Decorating natural deduction

Helmut Schwichtenberg (j.w.w. Diana Ratiu)

Mathematisches Institut, LMU, München

General Proof Theory, Tübingen, 27. - 29. November 2015

- Proofs may have computational content, which can be extracted (via realizability).
- Proofs (as opposed to programs) can easily be checked for correctness.

Issues:

- Why proofs in natural deduction?
- Complexity.

Proof terms in natural deduction

The realizability interpretation transforms such a proof term directly into an object term.

Logic

- ▶ Use \rightarrow , \forall only, defined by introduction and elimination rules.
- ▶ View $\exists_x A$, $A \lor B$, $A \land B$ as inductively defined predicates (with parameters A, B).
- In addition, define classical existence and disjunction by

$$\tilde{\exists}_{x}A := \neg \forall_{x} \neg A,
A \tilde{\lor} B := \neg (\neg A \land \neg B)$$

where
$$\neg A := (A \rightarrow \mathbf{F})$$
 and $\mathbf{F} := (0 = 1)$.

Example: disjunction

 $A \lor B$ is inductively defined by the clauses (introduction axioms)

$$A \rightarrow A \lor B$$
, $B \rightarrow A \lor B$

with least-fixed-point (elimination) axiom

$$A \lor B \to (A \to C) \to (B \to C) \to C$$
.

Decoration

- Goal: fine tune the computational content of a proof.
- ▶ Tool: distinguish \rightarrow^c , \forall^c (computational) and \rightarrow^{nc} , \forall^{nc} (non-computational).

The rules for $(\to^{\rm nc})^+$, $(\forall^{\rm nc})^+$ are restricted: the abstracted (object or assumption) variable must not be "used computationally".

Remark: Coq uses Set and Prop instead (but this is less flexible).

Example: computational variants of disjunction

We have four possibilities to decorate the two clauses for \vee :

$$\begin{cases} A \to^{\operatorname{c}} A \vee^{\operatorname{d}} B & \begin{cases} A \to^{\operatorname{c}} A \vee^{\operatorname{l}} B \\ B \to^{\operatorname{nc}} A \vee^{\operatorname{l}} B \end{cases} & \begin{cases} A \to^{\operatorname{nc}} A \vee^{\operatorname{r}} B \\ B \to^{\operatorname{c}} A \vee^{\operatorname{r}} B \end{cases} & \begin{cases} A \to^{\operatorname{nc}} A \vee^{\operatorname{u}} B \\ B \to^{\operatorname{nc}} A \vee^{\operatorname{u}} B \end{cases}$$

Elimination axioms:

$$A \vee^{d} B \to^{c} (A \to^{c} C) \to^{c} (B \to^{c} C) \to^{c} C,$$

$$A \vee^{l} B \to^{c} (A \to^{c} C) \to^{c} (B \to^{nc} C) \to^{c} C,$$

$$A \vee^{r} B \to^{c} (A \to^{nc} C) \to^{c} (B \to^{c} C) \to^{c} C,$$

$$A \vee^{u} B \to^{c} (A \to^{nc} C) \to^{c} (B \to^{nc} C) \to^{c} C.$$

Formulas as computational problems

- ▶ Kolmogorov (1932) proposed to view a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or "realizer" of A.
- ▶ Example: $\forall_n^c \exists_{m>n} \text{Prime}(m)$ has type $\mathbb{N} \to \mathbb{N}$.
- ▶ $A \mapsto \tau(A)$, a type or the "nulltype" symbol \circ .
- In case $\tau(A) = \circ$ proofs of A have no computational content; such formulas A are called non-computational (n.c.) or Harrop formulas; the others computationally relevant (c.r.).

Decoration can simplify extracts

- ▶ Suppose that a proof M uses a lemma L^d : $A \vee^d B$.
- ▶ Then the extract et(M) will contain the extract $et(L^d)$.
- Suppose that the only computationally relevant use of L^d in M was which one of the two alternatives holds true, A or B.
- ▶ Express this by using a weakened lemma $L: A \vee^{u} B$.
- Since et(L) is a boolean, the extract of the modified proof is "purified": the (possibly large) extract $et(L^d)$ has disappeared.

