Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

[e]e]e}

0000 [e]e]e} (e]e] 00000000 (o]e] 000000 [e]

Linear two-sorted constructive arithmetic

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

Recursion-theoretic approaches to computation and complexity
Tubingen, July 2021

1/30

Introduction
®00

® Proofs may have computational content, which can be
extracted (via realizability).

® Proofs (but not programs) can be checked for correctness.
Issues:
® Need to extend classical to constructive logic.

e Complexity.

2/30

Introduction
o] 1o}

Feasible computation with higher types

Godel's T (1958): finitely typed A-terms with structural recursion.

LT(;) (linear two-sorted A-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones.

LA(;) solves
Heyting Arithmetic 7
Godel's T - LT()

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (like quicksort, treesort).

3/30

Introduction
ooe

Problem: two recursive calls in Flatten, not allowed in LT(;).

TreeSort(/) = Flatten(MakeTree(/)),

MakeTree([]) =0,
MakeTree(a :: /) = Insert(a, MakeTree(/)),
)

Insert(a, © = Cy(0,0),
Cp(Insert(a, u),v) ifa<b

Cp(u,Insert(a,v)) if b< a,

Insert(a, Cp(u,v)) = {

Flatten(o) =,
Flatten(Cp(u, v)) = Flatten(u) * (b :: Flatten(v)).

Cure: analysis of Flatten in the computation model.

4/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Constructive logic

® Use —, V only, defined by introduction and elimination rules.

® View 3,A, AV B, AA B as inductively defined predicates
(with parameters A, B).

® |n addition, define classical existence and disjunction by

A = VA,
AN B = —(~AAB)

where =A:= (A — F) and F := (0 =1).

5/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion
000 000 000 [e]e) 00000000 00 000000 o]

Proof terms: assumptions variables, —-rules

Assumption variables: u: A (or u?)
Derivation Term
[u: A]
| M ()\UAMB)A—>B
_B
A-B U
| M | N
A= B A _ | (MAZBNA)E
B —

6/30

Logic
0000

Proof terms: V-rules

Derivation Term

| M
A 4 (AxMA)%A (var. cond.)
VA V™ x (var. cond.)
| M
VAX) r (MYAX))A()
A Y

7/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion
000 [ele]e]) 000 [e]e) 00000000 00 000000 o]

Proof terms in natural deduction

xP y? c” e vB AxC
| N\ | N\
Axe App -t -
N\
v V-

The realizability interpretation transforms such a proof term
directly into an object term.

8/30

Introduction Logic Complexity Terms
000 C o @00 00

on model Arithmetic Conclusion

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and — using D
— a function E(n) representing 2":

D(0) := 0, E(0) =1,
D(S(n)) :== S(S5(D(n))), E(S(n)) := D(E(n)).

Problem: previous value E(n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

9/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion
000 0000 oeo [e]e) 00000000 00 000000 o]

(ii) Double use of higher type values

Define F as the 2"-th iterate of D:
F(0, m) :== D(m), F(0) : ,
F(S(n), m) := F(n, F(n, m)) F(S(n) (n) o F(n).

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

10/30

Complexity
ooe

(iii) Marked value types

Define I(n, f) as the n-th iterate f" of f. Thus I(n, D)(m) =2"m.

1(0,f,m) :=m, 1(0,f) :=id,
1(S(n), f,m):= f(I(n,f,m)) 1(S(n),) :=fol(n,f).
Problem: since D: N < N, / needs type (N < N) — N — N.

Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(! will be admitted is our setting. This is not the case in Cook and
Kapron's PV“, since PV* is closed under substitution.)

