
Decorating natural deduction

Helmut Schwichtenberg
(j.w.w. Diana Ratiu)

Mathematisches Institut, LMU, München

General Proof Theory, Tübingen, 27. - 29. November 2015

1 / 21

I Proofs may have computational content, which can be
extracted (via realizability).

I Proofs (as opposed to programs) can easily be checked for
correctness.

Issues:

I Why proofs in natural deduction?

I Complexity.

2 / 21

Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

3 / 21

Logic

I Use →, ∀ only, defined by introduction and elimination rules.

I View ∃xA, A ∨ B, A ∧ B as inductively defined predicates
(with parameters A, B).

I In addition, define classical existence and disjunction by

∃̃xA := ¬∀x¬A,

A ∨̃ B := ¬(¬A ∧ ¬B)

where ¬A := (A→ F) and F := (0 = 1).

4 / 21

Example: disjunction

A ∨ B is inductively defined by the clauses (introduction axioms)

A→ A ∨ B, B → A ∨ B

with least-fixed-point (elimination) axiom

A ∨ B → (A→ C)→ (B → C)→ C .

5 / 21

Decoration

I Goal: fine tune the computational content of a proof.

I Tool: distinguish →c, ∀c (computational) and →nc, ∀nc
(non-computational).

The rules for (→nc)+, (∀nc)+ are restricted: the abstracted (object
or assumption) variable must not be “used computationally”.

Remark: Coq uses Set and Prop instead (but this is less flexible).

6 / 21

Example: computational variants of disjunction

We have four possibilities to decorate the two clauses for ∨:{
A→c A ∨d B

B →c A ∨d B

{
A→c A ∨l B

B →nc A ∨l B

{
A→nc A ∨r B

B →c A ∨r B

{
A→nc A ∨u B

B →nc A ∨u B

Elimination axioms:

A ∨d B →c (A→c C)→c (B →c C)→c C ,

A ∨l B →c (A→c C)→c (B →nc C)→c C ,

A ∨r B →c (A→nc C)→c (B →c C)→c C ,

A ∨u B →c (A→nc C)→c (B →nc C)→c C .

7 / 21

Formulas as computational problems

I Kolmogorov (1932) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I Example: ∀cn∃m>nPrime(m) has type N→ N.

I A 7→ τ(A), a type or the “nulltype” symbol ◦.
I In case τ(A) = ◦ proofs of A have no computational content;

such formulas A are called non-computational (n.c.) or
Harrop formulas; the others computationally relevant (c.r.).

8 / 21

Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract et(M) will contain the extract et(Ld).

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened lemma L : A ∨u B.

I Since et(L) is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract et(Ld) has disappeared.

9 / 21

Decoration algorithm

Goal: Insert as few as possible decorations ∀c,→c into a proof.

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern P(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a n.c. formula)
all →c, ∀c into →nc, ∀nc (some restrictions apply on axioms
and theorems).

I A formula D extends C if D is obtained from C by changing
some →nc, ∀nc into →c, ∀c.

I A proof N extends M if (i) N and M are the same up to
variants of →, ∀ in their formulas, and (ii) every c.r. formula
in M is extended by the corresponding one in N.

10 / 21

Decoration algorithm (ctd.)

I Assumption: For every axiom or theorem A and every
decoration variant C of A we have another axiom or theorem
whose formula D extends C , and D is the least among those
extensions.

I Example: Induction

A′(0)→c/nc ∀c/ncn (A′′(n)→c/nc A′′′(n+1)))→c/nc ∀c/ncn A′′′′(n).

Let A be the lub (w.r.t. deco) of A′, . . . ,A′′′′. Extended axiom:

A(0)→c ∀cn(A(n)→c A(n + 1)))→c ∀cnA(n).

11 / 21

Decoration algorithm (ctd.)

Theorem (Ratiu & S., 2010)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.

