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Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Logic for inductive definitions LID

I Typed language, with the partial continuous functionals as
intended domains (cf. Peano arithmetic and N).

I Base types: “lazy” free algebras. Reason: then constructors
are injective and have disjoint ranges.

I Terms are those of T+, a common extension of Gödel’s T and
Plotkin’s PCF.

I Equivalence of terms generated by conversion. Identify
equivalent terms.

I All predicates are defined inductively. Examples: totality,
Leibniz equality, ∃, ∧, ∨.

I Natural deduction rules for → and ∀ (“minimal logic”).
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derivation term

u : A uA

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B
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Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Natural deduction: ∀-rules

derivation term

| M
A ∀+ x (Variable Cond.)
∀xA

(λxM
A)∀xA (Variable Cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)
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Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Predicates and formulas

Define F(~Y ), Preds(~Y ), ClX (~Y ) (formulas, predicates, clauses,
all strictly positive in ~Y , with X , ~Y predicate variables).

Yl~r ∈ F(~Y ),
A ∈ F B ∈ F(~Y )

A → B ∈ F(~Y )
,

A ∈ F(~Y )

∀xA ∈ F(~Y )
,

C ∈ F(~Y )

{~x | C } ∈ Preds(~Y )
,

P ∈ Preds(~Y )

P~r ∈ F(~Y )
,

K0, . . . ,Kk−1 ∈ ClX (~Y )

µX (K0, . . . ,Kk−1) ∈ Preds(~Y )
(k ≥ 1),

~A ∈ F(~Y ) ~B0, . . . , ~Bn−1 ∈ F

∀~x

(
~A →

(
∀~yν

(~Bν → X~sν)
)
ν<n

→ X~t
)
∈ ClX (~Y )

(n ≥ 0).

K0 must be “nullary” (i.e., no “recursive” premises).
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Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Logic for inductive definitions
LID is the system in minimal logic for → and ∀. Formulas: in F.
Axioms: Consider I := µX (K0, . . . Kk−1). Let

Ki (X ) := ∀~x

(
~A →

(
∀~yν

(~Bν → X~sν)
)
ν<n

→ X~t
)
.

Then the corresponding introduction axiom I+
i is Ki (I ), i.e.,

∀~x

(
~A →

(
∀~yν

(~Bν → I~sν)
)
ν<n

→ I~t
)
.

The elimination axiom I− is

∀~x

(
I~x →

(
Ki (I , {~x | C (~x ) })

)
i<k

→ C (~x )
)
,

where

K (I , {~x | C (~x ) }) := ∀~x

(
~A →

(
∀~yν

(~Bν → I~sν)
)
ν<n

→(
∀~yν

(~Bν → C (~sν))
)
ν<n

→ C (~t )
)
.
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Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Example: totality

Totality predicates Tρ are defined by induction on ρ.

I For base types, e.g. for N. Inductive definition, by the clauses

T0, ∀n(Tn → T (Sn)).

Elimination axiom (writing ∀n∈TA for ∀n(Tn → A)):

∀n∈T (A(0) → ∀n∈T (A(n) → A(Sn)) → A(n)).

This is the induction scheme.

I For ρ → σ. Explicit definition (formally: inductive), by

∀xρ∈TTσ(fx) → Tρ→σf ,

writing ∀xρ∈TA for ∀xρ(Tρx → A).
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Example: Leibniz equality Eq

I Inductively defined by the introduction axiom

∀xEq(xρ, xρ).

I Elimination axiom:

∀x ,y

(
Eq(x , y) → ∀xC (x , x) → C (x , y)

)
.

I With C (x , y) := A(x) → A(y) this implies

∀x ,y (Eq(x , y) → A(x) → A(y)) (compatibility of Eq).

I Compatibility gives symmetry and transitivity of Eq.
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Ex-Falso-Quodlibet

need not be assumed, but can be proved.

F → A, with F := Eq(ff, tt) (“falsity”).

The proof is in 2 steps. (1) F → Eq(xρ, yρ), since from Eq(ff, tt)
by compatibility

Eq [if tt then x else y ]︸ ︷︷ ︸
x

[if ff then x else y ]︸ ︷︷ ︸
y

.

(2) Induction on (the sim. definition of) predicates and formulas.

I Case I~s. Let K0 be the nullary clause A1 → · · · → An → I~t.
By IH: F → Ai . Hence I~t. From F we also obtain Eq(si , ti ),
by (1). Hence I~s by compatibility.

