onclusion

1/26

Intro
@000

® Proofs may have computational content.
® One can extract it and obtains a term (~ program).
® The correctness of this term (~ program) can be proved.

This correctness proof is a formal one and within the underlying
theory. It can be automatically generated.

What is a proof? Need (i) a language and (ii) logic.

2/26

Intro
0000

Language

¢ Functions of (simple) types, defined by equations.

® Predicates, which are inductively / coinductively defined, by
clauses and least / greatest fixed point axioms.

Predicates are marked as

C.r. computationally relevant, or

n.c. non-computational.

3/26

Intro
0000

Example

® Disjunction is viewed as a nullary predicate with 2 parameters.

® In AV B, the computational status of A and B determines a
variant of V:

AviB for Ac.r. and B c.r. (d for double),
AVIB for A c.r. and B n.c. (1 for left),
AVt B for An.c. and B c.r. (
AV' B for An.c. and B n.c. (

r for right),

u for uniform),

and A V" B (non-computational) for A n.c. and B n.c.

® The “types” in the first 4 cases are

a+p, a+U, U+p5, B.

4/26

Intro
feelel)

Logic

® A constructive extension of classical logic, by adding “strong”
variants of V, 3 to the classical V, 3:

AVB:=(-A—=-B— 1), JA:=-VA

® In proof trees (natural deduction) call subtrees with an n.c.
end formula “nc-parts”. Ignore c.r. and n.c. decorations there.

5/26

Model
®00

® What is a proof? We need a theory.

® Since we are interested in the computational content of proofs,
it seems best look for a theory describing a concrete model,

® Scott-Ershov model of partial continuous functionals!. Idea:
Infinite objects (“ideals™) given by their finite approximations.

® |deals: “consistent” and “deductively closed” sets of “tokens”.

® Tokens at base types: ‘“constructor trees’ with possibly x.

!Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984

6/26

e {50,5(S5%)} is inconsistent.

e {Sx,5(5%)} is an ideal.

e {S5%,5(5%),5(50)} is an ideal (“total").

e {Sx,5(5%),5(5(5%)),...} is an infinite ideal (“cototal”).

7/26

Model
ooe

Ideals at function types
® can be partial,

® are continuous: for every “formal neighborhood” V of f(x) we
can find a formal neighborhood U of x with f[U] C V, and

® are computable iff they are given by a recursively enumerable
set of tokens.

8/26

Intro Model TCF Realizability Examples
0000 000 ©000000

Conclusion

A common extension T of Godel's T and Plotkin's PCF

Terms: built from (typed) variables and constants (constructors C
or defined constants D) by abstraction and application:

M, N = XT | CT | DT ’ ()\XTMO')THO' ‘ (MT—)UNT)U.
Examples: Decidable equality =y: N — N — B

(0=n0)=t, (Sn =N 0) = ff,
(0 =N Sm) =ff, (5n =N Sm) = (n =N m).

Recursion R: N—=7—=(N—=7—=7) = 7.

R{0af = a,
RN(Sn)af = fa(R{ naf).

9/26

TCF
0®00000

Predicates and formulas

L Qu=X|{X|A}| (7, P)|“I(5,P) (predicates),
B:=Pt |A— B|VA (formulas).
The missing logical connectives A, V, 3 are inductively defined.

Totality Ty is inductively defined as the least fixed point (Ifp) of
the clauses

0e Tn, ne Ty — Sne Ty.

Cototality ® Ty is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

ne°Ty—=n=0V3y(ne°TyAn=Sn).

10/26

TCF
00®0000

Partiality

® Defined functionals D (and hence terms) can be partial.

® Many D'’s are total (map total arguments into total values).
Convention:

e Variables %,y ... range over arbitrary (i.e., partial) objects.

® Variables x, y ... range over total objects.

For readability,

VxA(x) abbreviates Vi(TX — A(X)).

11/26

TCF
0008000

Equality

There are many variants of equality:
e Decidable equality for base types, for instance =y.
e Leibniz equality, inductively defined by the clause ¥, (x = x).

* Pointwise equality?:
(f =0 g) = vX,y(X =y = fx=5 g)/)'
Extensionality is defined as diagonalization of pointwise equality:

(x € Ext;) = (x =; x).

2Robin Gandy, On the axiom of extensionality — Part |, JSL 1956 and Gaisi
Takeuti, On a generalized logic calculus, Jap. J. Math. 1953
12 /26

TCF
0000800

Example of a non-extensional functional

Define f,g: N — N by fi=0and g0 =0, g(SA) = gh.
Then f1n = 0 because of the computation rules for f.

For gLy no computation rule fits, therefore [g_Ln] is the
empty ideal [Ln].

Hence f = g, i.e., Vo m(n =N m — fn =N gm), since n =y m
implies both n € Ty and n= m.

