
Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Linear two-sorted constructive arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Recursion-theoretic approaches to computation and complexity
Tübingen, July 2021

1 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

• Proofs may have computational content, which can be
extracted (via realizability).

• Proofs (but not programs) can be checked for correctness.

Issues:

• Need to extend classical to constructive logic.

• Complexity.

2 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Feasible computation with higher types

Gödel’s T (1958): finitely typed λ-terms with structural recursion.

LT(;) (linear two-sorted λ-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones.

LA(;) solves
Heyting Arithmetic

Gödel’s T
=

?

LT(;)

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (like quicksort, treesort).

3 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

TreeSort(l) = Flatten(MakeTree(l)),

MakeTree([]) = �,
MakeTree(a :: l) = Insert(a,MakeTree(l)),

Insert(a, �) = Ca(�, �),

Insert(a,Cb(u, v)) =

{
Cb(Insert(a, u), v) if a ≤ b

Cb(u, Insert(a, v)) if b < a,

Flatten(�) = [],

Flatten(Cb(u, v)) = Flatten(u) ∗ (b :: Flatten(v)).

Problem: two recursive calls in Flatten, not allowed in LT(;).
Cure: analysis of Flatten in the computation model.

4 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Constructive logic

• Use →, ∀ only, defined by introduction and elimination rules.

• View ∃xA, A ∨ B, A ∧ B as inductively defined predicates
(with parameters A, B).

• In addition, define classical existence and disjunction by

∃̃xA := ¬∀x¬A,
A ∨̃ B := ¬(¬A ∧ ¬B)

where ¬A := (A→ F) and F := (0 = 1).

5 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Proof terms: assumptions variables, →-rules
Assumption variables: u : A (or uA)

Derivation Term

[u : A]

| M
B →+ uA→ B

(λuAM
B)A→B

| M
A→ B

| N
A →−B

(MA→BNA)B

6 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Proof terms: ∀-rules

Derivation Term

| M
A ∀+ x (var. cond.)∀xA

(λxM
A)∀xA (var. cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

7 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+
xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

8 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and – using D
– a function E (n) representing 2n:

D(0) := 0,

D(S(n)) := S(S(D(n))),

E (0) := 1,

E (S(n)) := D(E (n)).

Problem: previous value E (n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

9 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

(ii) Double use of higher type values

Define F as the 2n-th iterate of D:

F (0,m) := D(m),

F (S(n),m) := F (n,F (n,m))
or

F (0) := D,

F (S(n)) := F (n) ◦ F (n).

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

10 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

(iii) Marked value types

Define I (n, f) as the n-th iterate f n of f . Thus I (n,D)(m) = 2nm.

I (0, f ,m) := m,

I (S(n), f ,m) := f (I (n, f ,m))
or

I (0, f) := id,

I (S(n), f) := f ◦ I (n, f).

Problem: since D : N ↪→ N, I needs type (N ↪→ N)→ N ↪→ N.
Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(I will be admitted is our setting. This is not the case in Cook and
Kapron’s PVω, since PVω is closed under substitution.)

11 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Linear two-sorted terms
Types are

ρ, σ ::= ι | ρ ↪→ σ | ρ→ σ with ι base type (B, N, ρ× σ, L(ρ)).

ρ is safe if it does not involve the input arrow ↪→.
Variables are typed: input variables x̄ρ and output variables xρ.
Constants are (i) constructors, (ii) recursion operators

RτN : N ↪→ τ → (N ↪→ τ → τ) ↪→ τ

RτL(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ) ↪→ τ
(τ safe),

and (iii) cases operators (τ safe)

CτN : N→ τ → (N ↪→ τ)→ τ,

CτL(ρ) : L(ρ)→ τ → (ρ ↪→ L(ρ) ↪→ τ)→ τ,

Cτρ×σ : ρ× σ → (ρ ↪→ σ ↪→ τ)→ τ.

