Program extraction in constructive analysis

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

Tsukuba University, 19. June 2009

Helmut Schwichtenberg Program extraction in constructive analysis

Algebras and function spaces

» Parametrized free algebras. Examples: Binary numbers
(constructors 1, Sp, Si), lists.

» “Lazy” base types; function spaces via limits of finite
approximations (Scott’s information systems).

» Computable functionals are recursively enumerable limits.

» Variables range over the Scott-Ershov partial continuous
functionals.

» Constructors are injective and have disjoint ranges.

Helmut Schwichtenberg Program extraction in constructive analysis

Computable functionals

can be conveniently defined by “computation rules” (a form of
pattern matching). Examples:

{R(O7 r,s)=,r,
R(Sn, r,s) =- s(n,R(n,r,s))

or the fixed point operator

Yow™ T = w(Yrw).

Helmut Schwichtenberg Program extraction in constructive analysis

Denotational and operational semantics

» Define terms from (simply) typed variables and constants by
(lambda) abstraction and application.

» The approach via information systems allows a direct
definition of denotational semantics.

» Operational semantics (/3-conversion plus computation rules)
is “adequate”: closed terms denoting “total” objects evaluate

to numerals.

Helmut Schwichtenberg Program extraction in constructive analysis

Minimal logic

» The only (basic) logical connectives are —, V.

» Proofs have two aspects:
(i) They guarantee correctness.
(ii) They may have computational content.

» Computational content only enters a proof via inductively (or
coinductively) defined predicates.

Helmut Schwichtenberg Program extraction in constructive analysis

Natural deduction: assumption variables u”. Rules for —:

derivation proof term
[u: A
ELM (AaMB)A—E
AoB U
| M | N
A—B A (MA—ENA)E
B nl

Helmut Schwichtenberg Program extraction in constructive analysis

Natural deduction: rules for V

derivation proof term

| M
AV A
vVt x (var. cond.) (AcM7) (var. cond.)
VA

| M
ViA(x) (MYxAG) PYAC)
AN T

Helmut Schwichtenberg Program extraction in constructive analysis

Inductive definitions

» Example: Totality, defined by the clauses
70, Vo(Tn — T(Sn)).
» Elimination (or least fixed point) scheme
Vn(Tn — A(0) — V,(Tn — A(n) — A(Sn)) — A(n)),

i.e., the induction scheme for (total) natural numbers.

Helmut Schwichtenberg Program extraction in constructive analysis

Example: Leibniz equality

> is defined by the clause VxEq,(x?, x”). Elimination scheme:
Vay (Ba(x, y) = VxC(x,x) = C(x, y)).
» With C(x,y) := A(x) — A(y) this implies
Vey(Ea(x,y) — A(x) = A(y)) (compatibility of Eq).

Hence symmetry and transitivity of Eq.

Helmut Schwichtenberg Program extraction in constructive analysis

Equalities

Notice that we have at least three different equalities:
» Leibniz equality Eq.
» Decidable equality =ny: N — N — B. The boolean term
n =n mis turned into a formula by writing

Eqg(n =n m, it).

» Equality of reals: a defined equivalence relation.

Helmut Schwichtenberg Program extraction in constructive analysis

Example: 3

» J,A is a nullary inductively defined predicate, with parameter
{x|A}
» Clause:
V(A — 34A).

» Elimination scheme:
A -V (A—B)— B (x not free in B).

» Similarly for A, V.

Helmut Schwichtenberg Program extraction in constructive analysis

Ex-Falso-Quodlibet

need not be assumed, but can be proved.
F — A, with F := Eq(ff, tt) (“falsity”).

The proof is in 2 steps. (i) F — Eq(x”, y?), since from Eq(ff, tt)
by compatibility

Eq [if tt then x else y] [if ff then x else y] .

X y

(i) Induction on (the sim. definition of) predicates and formulas.

» Case Is. Let Ky be the nullary clause Ay — --- — A, — It.
By IH: F — A;. Hence /t. From F we obtain Eq(s, t), by (i).
Hence Is by compatibility.

» The cases A — B, V<A are easy.

Helmut Schwichtenberg Program extraction in constructive analysis

Embedding classical arithmetic

» Let -A:=(A—F), and

T A = VA, AV B:=(-A—-B—F).

» Consider a total boolean term rB

predicate: Eq(r, tt).

as representing a decidable

> Prove Ve 7(——Eq(p, tt) — Eq(p, tt)) by boolean induction.
» Lift this via —,V using

l—(—|—|B—>B)—>—|—|(A—)B)—>A—>B,
F (—=A = A) = =V A — VA

» For formulas A built from Eq(-, %) by —, VxcT prove stability

VieT(—mA — A) (FV(A) among X).

Helmut Schwichtenberg Program extraction in constructive analysis

Reals

A real number x is a pair ((an)nen, &) with a, € Q and a: N - N
such that (a,), is a Cauchy sequence with modulus «, that is

vk,n,m(a(k) <nm-— ‘an - am’ < 27’()7

and « is weakly increasing.

Two reals x := ((an)n, @), y := ((bn)n, B) are equivalent (written
x=y), if
Vi(|an(k+1) — baksn)l < 275).

Helmut Schwichtenberg Program extraction in constructive analysis

Nonnegative and positive reals

A real x := ((an)n, @) is nonnegative (written x € R%) if
V(=27 < Aa(k))-
It is k-positive (written x €, RT) if
27k < Aa(k+1)-
x € R and x €, Rt are compatible with equivalence.

Can define x — ky such that a, < 2% for all n.
However, x — k, is not compatible with equivalence.

