Proofs, computations and analysis

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Universität Trier, 2. Juni 2012

Formalization and extraction

One can extract from a (constructive) proof of a formula with computational content a term that "realizes" (Kleene, Kreisel, Troelstra) the formula. Why should one?

- It can be important to know for sure (and to be able to machine check) that in a proof nothing has been overlooked.
- ► The same applies to the algorithm implicit in the proof: even if the latter is correct, errors may occur in the implementation of the algorithm.
- Even if the algorithm is correctly implemented, for sensitive applications customers may (and do) require a formal proof that the code implementing the algorithm is correct.

Consequences

- ► The computational content of a proof should be machine extracted from a formalization of this proof.
- ► The extract should be a term in the underlying language of the formal system (here: T⁺, a common extension of Gödel's T and Plotkin's PCF).
- ▶ A soundness theorem should be formally proved: the extract realizes the specification (:= the formula being proved).

Computable functionals

- ▶ Types: $\iota \mid \rho \to \sigma$. Ground types ι : free algebras (e.g., **N**).
- Functionals seen as limits of finite approximations: ideals (Kreisel, Scott, Ershov).
- Computable functionals are r.e. sets of finite approximations (example: fixed point functional).
- Functionals are partial. Total functionals are defined (by induction over the types).

Information systems \mathbf{C}_{ρ} for partial continuous functionals

- ▶ Types ρ, σ, τ : from algebras ι by $\rho \to \sigma$.
- $ightharpoonup \mathbf{C}_{\rho} := (C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}).$
- ▶ Tokens $a \in C_{\rho}$ (= atomic pieces of information): constructor trees $Ca_1^*, \ldots a_n^*$ with a_i^* a token or *. Example: S(S*).
- ▶ Formal neighborhoods $U \in Con_{\rho}$: $\{a_1, \ldots, a_n\}$, consistent.
- ▶ Entailment $U \vdash_{\rho} a$.

Ideals $x \in |\mathbf{C}_{\rho}|$ ("points", here: partial continuous functionals): consistent deductively closed sets of tokens.

Flat or non flat algebras?

► Flat:

► Non flat:

Non flat!

▶ Every constructor C generates an ideal in the function space: $r_{\rm C} := \{ (U, {\rm C}a^*) \mid U \vdash a^* \}$. Associated continuous map:

$$|r_{\mathbf{C}}|(x) = \{ \mathbf{C}a^* \mid \exists_{U \subseteq x} (U \vdash a^*) \}.$$

Constructors are injective and have disjoint ranges:

$$|r_{\mathrm{C}}|(\vec{x}) \subseteq |r_{\mathrm{C}}|(\vec{y}) \leftrightarrow \vec{x} \subseteq \vec{y}, \ |r_{\mathrm{C}_1}|(\vec{x}) \cap |r_{\mathrm{C}_2}|(\vec{y}) = \emptyset.$$

▶ Both properties are false for flat information systems (for them, by monotonicity, constructors need to be strict).

$$|r_{\mathbf{C}}|(\emptyset, y) = \emptyset = |r_{\mathbf{C}}|(x, \emptyset),$$

$$|r_{\mathbf{C}_1}|(\emptyset) = \emptyset = |r_{\mathbf{C}_2}|(\emptyset).$$

A theory of computable functionals, TCF

- A variant of HA^ω.
- Variables range over arbitrary partial continuous functionals.
- ► Constants for (partial) computable functionals, defined by equations.
- Inductively and coinductively defined predicates. Totality for ground types inductively defined.
- Induction := elimination (or least-fixed-point) axiom for a totality predicate.
- Coinduction := greatest-fixed-point for a coinductively defined predicate.
- Minimal logic: →, ∀ only. = (Leibniz), ∃, ∨, ∧ (Martin-Löf) inductively defined.
- ▶ $\bot := (False = True)$. Ex-falso-quodlibet: $\bot \to A$ provable.
- ▶ Classical logic as a fragment: $\tilde{\exists}_x A$ defined by $\neg \forall_x \neg A$.