11/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesor Conclusion
0000 0 00000000 00

Linear two-sorted terms
Types are
p,oi=t|p—=o|p— o with. base type (B, N, p x g, L(p)).

p is safe if it does not involve the input arrow <.
Variables are typed: input variables x” and output variables x*.
Constants are (i) constructors, (ii) recursion operators

RyN=s7T>(NsT7o7)7
s L (7 safe),
Rip:Lp) =12 (p=Lp) o7 o7)>7

and (iii) cases operators (7 safe)

Ch:N—=>7—=>(N—=r71)—>rT,
Clipy: L(p) > 7= (p—= L(p) = 7) =,

Coxo: PXT = (po0o—=T1)—=>T

12/30

Terms
oe

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms p < ¢ and p — o:

xP | xP'| CP (constant) |

(Azer?)P77 | (rP77sP)? (s an input term) |

(Axer?)P77 | (rP7%s”)? (higher type output vars in r, s distinct,
r does not start with C]) |

C/tr (h.t. output vars in FV(t) not in r)

with as many r; as there are constructors of ¢. s is an input term if

® all its free variables are input variables, or else
® s is of higher type and all its higher type free variables are

input variables.

13/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesor Conclusion
©0000000

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

® terminal nodes labelled by a variable or constant,

® abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

® application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

14 /30

Computation model
0®000000

® The size |d| of a parse dag d is the number of nodes in it.

® A parse dag is conformal if (i) every node with in-degree
greater than 1 is of base type, and (ii) every maximal path to
a bound variable x passes through the same binding Ax-node.

® A parse dag is h-affine if every higher type variable occurs at
most once in the dag, except in the alternatives of a cases
operator.

We identify a parse dag with the term it represents.

15/30

Computation model
00®00000

Steps requiring 1 time unit:
e Creation of a node given its label and pointers to successors.
® Deletion of a node.

® Given a pointer to an interior node, to obtain a pointer to one
of its successors.

® Test on the type and the label of a node, and on the variable
or constant in case the node is terminal.

16 /30

Computation model
000@0000

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let / be a numeral of type L(N). Then #(/« /") = O(|/|).

For #Flatten(u) we use a size function for numerals u of type T:

[o]:=0,
| Ca(u, I = 2ful + [v] + 3.

Lemma. Let v be a numeral of type T. Then

#Flatten(u) = O(|ul).

17/30

Computation model
00008000

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

e RD-free if it contains neither recursion constants R nor
Flatten, and

® simple if it contains no higher type input variables.
Simple terms closed under reduction, subterms, application.
Lemma (Simplicity)

Let t be a base type term whose free variables are of base type.
Then nf(t) is simple.

18/30

Terms Computation model Arithmetic

Conclusion
0O0000e00 o]

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most |t|, can be computed from t in time O(|t|?).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(|t|?), and |nf(t)] < |t|.

19/30

Introduction
000

Logic Complexity Terms Computation model Arithmetic Treesort Conclusion
0000 000 [e]e) 00000080 00 000000 o]

(Azr(x))s with X of base type

20/30

Computation model
0000000@

Lemma (RD-elimination)

Let t(X) be a simple term of safe type. There is a polynomial Py
such that: if I’ are safe type R'D-free closed simple terms and the
free variables of t(r) are output variables, then in time P(|7|)
one can compute an RD-free simple term rdf(t; X; r') such that
t(r) =" rdf(t; x; 7).

Proof.

By induction on |t| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||ul). O

Theorem (Normalization)

Lett: N — ...N — N (with € {—,—}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

21/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

[e]e]e}

0000 [e]e]e} (e]e] 00000000 0 000000 [e]

Linear two-sorted arithmetic LA(;)

e LA(;)-formulas are
I(FY|A<— B|A— B|VA| VA (7 terms from T).
¢ Define 7(A) by

7(A <= B) := (1(A) = 7(B)), 7(V%A) :=(p — 1(A)),
T(A—= B) = (7(A) = 7(B)), 7(VxA) :=(p— 7(A)).

® Ais safe if 7(A) is safe, i.e., <—-free.

22/30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion
000 0000 000 [e]e) 00000000 oe 000000 o]

Linear two-sorted arithmetic LA(;) (ctd.)

® The induction axiom for N is
Indz a: Va(A(0) — Vs (A(m) — A(Sm)) — A(AN))

with A safe.

® |t has the type of the recursion operator which will realize it:

N—7—>(N—7—7)=7 where 7 =7(A) is safe.

