
Proofs, computations and analysis

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Universität Trier, 2. Juni 2012

Helmut Schwichtenberg Proofs, computations and analysis

Formalization and extraction

One can extract from a (constructive) proof of a formula with
computational content a term that “realizes” (Kleene, Kreisel,
Troelstra) the formula. Why should one?

I It can be important to know for sure (and to be able to
machine check) that in a proof nothing has been overlooked.

I The same applies to the algorithm implicit in the proof: even
if the latter is correct, errors may occur in the implementation
of the algorithm.

I Even if the algorithm is correctly implemented, for sensitive
applications customers may (and do) require a formal proof
that the code implementing the algorithm is correct.

Helmut Schwichtenberg Proofs, computations and analysis

Consequences

I The computational content of a proof should be machine
extracted from a formalization of this proof.

I The extract should be a term in the underlying language of
the formal system (here: T+, a common extension of Gödel’s
T and Plotkin’s PCF).

I A soundness theorem should be formally proved: the extract
realizes the specification (:= the formula being proved).

Helmut Schwichtenberg Proofs, computations and analysis

Computable functionals

I Types: ι | ρ→ σ. Ground types ι: free algebras (e.g., N).

I Functionals seen as limits of finite approximations: ideals
(Kreisel, Scott, Ershov).

I Computable functionals are r.e. sets of finite approximations
(example: fixed point functional).

I Functionals are partial. Total functionals are defined (by
induction over the types).

Helmut Schwichtenberg Proofs, computations and analysis

Information systems Cρ for partial continuous functionals

I Types ρ, σ, τ : from algebras ι by ρ→ σ.

I Cρ := (Cρ,Conρ,`ρ).

I Tokens a ∈ Cρ (= atomic pieces of information): constructor
trees Ca∗1, . . . a

∗
n with a∗i a token or ∗. Example: S(S∗).

I Formal neighborhoods U ∈ Conρ: {a1, . . . , an}, consistent.

I Entailment U `ρ a.

Ideals x ∈ |Cρ| (“points”, here: partial continuous functionals):
consistent deductively closed sets of tokens.

Helmut Schwichtenberg Proofs, computations and analysis

Flat or non flat algebras?

I Flat:

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .

I Non flat:

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Helmut Schwichtenberg Proofs, computations and analysis

Non flat!

I Every constructor C generates an ideal in the function space:
rC := { (U,Ca∗) | U ` a∗ }. Associated continuous map:

|rC|(x) = {Ca∗ | ∃U⊆x(U ` a∗) }.

I Constructors are injective and have disjoint ranges:

|rC|(~x) ⊆ |rC|(~y)↔ ~x ⊆ ~y ,
|rC1 |(~x) ∩ |rC2 |(~y) = ∅.

I Both properties are false for flat information systems (for
them, by monotonicity, constructors need to be strict).

|rC|(∅, y) = ∅ = |rC|(x , ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅).

Helmut Schwichtenberg Proofs, computations and analysis

A theory of computable functionals, TCF

I A variant of HAω.

I Variables range over arbitrary partial continuous functionals.

I Constants for (partial) computable functionals, defined by
equations.

I Inductively and coinductively defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate.

I Coinduction := greatest-fixed-point for a coinductively defined
predicate.

I Minimal logic: →,∀ only. = (Leibniz), ∃, ∨, ∧ (Martin-Löf)
inductively defined.

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I Classical logic as a fragment: ∃̃xA defined by ¬∀x¬A.

Helmut Schwichtenberg Proofs, computations and analysis

Realizability interpretation

I Define a formula t r A, for A a formula and t a term in T+.

I Soundness theorem:
If M proves A, then et(M) r A can be proved.

I Decorations (→c,∀c and →nc, ∀nc) for removal of abstract
data, and fine-tuning:

t r (A→c B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r (∀cxA) := ∀x(tx r A),

t r (∀ncx A) := ∀x(t r A).

Helmut Schwichtenberg Proofs, computations and analysis

Example: decorating the existential quantifier

I ∃xA is inductively defined by the clause

∀x(A→ ∃xA)

with least-fixed-point axiom

∃xA→ ∀x(A→ P)→ P.