Realizability interpretation

- ▶ Define a formula $t \mathbf{r} A$, for A a formula and t a term in T^+ .
- Soundness theorem:
 If M proves A, then et(M) r A can be proved.
- Decorations (→^c, ∀^c and →^{nc}, ∀^{nc}) for removal of abstract data, and fine-tuning:

$$t \mathbf{r} (A \to^{c} B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B),$$

$$t \mathbf{r} (A \to^{nc} B) := \forall_{x} (x \mathbf{r} A \to t \mathbf{r} B),$$

$$t \mathbf{r} (\forall_{x}^{c} A) := \forall_{x} (tx \mathbf{r} A),$$

$$t \mathbf{r} (\forall_{x}^{nc} A) := \forall_{x} (t \mathbf{r} A).$$

Example: decorating the existential quantifier

 $ightharpoonup \exists_x A$ is inductively defined by the clause

$$\forall_x (A \to \exists_x A)$$

with least-fixed-point axiom

$$\exists_{\mathsf{X}} \mathsf{A} \to \forall_{\mathsf{X}} (\mathsf{A} \to \mathsf{P}) \to \mathsf{P}.$$

▶ Decoration leads to variants $\exists^d, \exists^l, \exists^r, \exists^u$ (d for "double", I for "left", r for "right" and u for "uniform").

$$\forall_{x}^{c}(A \to^{c} \exists_{x}^{d}A), \qquad \exists_{x}^{d}A \to^{c} \forall_{x}^{c}(A \to^{c} P) \to^{c} P,
\forall_{x}^{c}(A \to^{nc} \exists_{x}^{l}A), \qquad \exists_{x}^{l}A \to^{c} \forall_{x}^{c}(A \to^{nc} P) \to^{c} P,
\forall_{x}^{nc}(A \to^{c} \exists_{x}^{r}A), \qquad \exists_{x}^{r}A \to^{c} \forall_{x}^{nc}(A \to^{c} P) \to^{c} P,
\forall_{x}^{nc}(A \to^{nc} \exists_{x}^{u}A), \qquad \exists_{x}^{u}A \to^{nc} \forall_{x}^{nc}(A \to^{nc} P) \to^{c} P.$$

Example: Supremum of an order located set of reals

▶ A real y is a supremum of a set S of reals if

$$\forall_{x \in S} (x \le y),$$

$$\forall_{a < y} \exists_{x \in S} (a \le x).$$

► *S* is order located (above) if

$$\forall_{a,b;a< b} (\forall_{x\in S} (x\leq b) \vee \exists_{x\in S} (a\leq x)).$$

Theorem (LUB)

Assume that S is an inhabited set of reals that is bounded above. Then S has a supremum iff it is order located.

S order located \rightarrow S has a supremum

- ▶ $\Pi_S(a, b)$: both $y \le b$ for all $y \in S$ and a < x for some $x \in S$.
- ▶ By assumption: $a, b \in \mathbb{Q}$ with a < b such that $\Pi_S(a, b)$.
- ▶ Construct $(c_n)_n$ and $(d_n)_n$ (rationals) such that for all n

$$a = c_0 \le c_1 \le \cdots \le c_n < d_n \le \cdots \le d_1 \le d_0 = b, \qquad (1)$$

$$\Pi_{\mathcal{S}}(c_n,d_n),\tag{2}$$

$$d_n - c_n \le (2/3)^n (b - a).$$
 (3)

- ▶ Step: Have c_0, \ldots, c_n and d_0, \ldots, d_n such that (1)-(3).
- Let $c = c_n + \frac{1}{3}(d_n c_n)$ and $d = c_n + \frac{2}{3}(d_n c_n)$.
- ▶ Since S is order located, either $\forall_{y \in S} (y \leq d)$ or $\exists_{x \in S} (c < x)$.
- ▶ In the first case let $c_{n+1} := c_n$ and $d_{n+1} := d$, and in the second case let $c_{n+1} := c$ and $d_{n+1} := d_n$.
- ▶ (1)-(3) hold for n + 1, and the real x = y given by the Cauchy sequences $(c_n)_n$ and $(d_n)_n$ is the least upper bound of S.