Decoration algorithm

Goal: Insert as few as possible decorations \forall^c, \rightarrow^c into a proof.

- $ightharpoonup \operatorname{Seq}(M)$ of a proof M consists of its context and end formula.
- ▶ The uniform proof pattern P(M) of a proof M is the result of changing in c.r. formulas of M (i.e., not above a n.c. formula) all \rightarrow^c , \forall^c into \rightarrow^{nc} , \forall^{nc} (some restrictions apply on axioms and theorems).
- ▶ A formula D extends C if D is obtained from C by changing some \rightarrow^{nc} , \forall^{nc} into \rightarrow^{c} , \forall^{c} .
- ▶ A proof N extends M if (i) N and M are the same up to variants of \rightarrow , \forall in their formulas, and (ii) every c.r. formula in M is extended by the corresponding one in N.

Decoration algorithm (ctd.)

- ▶ Assumption: For every axiom or theorem *A* and every decoration variant *C* of *A* we have another axiom or theorem whose formula *D* extends *C*, and *D* is the least among those extensions.
- Example: Induction

$$A'(0) \rightarrow^{\mathrm{c/nc}} \forall_{n}^{\mathrm{c/nc}} (A''(n) \rightarrow^{\mathrm{c/nc}} A'''(n+1))) \rightarrow^{\mathrm{c/nc}} \forall_{n}^{\mathrm{c/nc}} A''''(n).$$

Let A be the lub (w.r.t. deco) of A', \ldots, A'''' . Extended axiom:

$$A(0) \rightarrow^{\operatorname{c}} \forall_n^{\operatorname{c}} (A(n) \rightarrow^{\operatorname{c}} A(n+1))) \rightarrow^{\operatorname{c}} \forall_n^{\operatorname{c}} A(n).$$

Decoration algorithm (ctd.)

Theorem (Ratiu & S., 2010)

Under the assumption above, for every uniform proof pattern U and every extension of its sequent $\mathrm{Seq}(U)$ we can find a decoration M_{∞} of U such that

- (a) $\operatorname{Seq}(M_{\infty})$ extends the given extension of $\operatorname{Seq}(U)$, and
- (b) M_{∞} is optimal in the sense that any other decoration M of U whose sequent $\mathrm{Seq}(M)$ extends the given extension of $\mathrm{Seq}(U)$ has the property that M also extends M_{∞} .

Case $(\rightarrow^{\rm nc})^-$. Consider a proof pattern

$$\begin{array}{ccc}
\Phi, \Gamma & \Gamma, \Psi \\
\mid U & \mid V \\
\underline{A \rightarrow^{\text{nc}} B} & \underline{A} (\rightarrow^{\text{nc}})^{-}
\end{array}$$

Given: extension $\Pi, \Delta, \Sigma \Rightarrow D$ of $\Phi, \Gamma, \Psi \Rightarrow B$. Alternating steps:

- ▶ IH_a(U) for extension Π , $\Delta \Rightarrow A \rightarrow^{\rm nc} D \mapsto$ decoration M_1 of U whose sequent $\Pi_1, \Delta_1 \Rightarrow C_1 \rightarrow D_1$ extends $\Pi, \Delta \Rightarrow A \rightarrow^{\rm nc} D$ ($\rightarrow \in \{ \rightarrow^{\rm nc}, \rightarrow^{\rm c} \}$). Suffices if A is n.c.: extension $\Delta_1, \Sigma \Rightarrow C_1$ of V is a proof (in n.c. parts of a proof $\rightarrow^{\rm nc}$, $\forall^{\rm nc}$ and $\rightarrow^{\rm c}$, $\forall^{\rm c}$ are identified). For A c.r:
- ▶ $\mathsf{IH}_a(V)$ for the extension $\Delta_1, \Sigma \Rightarrow C_1 \mapsto \mathsf{decoration}\ N_2$ of V whose sequent $\Delta_2, \Sigma_2 \Rightarrow C_2$ extends $\Delta_1, \Sigma \Rightarrow C_1$.
- ▶ $\mathsf{IH}_a(U)$ for $\Pi_1, \Delta_2 \Rightarrow C_2 \to D_1 \mapsto \mathsf{decoration}\ M_3$ of U whose sequent $\Pi_3, \Delta_3 \Rightarrow C_3 \to D_3$ extends $\Pi_1, \Delta_2 \Rightarrow C_2 \to D_1$.
- ▶ IH_a(V) for the extension $\Delta_3, \Sigma_2 \Rightarrow C_3 \mapsto$ decoration N_4 of V whose sequent $\Delta_4, \Sigma_4 \Rightarrow C_4$ extends $\Delta_3, \Sigma_2 \Rightarrow C_3$

Example: Euler's φ , or avoiding factorization

Let P(n) mean "n is prime". Consider

Fact:
$$\forall_n^c(P(n) \vee^r \exists_{m,k>1} (n=mk))$$
 factorization,
PTest: $\forall_n^c(P(n) \vee^u \exists_{m,k>1} (n=mk))$ prime number test.

Euler's φ has the properties

$$\begin{cases} \varphi(n) = n - 1 & \text{if } P(n), \\ \varphi(n) < n - 1 & \text{if } n \text{ is composed.} \end{cases}$$

Using factorization and these properties we obtain a proof of

$$\forall_n^{\mathrm{c}}(\varphi(n) = n - 1 \vee^{\mathrm{u}} \varphi(n) < n - 1).$$

Goal: get rid of the expensive factorization algorithm in the computational content, via decoration.

Example: Euler's φ , or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

$$\begin{split} \text{Fact: } \forall_n^{\text{c}}(P(n) \vee^{\text{r}} \exists_{m,k>1} (n=mk)), \\ \text{PTest: } \forall_n^{\text{c}}(P(n) \vee^{\text{u}} \exists_{m,k>1} (n=mk)) \end{split}$$

and have a proof of $\forall_n^c(\varphi(n) = n-1 \vee^u \varphi(n) < n-1)$ from Fact.

The decoration algorithm arrives at Fact with goal

$$P(n) \vee^{\mathrm{u}} \exists_{m,k>1} (n=mk).$$

▶ PTest fits as well, and it has V^u rather than V^r, hence is preferred.

```
(define decnproof (fully-decorate nproof "Fact" "PTest"))
(proof-to-expr-with-formulas decnproof) =>
Elim: allnc n((C n -> F) oru C n ->
 ((C n \rightarrow F) \rightarrow phi n=n-1 oru phi n<n-1) \rightarrow
 (C n \rightarrow phi n=n--1 oru phi n<n--1) \rightarrow
 phi n=n-1 oru phi n< n-1)
PTest: all n((C n \rightarrow F) \text{ oru } C n)
Intro: allnc n(phi n=n--1 -> phi n=n--1 oru phi n<n--1)</pre>
EulerPrime: allnc n((C n \rightarrow F) \rightarrow phi n=n--1)
Intro: allnc n(phi n<n--1 -> phi n=n--1 oru phi n<n--1)</pre>
EulerComp: allnc n(C n -> phi n<n--1)</pre>
(lambda (n)
  ((((Elim n) (PTest n))
      (lambda (u1542) ((Intro n) ((EulerPrime n) u1542))))
    (lambda (u1544) ((Intro n) ((EulerComp n) u1544)))))
(pp (nt (proof-to-extracted-term decnproof))) => cPTest
```

Example: Maximal Scoring Segment (MSS)