12 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms ρ ↪→ σ and ρ→ σ:

x̄ρ | xρ | C ρ (constant) |
(λx̄ρr

σ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρr

σ)ρ→σ | (rρ→σsρ)σ (higher type output vars in r , s distinct,

r does not start with Cτι) |
Cτι t~r (h.t. output vars in FV(t) not in ~r)

with as many ri as there are constructors of ι. s is an input term if

• all its free variables are input variables, or else

• s is of higher type and all its higher type free variables are
input variables.

13 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

• terminal nodes labelled by a variable or constant,

• abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

• application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

14 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

• The size ||d || of a parse dag d is the number of nodes in it.

• A parse dag is conformal if (i) every node with in-degree
greater than 1 is of base type, and (ii) every maximal path to
a bound variable x passes through the same binding λx -node.

• A parse dag is h-affine if every higher type variable occurs at
most once in the dag, except in the alternatives of a cases
operator.

We identify a parse dag with the term it represents.

15 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Steps requiring 1 time unit:

• Creation of a node given its label and pointers to successors.

• Deletion of a node.

• Given a pointer to an interior node, to obtain a pointer to one
of its successors.

• Test on the type and the label of a node, and on the variable
or constant in case the node is terminal.

16 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let l be a numeral of type L(N). Then #(l ∗ l ′) = O(|l |).

For #Flatten(u) we use a size function for numerals u of type T:

|| � || := 0,

||Ca(u, v)|| := 2||u||+ ||v ||+ 3.

Lemma. Let u be a numeral of type T. Then

#Flatten(u) = O(||u||).

17 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

• RD-free if it contains neither recursion constants R nor
Flatten, and

• simple if it contains no higher type input variables.

Simple terms closed under reduction, subterms, application.

Lemma (Simplicity)

Let t be a base type term whose free variables are of base type.
Then nf(t) is simple.

18 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most ||t||, can be computed from t in time O(||t||2).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(||t||2), and ||nf(t)|| ≤ ||t||.

19 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

(λx̄r(x̄))s with x̄ of base type

x̄ x̄

r

λx̄

s

7→

s

r

20 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Lemma (RD-elimination)

Let t(~x) be a simple term of safe type. There is a polynomial Pt

such that: if ~r are safe type RD-free closed simple terms and the
free variables of t(~r) are output variables, then in time Pt(||~r ||)
one can compute an RD-free simple term rdf(t; ~x ;~r) such that
t(~r)→∗ rdf(t; ~x ;~r).

Proof.
By induction on ||t|| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||u||).

Theorem (Normalization)

Let t : N � . . .N � N (with �∈ {↪→,→}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

21 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Linear two-sorted arithmetic LA(;)

• LA(;)-formulas are

I (~r) | A ↪→ B | A→ B | ∀x̄ρA | ∀xρA (~r terms from T).

• Define τ(A) by

τ(A ↪→ B) := (τ(A) ↪→ τ(B)), τ(∀x̄ρA) := (ρ ↪→ τ(A)),

τ(A→ B) := (τ(A)→ τ(B)), τ(∀xρA) := (ρ→ τ(A)).

• A is safe if τ(A) is safe, i.e., ↪→-free.

22 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Linear two-sorted arithmetic LA(;) (ctd.)

• The induction axiom for N is

Indn̄,A : ∀n̄(A(0)→ ∀m̄(A(m̄)→ A(Sm̄)) ↪→ A(n̄N))

with A safe.

• It has the type of the recursion operator which will realize it:

N ↪→ τ → (N ↪→ τ → τ) ↪→ τ where τ = τ(A) is safe.

23 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Treesort in LA(;) + Flatten

A tree u is sorted if the list Flatten(u) is sorted. We recursively
define a function I inserting an element a into a tree u such that, if
u is sorted, then so is I(a, u):

I(a, �) := Ca(�, �),

I(a,Cb(u, v)) :=

{
Cb(I(a, u), v) if a ≤ b,

Cb(u, I(a, v)) if b < a

and, using I, a function S sorting a list l into a tree:

S([]) := �, S(a :: l) := I(a, S(l)).