I Decoration leads to variants ∃d, ∃l,∃r,∃u (d for “double”,
l for “left”, r for “right” and u for “uniform”).

∀cx(A→c ∃dxA),

∀cx(A→nc ∃lxA),

∀ncx (A→c ∃rxA),

∀ncx (A→nc ∃uxA),

∃dxA→c ∀cx(A→c P)→c P,

∃lxA→c ∀cx(A→nc P)→c P,

∃rxA→c ∀ncx (A→c P)→c P,

∃uxA→nc ∀ncx (A→nc P)→c P.

Helmut Schwichtenberg Proofs, computations and analysis

Example: Supremum of an order located set of reals

I A real y is a supremum of a set S of reals if

∀x∈S(x ≤ y),

∀a<y∃x∈S(a ≤ x).

I S is order located (above) if

∀a,b;a<b

(
∀x∈S(x ≤ b) ∨ ∃x∈S(a ≤ x)

)
.

Theorem (LUB)

Assume that S is an inhabited set of reals that is bounded above.
Then S has a supremum iff it is order located.

Helmut Schwichtenberg Proofs, computations and analysis

S order located → S has a supremum

I ΠS(a, b): both y ≤ b for all y ∈ S and a < x for some x ∈ S .

I By assumption: a, b ∈ Q with a < b such that ΠS(a, b).

I Construct (cn)n and (dn)n (rationals) such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b, (1)

ΠS(cn, dn), (2)

dn − cn ≤ (2/3)n(b − a). (3)

I Step: Have c0, . . . , cn and d0, . . . , dn such that (1)-(3).

I Let c = cn + 1
3(dn − cn) and d = cn + 2

3(dn − cn).

I Since S is order located, either ∀y∈S(y ≤ d) or ∃x∈S(c < x).

I In the first case let cn+1 := cn and dn+1 := d , and in the
second case let cn+1 := c and dn+1 := dn.

I (1)-(3) hold for n + 1, and the real x = y given by the Cauchy
sequences (cn)n and (dn)n is the least upper bound of S .

Helmut Schwichtenberg Proofs, computations and analysis

Nonnegative and k-positive reals

I A real number x is a pair ((an)n∈N,M) with an ∈ Q and
M : N→ N such that (an)n is a Cauchy sequence with
modulus M, that is

|an − am| ≤ 2−k for n,m ≥ M(k).

I A real x := ((an)n,M) is nonnegative (x ∈ R0+) if

−2−k ≤ aM(k) for all k ∈ N.

It is k-positive (x ∈k R+) if

2−k ≤ aM(k+1).

I (x ≤ y) := (y − x ∈ R0+).

I (x < y) := ∃k(x ∈k R+).

Helmut Schwichtenberg Proofs, computations and analysis

Formalization

∀y0∈S∀b0(S inhabited

∀x∈S(x ≤ b0) b0 upper bound of S

→ ∀a,b;a<b(∀x∈S(x ≤ b) ∨ ∃x∈S(a ≤ x)) S order located

→ ∃y (∀x∈S(x ≤ y) ∧ ∀a<y∃x∈S(a ≤ x)).

The type of a witness depends on the type τ of a witness for the
formula defining S (example: Z for S := { x | x2 < 2 }):

R→ τ → Q S inhabited, bound b0 given

→ (Q→ Q→ U + R× τ) S order located

→ R× (Q→ Z→ R× τ).

For a witness disregarding τ we “decorate” logical connectives:

Helmut Schwichtenberg Proofs, computations and analysis

Decoration

∀y0(y0 ∈ S →nc ∀b0(

∀x∈S(x ≤ b0)

→ ∀a,b;a<b(∀x∈S(x ≤ b) ∨ ∃lx(x ∈ S ∧ a ≤ x))

→ ∃y (∀x∈S(x ≤ y) ∧ ∀a(a < y → ∃lx(x ∈ S ∧ a ≤ x))))).

The type of a witness now is as desired

R→ Q S inhabited, bound b0 given

→ (Q→ Q→ U + R) S order located

→ R× (Q→ Z→ R).

