Program extraction in constructive analysis

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Tsukuba University, 19. June 2009

Algebras and function spaces

- Parametrized free algebras. Examples: Binary numbers (constructors 1, S₀, S₁), lists.
- "Lazy" base types; function spaces via limits of finite approximations (Scott's information systems).
- Computable functionals are recursively enumerable limits.
- Variables range over the Scott-Ershov partial continuous functionals.
- Constructors are injective and have disjoint ranges.

Computable functionals

can be conveniently defined by "computation rules" (a form of pattern matching). Examples:

$$\begin{cases} \mathcal{R}(0,r,s) =_{\tau} r, \\ \mathcal{R}(\mathrm{S}n,r,s) =_{\tau} s(n,\mathcal{R}(n,r,s)) \end{cases}$$

or the fixed point operator

$$Y_{\tau}w^{\tau\to\tau}=_{\tau}w(Y_{\tau}w).$$

Denotational and operational semantics

- Define terms from (simply) typed variables and constants by (lambda) abstraction and application.
- The approach via information systems allows a direct definition of denotational semantics.
- Operational semantics (β-conversion plus computation rules) is "adequate": closed terms denoting "total" objects evaluate to numerals.

Minimal logic

- The only (basic) logical connectives are \rightarrow , \forall .
- Proofs have two aspects:
 - (i) They guarantee correctness.
 - (ii) They may have computational content.
- Computational content only enters a proof via inductively (or coinductively) defined predicates.

Natural deduction: assumption variables u^A . Rules for \rightarrow :

derivation	proof term
$[u: A]$ $ M$ $\frac{B}{A \to B} \to^{+} u$	$(\lambda_{u^A}M^B)^{A \to B}$
$ \begin{array}{c c} $	$(M^{A \to B} N^A)^B$

э

Natural deduction: rules for \forall

derivation	proof term
$\frac{\mid M}{=\frac{A}{\forall_x A}} \forall^+ x (\text{var. cond.})$	$(\lambda_{x}M^{A})^{orall_{x}A}$ (var. cond.)
$\frac{ M }{\forall_{x}A(x) = r} \forall^{-}$	$(M^{\forall_{x}\mathcal{A}(x)}r)^{\mathcal{A}(r)}$

æ

Inductive definitions

Example: Totality, defined by the clauses

$$T0, \qquad \forall_n (Tn \to T(Sn)).$$

Elimination (or least fixed point) scheme

$$\forall_n(\mathit{Tn} \to A(0) \to \forall_n(\mathit{Tn} \to A(n) \to A(\mathrm{Sn})) \to A(n)),$$

i.e., the induction scheme for (total) natural numbers.

Example: Leibniz equality

▶ is defined by the clause $\forall_x Eq_\rho(x^\rho, x^\rho)$. Elimination scheme:

$$\forall_{x,y} (\mathrm{Eq}(x,y) \to \forall_x C(x,x) \to C(x,y)).$$

• With $C(x, y) := A(x) \rightarrow A(y)$ this implies

 $\forall_{x,y}(\operatorname{Eq}(x,y) \to A(x) \to A(y))$ (compatibility of Eq).

Hence symmetry and transitivity of Eq.

Equalities

Notice that we have at least three different equalities:

- Leibniz equality Eq.
- ▶ Decidable equality $=_{\mathbb{N}} : \mathbb{N} \to \mathbb{N} \to \mathbb{B}$. The boolean term $n =_{\mathbb{N}} m$ is turned into a formula by writing

$$\operatorname{Eq}_{\mathbb{B}}(n =_{\mathbb{N}} m, tt).$$

• Equality of reals: a defined equivalence relation.

Example: \exists

► $\exists_x A$ is a nullary inductively defined predicate, with parameter $\{x \mid A\}$.

Clause:

$$\forall_x (A \to \exists_x A).$$

Elimination scheme:

$$\exists_x A \to \forall_x (A \to B) \to B \qquad (x \text{ not free in } B).$$

Similarly for \land , \lor .

Ex-Falso-Quodlibet

need not be assumed, but can be proved.

$$\mathbf{F} \rightarrow A$$
, with $\mathbf{F} := \operatorname{Eq}(\mathrm{ff}, \mathrm{tt})$ ("falsity").

The proof is in 2 steps. (i) $\mathbf{F} \to \text{Eq}(x^{\rho}, y^{\rho})$, since from Eq(ff, tt) by compatibility

(ii) Induction on (the sim. definition of) predicates and formulas.

- Case Is. Let K₀ be the nullary clause A₁ → · · · → A_n → It. By IH: F → A_i. Hence It. From F we obtain Eq(s, t), by (i). Hence Is by compatibility.
- The cases $A \rightarrow B$, $\forall_x A$ are easy.