12 / 21

Case (→nc)−. Consider a proof pattern

Φ, Γ

| U

A→nc B

Γ,Ψ

| V

A
(→nc)−

B

Given: extension Π,∆,Σ⇒ D of Φ, Γ,Ψ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆⇒ A→ncD 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 → D1 extends Π,∆⇒ A→ncD
(→∈ {→nc,→c}). Suffices if A is n.c.: extension ∆1,Σ⇒ C1

of V is a proof (in n.c. parts of a proof →nc, ∀nc and →c, ∀c
are identified). For A c.r:

I IHa(V) for the extension ∆1,Σ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 → D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→D3 extends Π1,∆2 ⇒ C2→D1.

I IHa(V) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

13 / 21

Example: Euler’s ϕ, or avoiding factorization

Let P(n) mean “n is prime”. Consider

Fact : ∀cn(P(n) ∨r ∃m,k>1(n = mk)) factorization,

PTest : ∀cn(P(n) ∨u ∃m,k>1(n = mk)) prime number test.

Euler’s ϕ has the properties{
ϕ(n) = n − 1 if P(n),

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀cn(ϕ(n) = n − 1 ∨u ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.

14 / 21

Example: Euler’s ϕ, or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

Fact : ∀cn(P(n) ∨r ∃m,k>1(n = mk)),

PTest : ∀cn(P(n) ∨u ∃m,k>1(n = mk))

and have a proof of ∀cn(ϕ(n) = n− 1∨u ϕ(n) < n− 1) from Fact.

I The decoration algorithm arrives at Fact with goal

P(n) ∨u ∃m,k>1(n = mk).

I PTest fits as well, and it has ∨u rather than ∨r, hence is
preferred.

15 / 21

(define decnproof (fully-decorate nproof "Fact" "PTest"))

(proof-to-expr-with-formulas decnproof) =>

Elim: allnc n((C n -> F) oru C n ->

((C n -> F) -> phi n=n--1 oru phi n<n--1) ->

(C n --> phi n=n--1 oru phi n<n--1) ->

phi n=n--1 oru phi n<n--1)

PTest: all n((C n -> F) oru C n)

Intro: allnc n(phi n=n--1 -> phi n=n--1 oru phi n<n--1)

EulerPrime: allnc n((C n -> F) -> phi n=n--1)

Intro: allnc n(phi n<n--1 -> phi n=n--1 oru phi n<n--1)

EulerComp: allnc n(C n -> phi n<n--1)

(lambda (n)

((((Elim n) (PTest n))

(lambda (u1542) ((Intro n) ((EulerPrime n) u1542))))

(lambda (u1544) ((Intro n) ((EulerComp n) u1544)))))

(pp (nt (proof-to-extracted-term decnproof))) => cPTest

16 / 21

Example: Maximal Scoring Segment (MSS)

I Let X be linearly ordered by �. Given seg : N→ N→ X .
Want: maximal segment

∀cn∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)).

I Example: Regions with high G ,C content in DNA.

X := {G ,C ,A,T},
g : N→ X (gene),

f : N→ Z, f (i) :=

{
1 if g(i) ∈ {G ,C},
−1 if g(i) ∈ {A,T},

seg(i , k) = f (i) + · · ·+ f (k).

17 / 21

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀cn(∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)) ∧
∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If �, take the new i , k to be j , n + 1. Else take the old i , k .

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.

18 / 21

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n + 1:
∀cn∃j≤n+1∀j ′≤n+1(seg(j ′, n + 1) � seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n + 1) � seg(j , n + 1)).

I Use ESn : ∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)) and the additional
assumption of monotonicity

∀i ,j ,n(seg(i , n) � seg(j , n)→ seg(i , n + 1) � seg(j , n + 1)).

Proceed by cases on seg(j , n + 1) � seg(n + 1, n + 1).
If �, take n + 1, else the previous j .

19 / 21

Example: MSS (ctd.)

Could decoration help to find the better proof? Have lemmas L:

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))

and LMon:

Mon→ ∀cn(ESn →c ∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))).

I The decoration algorithm arrives at L with goal

∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1)).

I LMon fits as well, its assumptions Mon and ESn are in the
context, and it is less extended (∀ncm≤n+1 rather than ∀cm≤n+1),
hence is preferred.

20 / 21

References

I U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).

I D. Ratiu and H.S., Decorating proofs. Proofs, Categories and
Computations (S. Feferman and W. Sieg, eds.), 2010.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Mathematical Logic, ASL & Cambridge UP, 2012.

21 / 21