Helmut Schwichtenberg Proofs, computations and analysis

Example: average of two reals

Berger and Seisenberger (2009, 2010).

I Extraction from a proof dealing with abstract reals.

I Proof involving coinduction of the proposition that any two
reals in [−1, 1] have their average in the same interval.

I B & S informally extract a Haskell program from this proof,
which works with stream representations of reals.

Aim here: discuss formalization of the proof, and machine
extraction of its computational content.

Helmut Schwichtenberg Proofs, computations and analysis

Free algebra J of intervals

I SD := {−1, 0, 1} signed digits (or {L,M,R}).

I J free algebra of intervals. Constructors

I the interval [−1, 1],

C : SD→ J→ J left, middle, right half.

I C1I denotes [0, 1].

I C0I denotes [−1
2 ,

1
2].

I C0(C−1I) denotes [−1
2 , 0].

Cd0(Cd1 . . . (Cdk−1
I) . . .) denotes the interval in [−1, 1] whose reals

have a signed digit representation starting with d0d1 . . . dk−1.

I We consider ideals x ∈ |CJ|.

Helmut Schwichtenberg Proofs, computations and analysis

Total and cototal ideals of base type

Generally:

I Cototal ideals x : every token (i.e., constructor tree) P(∗) ∈ x
has a “�1-successor” P(C~∗) ∈ x .

I Total ideals: the cototal ones with �1 well-founded.

Examples:

I Total ideals of J:

I i

2k
,k := [

i

2k
− 1

2k
,

i

2k
+

1

2k
] for −2k < i < 2k .

I Cototal ideals of J: reals in [−1, 1], in (non-unique) stream
representation using signed digits −1, 0, 1.

Helmut Schwichtenberg Proofs, computations and analysis

Inductive and coinductive definitions

I Inductively define a set I of (abstract) reals, by the clauses

I 0, ∀ncx ∀d
(
Ix → I

x + d

2

)
.

Witnesses are intervals (total ideals in J).

I Coinductively define coI , by the (single) clause

∀ncx
(
coIx → x = 0 ∨ ∃ry∃d(x =

y + d

2
∧ coIy)

)
.

Witnesses are streams of signed digits (cototal ideals in J).

I From a formalized proof of ∀ncx ,y (coIx → coIy → coI x+y
2) extract

a stream transformer, of type J→ J→ J.

Helmut Schwichtenberg Proofs, computations and analysis

Arbitrary or fixed moduli

Reals:

I ((an)n,M) Cauchy sequence plus modulus, or

I finite or infinite list of signed digits −1, 0, 1.

(Uniformly) continuous function:

I (hf , αf , ωf) approximating function, uniform modulus of
Cauchyness plus modulus of uniform continuity, or

I possibly non well-founded labelled (with lists of signed digits
−1, 0, 1) ternary tree.

Helmut Schwichtenberg Proofs, computations and analysis

Continuous functions

I Increment function f + : L(SD)→ L(SD).

I From f + we obtain f : L(SD)→ L(SD) by

f [] = f +[],

f (d :: a) = f +(d :: a) ∗ f (a).

I Example x+d
2 :

f +[] = d ,

f +(d :: a) = d .

I Example −x :

f +[] = [],

f +(d :: a) = −d .

Helmut Schwichtenberg Proofs, computations and analysis

Conclusion

I Decoration (→nc, ∀nc, ∃l etc.) needed to extract reasonable
programs from proofs.

I Cototal ideals (type 0) to represent reals (as streams).

I Extract stream transformers from coinductive proofs.

I Work in progress (Kenji Miyamoto): continuous functions as
possibly non well-founded labelled ternary trees (labels: lists
of signed digits −1, 0, 1). Extract programs from coinductive
proofs (e.g., composition).

Helmut Schwichtenberg Proofs, computations and analysis

References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I U. Berger, K. Miyamoto, H.S. and M. Seisenberger, The
interactive proof system Minlog. Calco-Tools 2011.

I H.S., Realizability interpretation of proofs in constructive
analysis. Theory of Computing Systems, 2008.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

Helmut Schwichtenberg Proofs, computations and analysis

