
Program extraction in constructive analysis

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Tsukuba University, 19. June 2009

Helmut Schwichtenberg Program extraction in constructive analysis



Algebras and function spaces

I Parametrized free algebras. Examples: Binary numbers
(constructors 1, S0, S1), lists.

I “Lazy” base types; function spaces via limits of finite
approximations (Scott’s information systems).

I Computable functionals are recursively enumerable limits.

I Variables range over the Scott-Ershov partial continuous
functionals.

I Constructors are injective and have disjoint ranges.

Helmut Schwichtenberg Program extraction in constructive analysis



Computable functionals

can be conveniently defined by “computation rules” (a form of
pattern matching). Examples:{

R(0, r , s) =τ r ,

R(Sn, r , s) =τ s(n,R(n, r , s))

or the fixed point operator

Yτw
τ→τ =τ w(Yτw).

Helmut Schwichtenberg Program extraction in constructive analysis



Denotational and operational semantics

I Define terms from (simply) typed variables and constants by
(lambda) abstraction and application.

I The approach via information systems allows a direct
definition of denotational semantics.

I Operational semantics (β-conversion plus computation rules)
is “adequate”: closed terms denoting “total” objects evaluate
to numerals.

Helmut Schwichtenberg Program extraction in constructive analysis



Minimal logic

I The only (basic) logical connectives are →, ∀.
I Proofs have two aspects:

(i) They guarantee correctness.
(ii) They may have computational content.

I Computational content only enters a proof via inductively (or
coinductively) defined predicates.

Helmut Schwichtenberg Program extraction in constructive analysis



Natural deduction: assumption variables uA. Rules for →:

derivation proof term

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

Helmut Schwichtenberg Program extraction in constructive analysis



Natural deduction: rules for ∀

derivation proof term

| M
A ∀+ x (var. cond.)
∀xA

(λxM
A)∀xA (var. cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Helmut Schwichtenberg Program extraction in constructive analysis



Inductive definitions

I Example: Totality, defined by the clauses

T0, ∀n(Tn → T (Sn)).

I Elimination (or least fixed point) scheme

∀n(Tn → A(0) → ∀n(Tn → A(n) → A(Sn)) → A(n)),

i.e., the induction scheme for (total) natural numbers.

Helmut Schwichtenberg Program extraction in constructive analysis



Example: Leibniz equality

I is defined by the clause ∀xEqρ(x
ρ, xρ). Elimination scheme:

∀x ,y (Eq(x , y) → ∀xC (x , x) → C (x , y)).

I With C (x , y) := A(x) → A(y) this implies

∀x ,y (Eq(x , y) → A(x) → A(y)) (compatibility of Eq).

Hence symmetry and transitivity of Eq.

Helmut Schwichtenberg Program extraction in constructive analysis



Equalities

Notice that we have at least three different equalities:

I Leibniz equality Eq.

I Decidable equality =N : N → N → B. The boolean term
n =N m is turned into a formula by writing

EqB(n =N m, tt).

I Equality of reals: a defined equivalence relation.

Helmut Schwichtenberg Program extraction in constructive analysis



Example: ∃

I ∃xA is a nullary inductively defined predicate, with parameter
{ x | A }.

I Clause:
∀x(A → ∃xA).

I Elimination scheme:

∃xA → ∀x(A → B) → B (x not free in B).

I Similarly for ∧, ∨.

Helmut Schwichtenberg Program extraction in constructive analysis



Ex-Falso-Quodlibet

need not be assumed, but can be proved.

F → A, with F := Eq(ff, tt) (“falsity”).

The proof is in 2 steps. (i) F → Eq(xρ, yρ), since from Eq(ff, tt)
by compatibility

Eq [if tt then x else y ]︸ ︷︷ ︸
x

[if ff then x else y ]︸ ︷︷ ︸
y

.

(ii) Induction on (the sim. definition of) predicates and formulas.

I Case Is. Let K0 be the nullary clause A1 → · · · → An → It.
By IH: F → Ai . Hence It. From F we obtain Eq(s, t), by (i).
Hence Is by compatibility.

I The cases A → B, ∀xA are easy.

Helmut Schwichtenberg Program extraction in constructive analysis



Embedding classical arithmetic

I Let ¬A := (A → F), and

∃̃xA := ¬∀x¬A, A ∨̃ B := (¬A → ¬B → F).

I Consider a total boolean term rB as representing a decidable
predicate: Eq(r , tt).

I Prove ∀p∈T (¬¬Eq(p, tt) → Eq(p, tt)) by boolean induction.

I Lift this via →,∀ using

` (¬¬B → B) → ¬¬(A → B) → A → B,

` (¬¬A → A) → ¬¬∀xA → ∀xA.

I For formulas A built from Eq(·, tt) by →,∀x∈T prove stability

∀~x∈T (¬¬A → A) (FV(A) among ~x).

Helmut Schwichtenberg Program extraction in constructive analysis



Reals

A real number x is a pair ((an)n∈N, α) with an ∈ Q and α : N → N
such that (an)n is a Cauchy sequence with modulus α, that is

∀k,n,m(α(k) ≤ n,m → |an − am| ≤ 2−k),

and α is weakly increasing.

Two reals x := ((an)n, α), y := ((bn)n, β) are equivalent (written
x = y), if

∀k(|aα(k+1) − bβ(k+1)| ≤ 2−k).

Helmut Schwichtenberg Program extraction in constructive analysis



Nonnegative and positive reals

A real x := ((an)n, α) is nonnegative (written x ∈ R0+) if

∀k(−2−k ≤ aα(k)).