Therefore the functional F defined by Fh = h_lN maps the
pointwise equal f, g to different values.

13/26

TCF
0000080

Properties

e Ext, and T, are equivalent for closed types of level <1.

® For every closed type 7 the relation =, is an equivalence
relation on Ext..

® For every term t(x') with extensional constants and free
variables among X we have

14 /26

TCF
000000e

c.r. and n.c.

We have two sorts of inductive predicates and predicate variables,
® ‘“computationally relevant” ones /¢, X¢ and
® “non-computational” ones /¢, X"°.
® We use /, X for both.

This leads to a distinction between c.r. and n.c. formulas.

It allows to “fine tune” the computational content of a proof.

15/26

Realizability
@00000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (p, &) where £ is the type variable associated with X.

e We introduce /" /<°l" for c.r. (co)inductive predicates //l,
e.g.,

Even'00 Even"nm — Even'(5(5n))(Sm).

® A predicate or formula C is r-free if it does not contain any of
these X", I" or <",

® A derivation M is r-free if it contains r-free formulas only.

16 /26

Intro Model TCF Realizability Examples Conclusion
0000 [e]e]e} 0000000 O@0000 0000 [e]

Definition (C" for r-free c.r. formulas C)
Let zr C mean C'z.

zr Pt:= P'tz,

¢ (A= B) Vw(wrA—zwr B) if Aisc.r.
z =
A—zrB if Aisn.c.

zr YV A =Vy(zr A).

17 /26

Realizability Examples Conclusion
00®000 0000 o

Definition (Extracted term for an r-free proof M of a c.r. A)

et(u?) = 77 (zZ(A) uniquely associated to u*),
et((/\uA MB)A%B) - Azuet(M) If A ?S C.r.

et(M) if Aisn.c.,
et((MABNA)B) = et(M)et(N) ff A ?s C.r.

et(M) if Aisn.c.,
et((AxMA)VXA) = et(M),

et(MPAXHAMD)Y = et(M

18 /26

Intro Model TCF Realizability Examples Conclusion
0000 000 0000000 000800 0000 o

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.
® et(/) := C; and et(/7) := R, where the constructor C; and
the recursion operator R refer to ¢; associated with /.
® et(°/7) :=D and et(“/") := ©°R, where the destructor D
and the corecursion operator “°R refer to ¢; again.

1926

Realizability
0000e0

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui: C; (i < n). Then we can derive

et((M)rA ifAiscr.
A if Ais n.c.

from assumptions

z,v G ifCiscr.
G if C; is n.c.

20/26

Realizability
O0000e

We express
e Kolmogorov's view of “formulas as problems’3
® Feferman’s dictum “to assert is to realize”*

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAlly: V.(zr A— A),
InvExsa: A — 3,(zr A).

Invariance axioms are used in the proof of the soundness theorem.

3Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
*Constructive theories of functions and classes, Logic Colloquium 78, p.208

21/26

Intro

Model TCF Realizability Examples Conclusion
000 ©000

A simple example of program extraction

Let DGs: N — N — N (for decreasing GauB sum) defined by

DGs(n,0) :=0,
DGs(n,m + 1) := DGs(n, m) + (n — m).

Then DGs(n,m)=n+(n—1)+---+ (n—(m—1)) with m
summands.

Lemma
Every k < DGs(n, n) can uniquely be written in the form

k =DGs(n,m)+1 with|l <n—m.

22/26

Examples
000

The existence part of the proof is done in such a way that it
provides a reasonable algorithm to compute m,/ from k (in
contrast to a proof based on searching). We split the proof:

k +1 < DGs(n,m) = 3pm(k =DGs(n,m) + /Al <n—m), (1)
k+1=DGs(n,m) — 3 (k =DGs(n,m)+ 1INl <n—m). (2)

(1) is proved by induction on k, (2) by cases on n.

23 /26

Examples
00®0

Extracted term

[n,n0]
[if (Succ nO<DGs n n)

((Rec nat=>nat yprod nat)n0(0 pair 0)
([n1,ml]

[if m1 ([n2,n3][if (Succ n3<n--n2)
(n2 pair Succ n3)

(Succ n2 pair 0)1)1))
[if n (0 pair 0) ([n1]lnl pair 0)]]

24 /26

Examples
oooe

Applications in constructive analysis.
® |ntermediate value theorem.
® Verified algorithms for arithmetic on stream-represented real
numbers.
® Functional equation of the exponential function.

® Verified algorithm to find for a given real x some p such that

25 /26

Conclusion
°

Conclusion

In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

The soundness theorem provides a formal verfication in TCF

that the extracted term realizes the formula (“specification™).
This is automated in Minlog.

Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

26 /26

	Intro
	Model
	TCF
	Realizability
	Examples
	Conclusion