23/30

Treesort
©00000

Treesort in LA(;) + Flatten

A tree u is sorted if the list Flatten(u) is sorted. We recursively
define a function I inserting an element a into a tree u such that, if
u is sorted, then so is I(a, u):

I(a,0) := Cy(0,0),

I(a, Cp(u,v)) == {Cb(l(% u),v) ifa<b,

Cp(u,I(a,v)) ifb<a
and, using I, a function S sorting a list / into a tree:

S([]) == o, S(a::1):=1(a,S(1)).

24/30

Treesort
0®0000

We represent I, S by (n.c.) inductive definitions of their graphs.
Write I(a, u, u") for I(a,u) = v’ and S(/, u) for S(/) = u. Clauses:
I(a, 0, Cs(0,9)),
a<b—1I(auu)—I(a, Cp(u,v), Co(d,v)),
b<a—1(a,v,v) = I(a, Cp(u,v), Cp(u, V")),

5(1,9),
S(l,u) = I(a,u,u') — S(a::).

25 /30

00000000 0C 00@000

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

® We would like to derive 3,5(/, u) in LA(;) + Flatten.
® However, this is not possible.
e All we can getis |/| < n— 3,5(/,u) (n an input parameter).

Lemma (Tree insertion)
Vanu(lul < n— 3,1(a, u,d)).
Proof. Fix a. Do induction on n.

Let tl;(/) be the tail of the list / of length i, if i < |/|, and / else.

Lemma (Treesort)
vl,n,m(m <n-— EIus(tlmin(m,w)(/)v u))
Proof. Fix I, n. Do induction on m.

26/30

Treesort
000800

Extraction from tree insertion lemma

[a,n] (Rec nat=>bbin=>bbin)n([u]lC a Emp Emp)
([n1,h,u] [if (Ht u<=n1)
(h u)
[if (a<=Lb u)
(C Lb u(h L uwR uw
(CLbulLl ut R uw)l

Represents the function f of type N — N — T — T defined by

f(a,0,u) := Cy(0,9),
f(a, n,u) if |u] < n,
fa,n+1,u):=q Crp)(f(a,n, L(u)), R(v)) if n < |ul, a < Lb(u),
Crb(u)(L(u), f(a,n, R(u))) if n < |u], Lb(u) < a

with Lb(u), L(u), R(u) label and left and right subtree of u # <.
27/30

Treesort
000080

Extraction from treesort lemma

[1,n,m] (Rec nat=>bbin)m Emp
([m1,u] [if (Lh 1<=m1)
u
[if ml
(C Head(1 t1 1)Emp Emp)
([n2] [if (Head(Succ m1 tl 1)<=Lb u)
(C Lb u(cIns Head(Succ m1 tl1 1)ml L uw)R u)
(C Lb u Ll ul(cIns Head(Succ m1 t1 1)m1 R uw))1)11)

Represents the function g of type L(N) — N <— N < T with
g(l,n,0) :=o, g(l,n,m+1):=
u if [1] < m,
Chd (et (1)) (€5 ©)s if 0=m<|ll,
CLb(u)(f(a m, L(u)), R(u)) if 0 < m<|l] and a < Lb(u)
(u

). f(a,m,R(u))) if0<m<|l|and Lb(v) < a

CLb(u)(
28/30

I P (1 - N - - 1 1/01 YA ANY

Treesort
00000®

Specializing the Treesort Lemma to /, n, n we obtain
|| < n— 3,5(,u).

Let 5(/,I") express that /" is multiset-equal to / and sorted. One
easily proves S(/,u) — S(/, Flatten(u)) and gets

] < n— 3,5(1,1)

in LA(;) + Flatten. The term extracted from the proof represents
the function h of type L(N) — N — L(N) with

h(l, n) := Flatten(g(/, n, n))

and thus the treesort algorithm.

29 /30

Conclusion
°

Conclusion

e Constructive logic (and arithmetic) can and should be seen as
an extension of the classical setup.

® Using the realizability interpretation of proofs one can extract
computational content.

® Verification can be automated: there is an internal proof of
the soundness theorem.

30/30

	Introduction
	Logic
	Complexity
	Terms
	Computation model
	Arithmetic
	Treesort
	Conclusion

