Decorating natural deduction

Helmut Schwichtenberg
(j-w.w. Diana Ratiu)

Mathematisches Institut, LMU, Miinchen

General Proof Theory, Tubingen, 27. - 29. November 2015

1/21

» Proofs may have computational content, which can be
extracted (via realizability).

> Proofs (as opposed to programs) can easily be checked for
correctness.
Issues:
» Why proofs in natural deduction?

» Complexity.

2/21

Proof terms in natural deduction

xP y? c” e vB AxC
| N\ | N\
Axe App -t -
N\
v V-

The realizability interpretation transforms such a proof term
directly into an object term.

3/21

Logic

» Use —, V only, defined by introduction and elimination rules.

> View 3, A, AV B, AA B as inductively defined predicates
(with parameters A, B).

» In addition, define classical existence and disjunction by

T A = VA,
AV B:=—(-AA-B)

where =A:=(A—F)and F:=(0=1).

4/21

Example: disjunction

AV B is inductively defined by the clauses (introduction axioms)
A— AV B, B—AVB
with least-fixed-point (elimination) axiom

AVB—-(A—-C)—(B—C)—C.

5/21

Decoration

» Goal: fine tune the computational content of a proof.

» Tool: distinguish —¢, V¢ (computational) and —"¢, V"¢
(non-computational).

The rules for (—")*, (V™) are restricted: the abstracted (object
or assumption) variable must not be “used computationally”.

Remark: Coq uses Set and Prop instead (but this is less flexible).

6/21

Example: computational variants of disjunction
We have four possibilities to decorate the two clauses for V:

A= AVIB A= AVIB A—->"CAVEB A—-"AVYB
B—=cAViB B =" AVIB B—-°AV'B B =" AVYB

Elimination axioms:
AVIB ¢ (A =°C) = (B—=°C)—=°C,
AVIB =€ (A = C) =° (B =" C)=°C,

(

(
AV'B —¢(A—="C) —=°(B—°C)—=°C,
AVE B =¢ (A= C) = (B =" C)—=°C.

7/21

Formulas as computational problems

» Kolmogorov (1932) proposed to view a formula A as a
computational problem, of type 7(A), the type of a potential
solution or “realizer” of A.

» Example: V¢ 3,,~,Prime(m) has type N — N.
» A 7(A), a type or the “nulltype” symbol o.

> In case 7(A) = o proofs of A have no computational content;
such formulas A are called non-computational (n.c.) or
Harrop formulas; the others computationally relevant (c.r.).

8/21

Decoration can simplify extracts

» Suppose that a proof M uses a lemma L9: AVvd B,
» Then the extract et(M) will contain the extract et(L9).

» Suppose that the only computationally relevant use of L4 in
M was which one of the two alternatives holds true, A or B.

» Express this by using a weakened lemma L: A V" B.

» Since et(L) is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract et(LY) has disappeared.

9/21

Decoration algorithm

C

Goal: Insert as few as possible decorations V¢, —¢ into a proof.

» Seq(M) of a proof M consists of its context and end formula.

» The uniform proof pattern P(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a n.c. formula)
all =¢, V¢ into —™¢, V™ (some restrictions apply on axioms
and theorems).

» A formula D extends C if D is obtained from C by changing
some —"¢, V"¢ into —¢, V°.

> A proof N extends M if (i) N and M are the same up to
variants of —, V in their formulas, and (ii) every c.r. formula
in M is extended by the corresponding one in N.

10/21

Decoration algorithm (ctd.)

» Assumption: For every axiom or theorem A and every
decoration variant C of A we have another axiom or theorem
whose formula D extends C, and D is the least among those
extensions.

» Example: Induction
A/(O) _>C/nc Vf,/nc(A//(n) _>c/nc A’”(n—f—l))) _>c/nc VZ/HCA”//(H).
Let A be the lub (w.r.t. deco) of A’,..., A”". Extended axiom:

A(0) = V5 (A(n) =° A(n+1))) =° V;A(n).

11/21

Decoration algorithm (ctd.)

Theorem (Ratiu & S., 2010)

Under the assumption above, for every uniform proof pattern U

and every extension of its sequent Seq(U) we can find a decoration
My, of U such that

(a) Seq(M) extends the given extension of Seq(U), and

(b) My is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M.

12 /21

Case (—"°)~. Consider a proof pattern

CN rw
v
A—="B A ney—

A (=)

Given: extension ;A Y = D of &, W = B. Alternating steps:
» IH,(U) for extension M, A = A—"°D — decoration M; of U
whose sequent 1, Ay = (3 — Dy extends 1, A = A—="°D

(—€ {—="¢, —°}). Suffices if Ais n.c.: extension A1, ¥~ = G
of V is a proof (in n.c. parts of a proof —"¢, V"¢ and —¢, V¢
are identified). For A c.r:

» IH (V) for the extension A1, ¥ = C; +— decoration Ny of V
whose sequent Aj, Y > = (extends Aj, > = (.