I The cases A → B and ∀xA are clear.
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Embedding classical arithmetic

I Let ¬A := (A → F), and

∃̃xA := ¬∀x¬A, A ∨̃ B := (¬A → ¬B → F).

I Consider a total boolean term rB as representing a decidable
predicate. Let

atom(r) := Eq(r , tt).

I Prove ∀p∈T (¬¬atom(p) → atom(p)) by boolean induction.

I Lift this via →,∀ using

` (¬¬B → B) → ¬¬(A → B) → A → B,

` (¬¬A → A) → ¬¬∀xA → ∀xA.

I For formulas A built from atom(·) by →,∀x∈T prove stability

T (~x ) → ¬¬A → A (FV(A) among ~x).
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Examples: ∃, ∧, ∨

are defined inductively by the introduction and elimination axioms

∀x(A → ∃xA),

∃xA → ∀x(A → B) → B (x /∈ FV(B)),

A → B → A ∧ B,

A ∧ B → (A → B → C ) → C ,

A → A ∨ B, B → A ∨ B,

A ∨ B → (A → C ) → (B → C ) → C .
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Realizability

Computational content of proofs

I Traditionally arises when the formula contains a strictly
positive occurrence of ∃, as in ∀x∃yA(x , y).

I For us ∃ is inductively defined, and inductive definitions are
the only way computational content can arise.

I The computational content of a proof of I~r is a “generation
tree”, witnessing how the arguments ~r were put into I .

I For example, consider the clauses

Even(0), ∀n(Even(n) → Even(S(Sn))).

A generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).
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Computational and non-computational variants of →, ∀

I Idea: switch on and off the computational effect of →, ∀.
I For instance, in ∀n(Even(n) → Even(S(Sn))) only the premise

Even(n) should be computationally relevant, not the ∀n.

I Following Ulrich Berger (1993) we distinguish between a
computational ∀c and non-computational (“uniform”) ∀.

I Also: allow a computational →c and non-computational →.
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Example: ∃

I For ∃xA one may decorate in its single clause ∀x(A → ∃xA)
independently both, ∀ and →.

I This gives four (only) computationally different variants
∃d,∃l,∃r,∃ of the existential quantifier, with axioms

∀c
x(A →c ∃d

xA),

∀c
x(A → ∃l

xA),

∀x(A →c ∃r
xA),

∀x(A → ∃xA),

∃d
xA →c ∀c

x(A →c B) →c B,

∃l
xA →c ∀c

x(A → B) →c B,

∃r
xA →c ∀x(A →c B) →c B,

∃xA → ∀x(A → B) →c B.

Similarly for ∧, ∨.
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Formulas as computational problems (Kolmogorov)

I Kolmogorov (1925) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I τ(A) should be the type of the term (or “program”) to be
extracted from a proof of A.

I Formally, we assign to every formula A an object τ(A) (a type
or the nulltype symbol ε).

I In case τ(A) = ε proofs of A have no computational content;
such formulas A are called computationally irrelevant (c.i.);
the other ones computationally relevant (c.r.).
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The type of a formula

Extend the use of ρ → σ and ρ× σ to the nulltype symbol ε:

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε,

(ρ× ε) := ρ, (ε× σ) := σ, (ε× ε) := ε.

Define

τ(I~r ) := ε for I not requiring witnesses (e.g., Eq),

τ(A →c B) := τ(A) → τ(B), τ(A → B) := τ(B),

τ(∀c
xρA) := ρ → τ(A), τ(∀xρA) := τ(A),

τ(∃d
xρA) := ρ× τ(A), τ(∃l

xρA) := ρ, τ(∃r
xρA) := τ(A), τ(∃xρA) := ε

and similarly for ∧, ∨ and other inductively defined I ’s.
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Computational variables of a derivation

For MA with A c.i. let CV(M) := ∅. Assume A is c.r. Then

CV(uA) := {xτ(A)
u } (x

τ(A)
u uniquely associated with uA),

CV(λuAMB)A→
cB := CV(M) \ {xτ(A)

u },
CV(MA→cBNA)B := CV(M) ∪ CV(N),

CV(λxρMA)∀
c
xA := CV(M) \ {xρ},

CV(M∀c
xA(x)r)A(r) := CV(M) ∪ FV(r),

CV(λuAMB)A→B := CV(MA→BNA)B := CV(λxρMA)∀xA

:= CV(M∀xA(x)r)A(r) := CV(M).
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Correct derivations

Restrictions to →+ and ∀+: consider

[u : A]

| M
B →+ uA → B

or as term (λuAM)A→B .