Helmut Schwichtenberg Program extraction in constructive analysis

Arithmetical functions

Given x := ((an)n, @) and y := ((bn)n, 3), define

z Cn v(k)
x+y an+ by max(a(k + 1), B(k + 1))
—X —a, a(k)
|X| |3n| (
X-y an - bn max(a(k + 1+ k),
Bk +1+ k)
1 f
Lor x| e R | Jo T 70 o041y 4k
0 ifa,=0

Helmut Schwichtenberg Program extraction in constructive analysis

Comparison of reals

Write x < y for y — x € R and x < y for y — x € RT.

x <y« vkapanp(an < b, + 27k)7

X <y < I qVn>qlan + 27k < bp).
Write x <y 4 v (or simply x <y y if q is not needed) when we

want to call these witnesses. Notice:

x<ye—yLx

Helmut Schwichtenberg Program extraction in constructive analysis

Continuous functions

A continuous function f: /| — R on a compact interval | with
rational end points is given by

» an approximating map hf: (INQ) x N — Q,
» a (uniform) modulus map af: N — N such that (h(c, n)), is
a real with modulus «f, and

» a (uniform) modulus of continuity ws: N — N satisfying
|a— b| < 27r(FL — |he(a, n) — he(b, n)] < 27F

for n > af(k). «af, wr required to be weakly increasing.

Notice: hf, af, wr are of type level 1 only.

Helmut Schwichtenberg Program extraction in constructive analysis

Application of a continuous function to a real

Given a continuous function f (by hf, af, wr) and a real
x := ((an)n, @), application f(x) is defined to be

(h¢(an, n))n
with modulus k — max(ar(k + 2), a(wr(k + 1) — 1)).

One proves easily

x=y = f(x)=f(y),
x =yl <27 = Jf(x) - f(y)| < 27%.

Helmut Schwichtenberg Program extraction in constructive analysis

Intermediate value theorem

Let a < b be rationals. If f: [a, b] — R is continuous with
f(a) <0 < f(b), and with a uniform lower bound on its slope,
then we can find x € [a, b] such that f(x) = 0.
Proof sketch.
1. Approximate Splitting Principle. Let x, y, z be given with
x<y. Thenz<yorx<z
2. IVTAux. Assume a<c<d<b,say27"<d—c, and
f(c) <0< f(d). Construct ¢, dy with di —¢; = %(d —¢),
suchthata<c<c¢ <di <d<band f(c) <0< f(dh).
3. IVTcds. Iterate the step ¢, d — ci1,dp in IVTAux.
Let x = (cn)n and y = (dp), with the obvious modulus. As f is
continuous, f(x) = 0 = f(y) for the real number x = y. O

Helmut Schwichtenberg Program extraction in constructive analysis

Inverse functions

Theorem

Let f: [a, b] — R be continuous with a uniform lower bound on its
slope. Let f(a) < & < b’ < f(b). We can find a continuous

g: [, b] — R such that f(g(y)) =y for every y € [d', b] and
g(f(x)) = x for every x € |a, b] such that & < f(x) < b'.

Proof sketch.
Let f(a) < a' < b’ < f(b). Construct a continuous g: [/, '] — R
by the Intermediate Value Theorem. O

Helmut Schwichtenberg Program extraction in constructive analysis

Example: squaring f: [1,2] — [1, 4]

Given by
> the approximating map h¢(a, n) := a2,
» the uniform Cauchy modulus af(k) := 0, and
» the modulus k — k 4 3 of uniform continuity.

A lower bound on its slope is / := —1, because for all ¢,d € [1,2]
2k <d-c— c? <k—1 d?.

Then hg(u, n) := (), as constructed in the IVT for x2 — u,
iterating IVTAux. The Cauchy modulus ay is such that
(2/3)" < 27k+3 for n > a,(k), and the modulus of uniform
continuity is wg(k) := k + 2.

Helmut Schwichtenberg Program extraction in constructive analysis

Formalization, program extraction

Many details. Important: representation of data. Here: direct
approach, by explicitely building the required number systems
(natural numbers in binary, rationals, reals as Cauchy sequences of
rationals with a modulus, continuous functions in the sense of the
type-1 representation described above, etc.)

Method of program extraction based on modified realizability
(Kleene, Kreisel, Troelstra).

Helmut Schwichtenberg Program extraction in constructive analysis

Results of demo

Given: formalized proof of "InvApprox".
inv-approx-eterm defined, after animating the theorems.

Squaring function sq defined on [1,2] by ContConstr.

vV v v VY

Term inv-sq-approx defined as inv-approx-eterm applied
to sq and some bounds.

» inv-sq-approx applied to 3 (argument, to be inverted) and
20 (error bound: number of binary digits) normalized.

Helmut Schwichtenberg Program extraction in constructive analysis

Related work

Russell O'Connor (PhD Thesis, Nijmegen 2009) builds on Cog; he
uses a slightly different version of R. Here:

» No need for dependent types, universes, “strength”.
» Minimal logic for —,V plus inductive definitions suffice.

» But: partial functionals need to be first class citizens.

Helmut Schwichtenberg Program extraction in constructive analysis

References

» E. Bishop. Foundations of Constructive Analysis.
McGraw-Hill, 1967.

» H.S., Realizability interpretation of proofs in constructive
analysis. Theory of Computing Systems, 2008.

» R. O'Connor, Incompleteness & Completeness. Formalizing
Logic and Analysis in Type Theory. PhD Thesis, Nijmegen
2009.

Helmut Schwichtenberg Program extraction in constructive analysis