▶ Let X be linearly ordered by \leq . Given $seg: \mathbb{N} \to \mathbb{N} \to X$. Want: maximal segment

$$\forall_n^{c} \exists_{i \leq k \leq n} \forall_{i' \leq k' \leq n} (\operatorname{seg}(i', k') \leq \operatorname{seg}(i, k)).$$

► Example: Regions with high *G*, *C* content in DNA.

$$X := \{G, C, A, T\},$$

 $g : \mathbf{N} \to X \quad (\text{gene}),$
 $f : \mathbf{N} \to \mathbf{Z}, \quad f(i) := \begin{cases} 1 & \text{if } g(i) \in \{G, C\}, \\ -1 & \text{if } g(i) \in \{A, T\}, \end{cases}$
 $\operatorname{seg}(i, k) = f(i) + \dots + f(k).$

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n, simultaneously with the existence of a maximal end segment.

$$\forall_{n}^{c}(\exists_{i\leq k\leq n}\forall_{i'\leq k'\leq n}(\operatorname{seg}(i',k')\preceq\operatorname{seg}(i,k))\wedge \exists_{j\leq n}\forall_{j'\leq n}(\operatorname{seg}(j',n)\preceq\operatorname{seg}(j,n)))$$

In the step:

- ▶ Compare the maximal segment i, k for n with the maximal end segment j, n + 1 proved separately.
- ▶ If \leq , take the new i, k to be j, n+1. Else take the old i, k.

Depending on how the existence of a maximal end segment was proved, we obtain a quadratic or a linear algorithm.

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n+1: $\forall_n^c \exists_{j \leq n+1} \forall_{j' \leq n+1} (\sec(j', n+1) \leq \sec(j, n+1))$.

▶ Introduce an auxiliary parameter *m*; prove by induction on *m*

$$\forall_n^c\forall_{m\leq n+1}^c\exists_{j\leq n+1}\forall_{j'\leq m}(\operatorname{seg}(j',n+1)\leq\operatorname{seg}(j,n+1)).$$

▶ Use ES_n : $\exists_{j \leq n} \forall_{j' \leq n} (\mathrm{seg}(j', n) \leq \mathrm{seg}(j, n))$ and the additional assumption of monotonicity

$$\forall_{i,j,n}(\mathrm{seg}(i,n) \leq \mathrm{seg}(j,n) \to \mathrm{seg}(i,n+1) \leq \mathrm{seg}(j,n+1)).$$

Proceed by cases on $seg(j, n + 1) \leq seg(n + 1, n + 1)$. If \leq , take n + 1, else the previous j.

Example: MSS (ctd.)

Could decoration help to find the better proof? Have lemmas L:

$$\forall_n^c \forall_{m \leq n+1}^c \exists_{j \leq n+1} \forall_{j' \leq m} (\operatorname{seg}(j', n+1) \leq \operatorname{seg}(j, n+1))$$

and LMon:

$$\mathtt{Mon} \to \forall_{n}^{\mathtt{c}}(\mathtt{ES}_{n} \to^{\mathtt{c}} \forall_{\substack{m \leq n+1}}^{\mathtt{nc}} \exists_{j \leq n+1} \forall_{j' \leq m} (\mathrm{seg}(j', n+1) \leq \mathrm{seg}(j, n+1))).$$

▶ The decoration algorithm arrives at L with goal

$$\forall_{m \leq n+1}^{\mathrm{nc}} \exists_{j \leq n+1} \forall_{j' \leq m} (\mathrm{seg}(j', n+1) \leq \mathrm{seg}(j, n+1)).$$

▶ LMon fits as well, its assumptions Mon and ES_n are in the context, and it is less extended $(\forall_{m \leq n+1}^{\text{nc}} \text{ rather than } \forall_{m \leq n+1}^{\text{c}})$, hence is preferred.

References

- ▶ U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).
- ▶ D. Ratiu and H.S., Decorating proofs. Proofs, Categories and Computations (S. Feferman and W. Sieg, eds.), 2010.
- H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Mathematical Logic, ASL & Cambridge UP, 2012.