Nonnegative and k-positive reals

▶ A real number x is a pair $((a_n)_{n\in\mathbb{N}}, M)$ with $a_n \in \mathbb{Q}$ and $M \colon \mathbb{N} \to \mathbb{N}$ such that $(a_n)_n$ is a Cauchy sequence with modulus M, that is

$$|a_n-a_m|\leq 2^{-k}$$
 for $n,m\geq M(k)$.

▶ A real $x := ((a_n)_n, M)$ is nonnegative $(x \in \mathbb{R}^{0+})$ if

$$-2^{-k} \le a_{M(k)}$$
 for all $k \in \mathbb{N}$.

It is *k*-positive $(x \in_k \mathbb{R}^+)$ if

$$2^{-k} \le a_{M(k+1)}.$$

- $(x \le y) := (y x \in \mathbb{R}^{0+}).$
- $(x < y) := \exists_k (x \in_k \mathbb{R}^+).$

Formalization

$$\forall_{y_0 \in S} \forall_{b_0} (S \text{ inhabited}$$

$$\forall_{x \in S} (x \leq b_0) b_0 \text{ upper bound of } S$$

$$\rightarrow \forall_{a,b;a < b} (\forall_{x \in S} (x \leq b) \vee \exists_{x \in S} (a \leq x)) S \text{ order located}$$

$$\rightarrow \exists_y (\forall_{x \in S} (x \leq y) \wedge \forall_{a < y} \exists_{x \in S} (a \leq x)).$$

The type of a witness depends on the type τ of a witness for the formula defining S (example: \mathbb{Z} for $S := \{x \mid x^2 < 2\}$):

$$\mathbb{R} o au o \mathbb{Q}$$
 S inhabited, bound b_0 given $o (\mathbb{Q} o \mathbb{Q} o \mathbb{U} + \mathbb{R} imes au)$ S order located $o \mathbb{R} imes (\mathbb{Q} o \mathbb{Z} o \mathbb{R} imes au)$.

For a witness disregarding τ we "decorate" logical connectives:

Decoration

$$\forall_{y_0}(y_0 \in S \to^{\mathrm{nc}} \forall_{b_0}(x_{x \in S}(x \leq b_0)) \\
\to \forall_{a,b;a < b}(\forall_{x \in S}(x \leq b) \vee \exists_x^l (x \in S \land a \leq x)) \\
\to \exists_y (\forall_{x \in S}(x \leq y) \land \forall_a (a < y \to \exists_x^l (x \in S \land a \leq x))))).$$

The type of a witness now is as desired

$$\mathbb{R} \to \mathbb{Q}$$
 S inhabited, bound b_0 given $\to (\mathbb{Q} \to \mathbb{Q} \to \mathbb{U} + \mathbb{R})$ S order located $\to \mathbb{R} \times (\mathbb{Q} \to \mathbb{Z} \to \mathbb{R}).$

Example: average of two reals

Berger and Seisenberger (2009, 2010).

- Extraction from a proof dealing with abstract reals.
- ▶ Proof involving coinduction of the proposition that any two reals in [-1,1] have their average in the same interval.
- ▶ B & S informally extract a Haskell program from this proof, which works with stream representations of reals.

Aim here: discuss formalization of the proof, and machine extraction of its computational content.

Free algebra **J** of intervals

- ▶ **SD** := $\{-1,0,1\}$ signed digits (or $\{L,M,R\}$).
- ▶ **J** free algebra of intervals. Constructors

- C₁ I denotes [0, 1].
- ▶ $C_0\mathbb{I}$ denotes $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
- ▶ $C_0(C_{-1}\mathbb{I})$ denotes $[-\frac{1}{2},0]$.