24 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

We represent I, S by (n.c.) inductive definitions of their graphs.
Write I(a, u, u′) for I(a, u) = u′ and S(l , u) for S(l) = u. Clauses:

I(a, �,Ca(�, �)),

a ≤ b → I(a, u, u′)→ I(a,Cb(u, v),Cb(u′, v)),

b < a→ I(a, v , v ′)→ I(a,Cb(u, v),Cb(u, v ′)),

S([], �),
S(l , u)→ I(a, u, u′)→ S(a :: l , u′).

25 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

• We would like to derive ∃uS(l , u) in LA(;) + Flatten.

• However, this is not possible.

• All we can get is |l | ≤ n→ ∃uS(l , u) (n an input parameter).

Lemma (Tree insertion)

∀a,n,u(|u| ≤ n→ ∃u′I(a, u, u′)).

Proof. Fix a. Do induction on n.

Let tli (l) be the tail of the list l of length i , if i < |l |, and l else.

Lemma (Treesort)

∀l ,n,m(m ≤ n→ ∃uS(tlmin(m,|l |)(l), u)).

Proof. Fix l , n. Do induction on m.

26 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Extraction from tree insertion lemma

[a,n](Rec nat=>bbin=>bbin)n([u]C a Emp Emp)

([n1,h,u][if (Ht u<=n1)

(h u)

[if (a<=Lb u)

(C Lb u(h L u)R u)

(C Lb u L u(h R u))]])

Represents the function f of type N→ N ↪→ T→ T defined by

f (a, 0, u) := Ca(�, �),

f (a, n + 1, u) :=


f (a, n, u) if |u| ≤ n,

CLb(u)(f (a, n, L(u)),R(u)) if n < |u|, a ≤ Lb(u),

CLb(u)(L(u), f (a, n,R(u))) if n < |u|, Lb(u) < a

with Lb(u), L(u),R(u) label and left and right subtree of u 6= �.
27 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Extraction from treesort lemma

[l,n,m](Rec nat=>bbin)m Emp

([m1,u][if (Lh l<=m1)

u

[if m1

(C Head(1 tl l)Emp Emp)

([n2][if (Head(Succ m1 tl l)<=Lb u)

(C Lb u(cIns Head(Succ m1 tl l)m1 L u)R u)

(C Lb u L u(cIns Head(Succ m1 tl l)m1 R u))])]])

Represents the function g of type L(N)→ N ↪→ N ↪→ T with

g(l , n, 0) := �, g(l , n,m + 1) :=
u if |l | ≤ m,

Chd(tl1(l))(�, �), if 0 = m < |l |,
CLb(u)(f (a,m, L(u)),R(u)) if 0 < m < |l | and a ≤ Lb(u)

CLb(u)(L(u), f (a,m,R(u))) if 0 < m < |l | and Lb(u) < a

where u := g(l , n,m) and a := hd(tlm+1(l)).
28 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Specializing the Treesort Lemma to l , n, n we obtain

|l | ≤ n→ ∃uS(l , u).

Let S̄(l , l ′) express that l ′ is multiset-equal to l and sorted. One
easily proves S(l , u)→ S̄(l ,Flatten(u)) and gets

|l | ≤ n→ ∃l ′ S̄(l , l ′)

in LA(;) + Flatten. The term extracted from the proof represents
the function h of type L(N)→ N ↪→ L(N) with

h(l , n) := Flatten(g(l , n, n))

and thus the treesort algorithm.

29 / 30

Introduction Logic Complexity Terms Computation model Arithmetic Treesort Conclusion

Conclusion

• Constructive logic (and arithmetic) can and should be seen as
an extension of the classical setup.

• Using the realizability interpretation of proofs one can extract
computational content.

• Verification can be automated: there is an internal proof of
the soundness theorem.

30 / 30

	Introduction
	Logic
	Complexity
	Terms
	Computation model
	Arithmetic
	Treesort
	Conclusion