It is k-positive (written x ∈k R+) if

2−k ≤ aα(k+1).

x ∈ R0+ and x ∈k R+ are compatible with equivalence.

Can define x 7→ kx such that an ≤ 2kx for all n.
However, x 7→ kx is not compatible with equivalence.

Helmut Schwichtenberg Program extraction in constructive analysis



Arithmetical functions

Given x := ((an)n, α) and y := ((bn)n, β), define

z cn γ(k)

x + y an + bn max(α(k + 1), β(k + 1))
−x −an α(k)
|x | |an| α(k)
x · y an · bn max(α(k + 1 + k|y |),

β(k + 1 + k|x |))

1
x for |x | ∈l R+

{
1
an

if an 6= 0

0 if an = 0
α(2(l + 1) + k)

Helmut Schwichtenberg Program extraction in constructive analysis



Comparison of reals

Write x ≤ y for y − x ∈ R0+ and x < y for y − x ∈ R+.

x ≤ y ↔ ∀k∃p∀n≥p(an ≤ bn + 2−k),

x < y ↔ ∃k,q∀n≥q(an + 2−k ≤ bn).

Write x <k,q y (or simply x <k y if q is not needed) when we
want to call these witnesses. Notice:

x ≤ y ↔ y 6< x .

Helmut Schwichtenberg Program extraction in constructive analysis



Continuous functions

A continuous function f : I → R on a compact interval I with
rational end points is given by

I an approximating map hf : (I ∩Q)× N → Q,

I a (uniform) modulus map αf : N → N such that (hf (c , n))n is
a real with modulus αf , and

I a (uniform) modulus of continuity ωf : N → N satisfying

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k

for n ≥ αf (k). αf , ωf required to be weakly increasing.

Notice: hf , αf , ωf are of type level 1 only.

Helmut Schwichtenberg Program extraction in constructive analysis



Application of a continuous function to a real

Given a continuous function f (by hf , αf , ωf ) and a real
x := ((an)n, α), application f (x) is defined to be

(hf (an, n))n

with modulus k 7→ max(αf (k + 2), α(ωf (k + 1)− 1)).

One proves easily

x = y → f (x) = f (y),

|x − y | ≤ 2−ωf (k) → |f (x)− f (y)| ≤ 2−k .

Helmut Schwichtenberg Program extraction in constructive analysis



Intermediate value theorem

Let a < b be rationals. If f : [a, b] → R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform lower bound on its slope,
then we can find x ∈ [a, b] such that f (x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 2−n < d − c , and
f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2

3(d − c),
such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c , d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .

Helmut Schwichtenberg Program extraction in constructive analysis



Inverse functions

Theorem
Let f : [a, b] → R be continuous with a uniform lower bound on its
slope. Let f (a) ≤ a′ < b′ ≤ f (b). We can find a continuous
g : [a′, b′] → R such that f (g(y)) = y for every y ∈ [a′, b′] and
g(f (x)) = x for every x ∈ [a, b] such that a′ ≤ f (x) ≤ b′.

Proof sketch.
Let f (a) ≤ a′ < b′ ≤ f (b). Construct a continuous g : [a′, b′] → R
by the Intermediate Value Theorem.

Helmut Schwichtenberg Program extraction in constructive analysis



Example: squaring f : [1, 2] → [1, 4]

Given by

I the approximating map hf (a, n) := a2,

I the uniform Cauchy modulus αf (k) := 0, and

I the modulus k 7→ k + 3 of uniform continuity.

A lower bound on its slope is l := −1, because for all c , d ∈ [1, 2]

2−k ≤ d − c → c2 <k−1 d2.

Then hg (u, n) := c
(u)
n , as constructed in the IVT for x2 − u,

iterating IVTAux. The Cauchy modulus αg is such that
(2/3)n ≤ 2−k+3 for n ≥ αg (k), and the modulus of uniform
continuity is ωg (k) := k + 2.

Helmut Schwichtenberg Program extraction in constructive analysis



Formalization, program extraction

Many details. Important: representation of data. Here: direct
approach, by explicitely building the required number systems
(natural numbers in binary, rationals, reals as Cauchy sequences of
rationals with a modulus, continuous functions in the sense of the
type-1 representation described above, etc.)

Method of program extraction based on modified realizability
(Kleene, Kreisel, Troelstra).

Helmut Schwichtenberg Program extraction in constructive analysis



Results of demo

I Given: formalized proof of "InvApprox".

I inv-approx-eterm defined, after animating the theorems.

I Squaring function sq defined on [1, 2] by ContConstr.

I Term inv-sq-approx defined as inv-approx-eterm applied
to sq and some bounds.

I inv-sq-approx applied to 3 (argument, to be inverted) and
20 (error bound: number of binary digits) normalized.

Helmut Schwichtenberg Program extraction in constructive analysis



Related work

Russell O’Connor (PhD Thesis, Nijmegen 2009) builds on Coq; he
uses a slightly different version of R. Here:

I No need for dependent types, universes, “strength”.

I Minimal logic for →,∀ plus inductive definitions suffice.

I But: partial functionals need to be first class citizens.

Helmut Schwichtenberg Program extraction in constructive analysis



References

I E. Bishop. Foundations of Constructive Analysis.
McGraw-Hill, 1967.

I H.S., Realizability interpretation of proofs in constructive
analysis. Theory of Computing Systems, 2008.

I R. O’Connor, Incompleteness & Completeness. Formalizing
Logic and Analysis in Type Theory. PhD Thesis, Nijmegen
2009.

Helmut Schwichtenberg Program extraction in constructive analysis