(λuAM)A→B is correct if M is and xu /∈ CV(M). Consider

| M
A ∀+ x∀xA

or as term (λxM)∀xA (VarC).

(λxM)∀xA is correct if M is and x /∈ CV(M).
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Computational strengthening
Define a relation A1 w A2 (A1 is a computational strengthening of
A2) between c.r. formulas A1,A2 inductively. It is reflexive,
transitive and satisfies

(A → B) w (A →c B),

(A →c B) w (A → B) if A is c.i.,

(A →̆ B1) w (A →̆ B2) if B1 w B2, with →̆∈ {→c,→},
(A2 →̆ B) w (A1 →̆ B) if A1 w A2, with →̆∈ {→c,→},
∀xA w ∀c

xA,

∀̆xA1 w ∀̆xA2 if A1 w A2, with ∀̆ ∈ {∀c,∀}.

and similarly for ∃, ∧, ∨.

If A1 w A2, then ` A1 →c A2.
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Realizability

Let t be either a term of type τ(A) if this is a type, or ε if
τ(A) = ε. Extend term application to the nullterm symbol ε:

εt := ε, tε := t, εε := ε.

We define the formula t r A, to be read t realizes A. This formula
is “invariant” in the sense that ε r (t r A) and t r A are identical.

ε r I~r := I~r for I not requiring witnesses (e.g., Eq),

t r (A →c B) := ∀x(x r A → tx r B),

t r (A → B) := ∀x(x r A → t r B),

t r ∀c
xA := ∀x(tx r A), t r ∀xA := ∀x(t r A)

and similarly for ∃, ∧, ∨ and other inductively defined I ’s.
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Derivations and extracted terms

For MA with A c.i. let [[M]] := ε. Assume A is c.r. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAMB)A→
cB ]] := λ

x
τ(A)
u

[[M]],

[[(MA→cBNA)B ]] := [[M]][[N]],

[[(λxρMA)∀
c
xA]] := λxρ [[M]],

[[(M∀c
xA(x)r)A(r)]] := [[M]]r ,

[[(λuAMB)A→B ]] := [[(MA→BNA)B ]] := [[(λxρMA)∀xA]]

:= [[(M∀xA(x)r)A(r)]] := [[M]].

Notice that CV(M) = FV([[M]]).
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Extracted terms for axioms

I Consider

∀c
v (A(nil) →c ∀c

x ,v (A(v) →c A(xv)) →c A(v)),

with x , v variables of type ρ,L(ρ) and xv denoting cons(x , v).
We write ∀c

vA for ∀v (Tv →c A) etc.

I The extracted term is the corresponding recursion operator in
the sense of Gödel (1958), of type

Rτ
L(ρ) : L(ρ) → τ → (ρ → L(ρ) → τ → τ) → τ

where τ := τ(A).
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Soundness

Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions

xui r Ci for τ(Ci ) 6= ε and xui ∈ CV(M)

∃x(x r Ci ) for τ(Ci ) 6= ε and xui /∈ CV(M)

ε r Ci for τ(Ci ) = ε.
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Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract [[M]] will contain the extract [[Ld]].

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened L : A ∨ B.

I Since [[L]] is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract [[Ld]] has disappeared.
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Decorating proofs

Goal: Insertion of as few as possible decorations into a proof.
Write ∀c

nA for ∀n(TNn →c A).

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern U(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a c.i. formula)
all →c, ∀c into →, ∀, except “uninstantiated” formulas of
axioms, e.g., ∀c

n(P0 →c ∀c
n(Pn →c P(Sn)) →c Pn).

I A formula D extends C if D is obtained from C by changing
some →, ∀ into →c, ∀c.

I A proof N extends M if (1) N and M are the same up to
variants of →, ∀ in their formulas, and (2) every c.r. formula
of M is extended by the corresponding one in N.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Decoration algorithm

Assumption: We have an algorithm assigning to every axiom A and
every decoration variant C of A another axiom whose formula D
extends C , and D is the least among those extensions.

Theorem (Ratiu, H.S.)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.
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Case →−. Consider a uniform proof pattern

Φ, Γ

| U
A → B

Γ,Ψ

| V
A →−

B

Given: extension Π,∆,Σ ⇒ D of Φ, Γ,Ψ ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆ ⇒ A→D 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 →̆ D1 extends Π,∆ ⇒ A→D.
Suffices if A is c.i.: extension ∆1,Σ ⇒ C1 of V is a proof (in
c.i. parts of a proof →, ∀ and →c, ∀c are identified). For A c.r:

I IHa(V ) for the extension ∆1,Σ ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →̆ D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→̆D3 extends Π1,∆2 ⇒ C2→̆D1.