Embedding classical arithmetic

► Let
$$\neg A := (A \to \mathbf{F})$$
, and
 $\tilde{\exists}_x A := \neg \forall_x \neg A$, $A \lor B := (\neg A \to \neg B \to \mathbf{F})$.

- Consider a total boolean term r^B as representing a decidable predicate: Eq(r, tt).
- ▶ Prove $\forall_{\rho \in \mathcal{T}} (\neg \neg \operatorname{Eq}(\rho, tt) \rightarrow \operatorname{Eq}(\rho, tt))$ by boolean induction.
- Lift this via \rightarrow , \forall using

$$\vdash (\neg \neg B \to B) \to \neg \neg (A \to B) \to A \to B,$$

$$\vdash (\neg \neg A \to A) \to \neg \neg \forall_x A \to \forall_x A.$$

▶ For formulas A built from $Eq(\cdot, tt)$ by $\rightarrow, \forall_{x \in T}$ prove stability

$$\forall_{\vec{x}\in\mathcal{T}}(\neg\neg A\to A)\qquad (\mathrm{FV}(A) \text{ among } \vec{x}).$$

Reals

A real number x is a pair $((a_n)_{n\in\mathbb{N}}, \alpha)$ with $a_n \in \mathbb{Q}$ and $\alpha \colon \mathbb{N} \to \mathbb{N}$ such that $(a_n)_n$ is a Cauchy sequence with modulus α , that is

$$\forall_{k,n,m}(\alpha(k) \leq n, m \rightarrow |a_n - a_m| \leq 2^{-k}),$$

and α is weakly increasing.

Two reals
$$x := ((a_n)_n, \alpha)$$
, $y := ((b_n)_n, \beta)$ are equivalent (written $x = y$), if $\forall_k (|a_{\alpha(k+1)} - b_{\beta(k+1)}| \le 2^{-k}).$

Nonnegative and positive reals

A real $x := ((a_n)_n, \alpha)$ is nonnegative (written $x \in \mathbb{R}^{0+}$) if

$$\forall_k (-2^{-k} \leq a_{\alpha(k)}).$$

It is k-positive (written $x \in_k \mathbb{R}^+$) if

$$2^{-k} \leq a_{\alpha(k+1)}.$$

 $x \in \mathbb{R}^{0+}$ and $x \in_k \mathbb{R}^+$ are compatible with equivalence.

Can define $x \mapsto k_x$ such that $a_n \le 2^{k_x}$ for all n. However, $x \mapsto k_x$ is not compatible with equivalence.

Arithmetical functions

Given $x := ((a_n)_n, \alpha)$ and $y := ((b_n)_n, \beta)$, define

Ζ	Cn	$\gamma(k)$
x + y	$a_n + b_n$	$\max(lpha(k+1),eta(k+1))$
-x	$-a_n$	$\alpha(k)$
<i>x</i>	a _n	$\alpha(k)$
$x \cdot y$	$a_n \cdot b_n$	$\max(\alpha(k+1+k_{ y }),$
		$\beta(k+1+\ddot{k}_{ x }))$
$rac{1}{x}$ for $ x \in_I \mathbb{R}^+$	$\begin{cases} \frac{1}{a_n} & \text{if } a_n \neq 0\\ 0 & \text{if } a_n = 0 \end{cases}$	$\alpha(2(l+1)+k)$

→ □ → → □ →

э

Comparison of reals

Write
$$x \leq y$$
 for $y - x \in \mathbb{R}^{0+}$ and $x < y$ for $y - x \in \mathbb{R}^+$.
 $x \leq y \leftrightarrow \forall_k \exists_p \forall_{n \geq p} (a_n \leq b_n + 2^{-k}),$
 $x < y \leftrightarrow \exists_{k,q} \forall_{n \geq q} (a_n + 2^{-k} \leq b_n).$

Write $x <_{k,q} y$ (or simply $x <_k y$ if q is not needed) when we want to call these witnesses. Notice:

$$x \leq y \leftrightarrow y \not< x.$$

э

Continuous functions

A continuous function $f: I \to \mathbb{R}$ on a compact interval I with rational end points is given by

- ▶ an approximating map $h_f : (I \cap \mathbb{Q}) \times \mathbb{N} \to \mathbb{Q}$,
- ▶ a (uniform) modulus map $\alpha_f \colon \mathbb{N} \to \mathbb{N}$ such that $(h_f(c, n))_n$ is a real with modulus α_f , and
- ▶ a (uniform) modulus of continuity $\omega_f \colon \mathbb{N} \to \mathbb{N}$ satisfying

$$|\mathsf{a}-\mathsf{b}| \leq 2^{-\omega_f(k)+1}
ightarrow |h_f(\mathsf{a},\mathsf{n}) - h_f(\mathsf{b},\mathsf{n})| \leq 2^{-k}$$

for $n \ge \alpha_f(k)$. α_f , ω_f required to be weakly increasing. Notice: h_f , α_f , ω_f are of type level 1 only.