 $C_{d_0}(C_{d_1}\dots(C_{d_{k-1}}\mathbb{I})\dots)$ denotes the interval in [-1,1] whose reals have a signed digit representation starting with $d_0d_1\dots d_{k-1}$.

▶ We consider ideals $x \in |\mathbf{C_J}|$.

Total and cototal ideals of base type

Generally:

- ▶ Cototal ideals x: every token (i.e., constructor tree) $P(*) \in x$ has a " \succ_1 -successor" $P(C\vec{*}) \in x$.
- ▶ Total ideals: the cototal ones with \succ_1 well-founded.

Examples:

► Total ideals of **J**:

$$\mathbb{I}_{\frac{i}{2^k},k} := \left[\frac{i}{2^k} - \frac{1}{2^k}, \frac{i}{2^k} + \frac{1}{2^k} \right] \quad \text{for } -2^k < i < 2^k.$$

▶ Cototal ideals of **J**: reals in [-1,1], in (non-unique) stream representation using signed digits -1,0,1.

Inductive and coinductive definitions

▶ Inductively define a set I of (abstract) reals, by the clauses

$$10, \qquad \forall_x^{\rm nc} \forall_d \big(\mathit{Ix} \to \mathit{I} \frac{x+d}{2} \big).$$

Witnesses are intervals (total ideals in **J**).

Coinductively define ^{co}I, by the (single) clause

$$\forall_x^{\mathrm{nc}}({}^{\mathrm{co}}lx \to x = 0 \lor \exists_y^{\mathrm{r}}\exists_d(x = \frac{y+d}{2} \land {}^{\mathrm{co}}ly)).$$

Witnesses are streams of signed digits (cototal ideals in **J**).

▶ From a formalized proof of $\forall_{x,y}^{\text{nc}}({}^{\text{co}}lx \rightarrow {}^{\text{co}}ly \rightarrow {}^{\text{co}}l\frac{x+y}{2})$ extract a stream transformer, of type $\mathbf{J} \rightarrow \mathbf{J} \rightarrow \mathbf{J}$.

Arbitrary or fixed moduli

Reals:

- $((a_n)_n, M)$ Cauchy sequence plus modulus, or
- finite or infinite list of signed digits -1, 0, 1.

(Uniformly) continuous function:

- $(h_f, \alpha_f, \omega_f)$ approximating function, uniform modulus of Cauchyness plus modulus of uniform continuity, or
- ightharpoonup possibly non well-founded labelled (with lists of signed digits -1, 0, 1) ternary tree.

Continuous functions

- ▶ Increment function f^+ : $L(SD) \rightarrow L(SD)$.
- ▶ From f^+ we obtain $f: L(SD) \rightarrow L(SD)$ by

$$f[] = f^{+}[],$$

 $f(d :: a) = f^{+}(d :: a) * f(a).$

▶ Example $\frac{x+d}{2}$:

$$f^{+}[] = d,$$

 $f^{+}(d :: a) = d.$

► Example −*x*:

$$f^{+}[] = [],$$

 $f^{+}(d :: a) = -d.$

Conclusion

- ▶ Decoration (\rightarrow^{nc} , \forall^{nc} , \exists^l etc.) needed to extract reasonable programs from proofs.
- Cototal ideals (type 0) to represent reals (as streams).
- Extract stream transformers from coinductive proofs.
- ▶ Work in progress (Kenji Miyamoto): continuous functions as possibly non well-founded labelled ternary trees (labels: lists of signed digits −1, 0, 1). Extract programs from coinductive proofs (e.g., composition).

References

- ▶ U. Berger, From coinductive proofs to exact real arithmetic. CSL 2009.
- ▶ U. Berger, K. Miyamoto, H.S. and M. Seisenberger, The interactive proof system Minlog. Calco-Tools 2011.
- ► H.S., Realizability interpretation of proofs in constructive analysis. Theory of Computing Systems, 2008.
- H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Logic, ASL & Cambridge UP, 2012.