I IHa(V ) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .
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Example: list reversal (Ulrich Berger)
Define the graph Rev of the list reversal function inductively, by

Rev(nil,nil), (1)

Rev(v ,w) → Rev(vx , xw). (2)

We prove weak existence of the reverted list:

∀c
v ∃̃l

wRev(v ,w) ( := ∀c
v (∀c

w (Rev(v ,w) → ⊥) →c ⊥)).

Fix v and assume u : ∀c
w¬Rev(v ,w). To show ⊥. To this end we

prove that all initial segments v1 of v are non-revertible, which
contradicts (1). More precisely, from u and (2) we prove

∀c
v2

A(v2), A(v2) := ∀c
v1

(v1v2 = v → ∀c
w¬Rev(v1,w))

by induction on v2. Base v2 = nil: Use u. Step. Assume
v1(xv2) = v , fix w and assume further Rev(v1,w). Properties of
the append function imply that (v1x)v2 = v . IH for v1x gives
∀c

w¬Rev(v1x ,w). Now (2) yields ⊥.
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Results of demo

I Weak existence proof formalized.

I Translated into an existence proof. Extracted algorithm:
f (v1) := h(v1,nil,nil) with

h(nil, v2, v3) := v3, h(xv1, v2, v3) := h(v1, v2x , xv3).

The second argument of h is not needed, but makes the
algorithm quadratic. (In each recursion step v2x is computed,
and the list append function is defined by recursion over its
first argument.)

I Optimal decoration of existence proof computed. Extracted
algorithm: f (v1) := g(v1,nil) with

g(nil, v2) := v2, g(xv1, v2) := g(v1, xv2).

This is the well-known linear algorithm, with an accumulator.
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Example: avoiding factorization
Let Pn mean “n is prime”. Consider

Fact : ∀c
n(Pn ∨r ∃l

m,k>1(n = mk)) factorization,

PTest : ∀c
n(Pn ∨ ∃l

m,k>1(n = mk)) prime number test.

(∃d
nA := ∃n(Tn ∧d A) and ∃l

m,k>1A := ∃m,k>1(Tm ∧d (Tk ∧l A))).
Euler’s ϕ has the properties{

ϕ(n) = n − 1 if Pn,

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀c
n(ϕ(n) = n − 1 ∨ ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.
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Example: avoiding factorization (ctd.)

How could the better proof be found? We have

Fact : ∀c
n(Pn ∨r ∃l

m,k>1(n = mk)),

PTest : ∀c
n(Pn ∨ ∃l

m,k>1(n = mk)).

I The decoration algorithm arrives at Fact with

Pn ∨ ∃l
m,k>1(n = mk).

I PTest fits as well, and it has ∨ rather than ∨r, hence is
preferred.
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Example: maximal segment problem

Due to Bates and Constable (1985).

I Let X be linearly ordered by ≤. Given

seg : N → N → X .

(Example: X = Z and seg(i , k) = f (i) + · · ·+ f (k) for some
f : N → Z.)

I Want: maximal segment

∀c
n∃l

i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)).

I Special case: maximal end segment

∀c
n∃l

j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)).
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Example: maximal segment problem (ctd.)
2 proofs of the existence of a maximal end segment for n + 1

∀c
n∃l

j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀n∀c
m≤n+1∃l

j≤n+1∀j ′≤m(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Use ESn : ∃l
j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)) and the additional

assumption of monotonicity

∀i ,j ,k(seg(i , k) ≤ seg(j , k) → seg(i , k + 1) ≤ seg(j , k + 1)).

Proceed by cases on seg(j , n + 1) ≤ seg(n + 1, n + 1). If ≤,
take n + 1, else the previous j .
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Example: maximal segment problem (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀c
n(∃l

i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)) ∧d

∃l
j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If ≤, take the new i , k to be j , n + 1. Else take the old i , k.

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.
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Example: maximal segment problem (ctd.)

How could the better proof be found? We have

L1 : ∀c
n∃l

j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)),

L2 : ∀n(ESn →c Mon→ ∃l
j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1))).

I The decoration algorithm arrives at L1 with

∃l
j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I L2 fits as well, its assumptions ESn and Mon are in the
context, and it has ∀n rather than ∀c

n, hence is preferred.
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