Application of a continuous function to a real

Given a continuous function f (by h_f , α_f , ω_f) and a real $x := ((a_n)_n, \alpha)$, application f(x) is defined to be

 $(h_f(a_n, n))_n$

with modulus $k \mapsto \max(\alpha_f(k+2), \alpha(\omega_f(k+1)-1))$.

One proves easily

$$egin{aligned} &x=y
ightarrow f(x)=f(y),\ &|x-y|\leq 2^{-\omega_f(k)}
ightarrow |f(x)-f(y)|\leq 2^{-k}. \end{aligned}$$

Intermediate value theorem

Let a < b be rationals. If $f : [a, b] \to \mathbb{R}$ is continuous with $f(a) \le 0 \le f(b)$, and with a uniform lower bound on its slope, then we can find $x \in [a, b]$ such that f(x) = 0.

Proof sketch.

- 1. Approximate Splitting Principle. Let x, y, z be given with x < y. Then $z \le y$ or $x \le z$.
- 2. IVTAux. Assume $a \le c < d \le b$, say $2^{-n} < d c$, and $f(c) \le 0 \le f(d)$. Construct c_1, d_1 with $d_1 c_1 = \frac{2}{3}(d c)$, such that $a \le c \le c_1 < d_1 \le d \le b$ and $f(c_1) \le 0 \le f(d_1)$.
- 3. IVTcds. Iterate the step $c, d \mapsto c_1, d_1$ in IVTAux.

Let $x = (c_n)_n$ and $y = (d_n)_n$ with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

Inverse functions

Theorem

Let $f: [a, b] \to \mathbb{R}$ be continuous with a uniform lower bound on its slope. Let $f(a) \le a' < b' \le f(b)$. We can find a continuous $g: [a', b'] \to \mathbb{R}$ such that f(g(y)) = y for every $y \in [a', b']$ and g(f(x)) = x for every $x \in [a, b]$ such that $a' \le f(x) \le b'$.

Proof sketch.

Let $f(a) \le a' < b' \le f(b)$. Construct a continuous $g: [a', b'] \to \mathbb{R}$ by the Intermediate Value Theorem.

Example: squaring $f: [1,2] \rightarrow [1,4]$

Given by

- the approximating map $h_f(a, n) := a^2$,
- the uniform Cauchy modulus $\alpha_f(k) := 0$, and
- the modulus $k \mapsto k + 3$ of uniform continuity.

A lower bound on its slope is I := -1, because for all $c, d \in [1, 2]$

$$2^{-k} \leq d-c \rightarrow c^2 <_{k-1} d^2.$$

Then $h_g(u, n) := c_n^{(u)}$, as constructed in the IVT for $x^2 - u$, iterating IVTAux. The Cauchy modulus α_g is such that $(2/3)^n \le 2^{-k+3}$ for $n \ge \alpha_g(k)$, and the modulus of uniform continuity is $\omega_g(k) := k + 2$.

Many details. Important: representation of data. Here: direct approach, by explicitely building the required number systems (natural numbers in binary, rationals, reals as Cauchy sequences of rationals with a modulus, continuous functions in the sense of the type-1 representation described above, etc.)

Method of program extraction based on modified realizability (Kleene, Kreisel, Troelstra).

Results of demo

- Given: formalized proof of "InvApprox".
- inv-approx-eterm defined, after animating the theorems.
- ▶ Squaring function sq defined on [1,2] by ContConstr.
- Term inv-sq-approx defined as inv-approx-eterm applied to sq and some bounds.
- inv-sq-approx applied to 3 (argument, to be inverted) and 20 (error bound: number of binary digits) normalized.

Russell O'Connor (PhD Thesis, Nijmegen 2009) builds on Coq; he uses a slightly different version of \mathbb{R} . Here:

- ▶ No need for dependent types, universes, "strength".
- Minimal logic for \rightarrow , \forall plus inductive definitions suffice.
- But: partial functionals need to be first class citizens.

References

- E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
- H.S., Realizability interpretation of proofs in constructive analysis. Theory of Computing Systems, 2008.
- R. O'Connor, Incompleteness & Completeness. Formalizing Logic and Analysis in Type Theory. PhD Thesis, Nijmegen 2009.