» IH,(U) for My, Ay = G, — D; +— decoration M3 of U whose
sequent I3, A3 = (3— D3 extends Iy, Ay = G—D;.

» IH,(V) for the extension A3, ¥, = C3 +— decoration Ny of V
whose sequent Ay, Y4 = (G4 extends A3z, Xs = (3. ...

13 /21

Example: Euler's ¢, or avoiding factorization
Let P(n) mean “n is prime”. Consider

Fact: V;(P(n) V' 3y k>1(n = mk)) factorization,

PTest: V;(P(n) V" 3, k>1(n = mk)) prime number test.

Euler's ¢ has the properties

{cp(n) =n—1 if P(n),

e(n) < n—1 if nis composed.
Using factorization and these properties we obtain a proof of
Vi(e(n) =n—1V"p(n) < n-—1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.

14 /21

Example: Euler’s ¢, or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

Fact: Vi (P(n) V' 3mk>1(n = mk)),
PTest: VY, (P(n) V" 3pm k>1(n = mk))

and have a proof of V¢ (¢(n) = n—1V"¢(n) < n—1) from Fact.

> The decoration algorithm arrives at Fact with goal
P(n) V" 3 k>1(n = mk).

» PTest fits as well, and it has V" rather than V¥, hence is
preferred.

15 /21

(define decnproof (fully-decorate nproof "Fact" "PTest"))
(proof-to-expr-with-formulas decnproof) =>
Elim: allnc n((C n -> F) oru Cn ->

((C n -> F) -> phi n=n--1 oru phi n<n--1) ->

(C n --> phi n=n--1 oru phi n<n--1) ->

phi n=n--1 oru phi n<n--1)
PTest: all n((C n -> F) oru C n)
Intro: allnc n(phi n=n--1 -> phi n=n--1 oru phi n<n--1)
EulerPrime: allnc n((C n -> F) -> phi n=n--1)
Intro: allnc n(phi n<n--1 -> phi n=n--1 oru phi n<n--1)
EulerComp: allnc n(C n -> phi n<n--1)

(lambda (n)
((((Elim n) (PTest n))
(lambda (u1542) ((Intro n) ((EulerPrime n) ulb542))))
(lambda (u1544) ((Intro n) ((EulerComp n) ulb44)))))

(pp (nt (proof-to-extracted-term decnproof))) => cPTest
16 /21

Example: Maximal Scoring Segment (MSS)

» Let X be linearly ordered by <. Given seg: N — N — X.

Want: maximal segment
Vo Jick<nVi<w<n(seg(i’, k') < seg(i, k)).
» Example: Regions with high G, C content in DNA.
X ={G,C,A T},
g:N— X (gene),
1 ifg(i)e{G,C},

f:N—2Z, f(i):= {_1 if g(i) e {A T},

seg(i, k) = f(i)+ -+ f(k).

17 /21

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

Vf,(ﬂ,-gkg,,v;/Skrg,,(seg(i’, k’) = Seg(i, k)) A\
Jj<nVjr<n(seg(j’, n) = seg(j, n)))

In the step:

» Compare the maximal segment i, k for n with the maximal
end segment j, n + 1 proved separately.

» If <, take the new /, k to be j,n+ 1. Else take the old i/, k.

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.

18 /21

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n 4 1:
V63 jeni1 ¥ <nia(seg(f', n + 1) < seg(j, n + 1)),
> Introduce an auxiliary parameter m; prove by induction on m

VoVm<nr13i<n1Vy<m(seg(J’, n + 1) < seg(j, n + 1)).

» Use ES,: Jj<pVjr<n(seg(j’, n) < seg(j,n)) and the additional
assumption of monotonicity

Vijn(seg(i,n) = seg(j, n) = seg(i,n+ 1) = seg(j, n + 1)).

Proceed by cases on seg(j,n+ 1) <seg(n+1,n+1).
If <, take n+ 1, else the previous j.

19/21

Example: MSS (ctd.)
Could decoration help to find the better proof? Have lemmas L:
VoV ni1di<n1Vy<m(seg(f’, n+1) < seg(j, n+1))
and LMon:

Mon — Vi (ESp = Ve pi13j<ni1Vjr<m(seg(f', n+1) =< seg(j, n+1))).

» The decoration algorithm arrives at L with goal

Vi1 i1 Vy<m(seg(f', n+1) < seg(j, n+1)).

» LMon fits as well, its assumptions Mon and ES,, are in the
context, and it is less extended (V). ,; rather than ¥V _ .,),
hence is preferred.

20 /21

References

» U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).

» D. Ratiu and H.S., Decorating proofs. Proofs, Categories and
Computations (S. Feferman and W. Sieg, eds.), 2010.

» H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Mathematical Logic, ASL & Cambridge UP, 2012.

21/21

