
Logic for inductive definitions
Realizability interpretation

Decorating proofs

Extracting computational content from proofs

Helmut Schwichtenberg
(j.w.w. Diana Ratiu)

Mathematisches Institut, LMU, München

National Institute of Informatics, Tokyo, Japan, 13. May 2009

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Logic for inductive definitions LID

I Typed language, with the partial continuous functionals as
intended domains (cf. Peano arithmetic and N).

I Base types: “lazy” free algebras. Reason: then constructors
are injective and have disjoint ranges.

I Terms are those of T+, a common extension of Gödel’s T and
Plotkin’s PCF.

I Equivalence of terms generated by conversion. Identify
equivalent terms.

I All predicates are defined inductively. Examples: totality,
Leibniz equality, ∃, ∧, ∨.

I Natural deduction rules for → and ∀ (“minimal logic”).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

derivation term

u : A uA

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Natural deduction: ∀-rules

derivation term

| M
A ∀+ x (Variable Cond.)
∀xA

(λxM
A)∀xA (Variable Cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Predicates and formulas

Define F(~Y ), Preds(~Y ), ClX (~Y ) (formulas, predicates, clauses,
all strictly positive in ~Y , with X , ~Y predicate variables).

Yl~r ∈ F(~Y ),
A ∈ F B ∈ F(~Y )

A → B ∈ F(~Y )
,

A ∈ F(~Y )

∀xA ∈ F(~Y )
,

C ∈ F(~Y )

{~x | C } ∈ Preds(~Y )
,

P ∈ Preds(~Y )

P~r ∈ F(~Y )
,

K0, . . . ,Kk−1 ∈ ClX (~Y )

µX (K0, . . . ,Kk−1) ∈ Preds(~Y )
(k ≥ 1),

~A ∈ F(~Y ) ~B0, . . . , ~Bn−1 ∈ F

∀~x

(
~A →

(
∀~yν

(~Bν → X~sν)
)
ν<n

→ X~t
)
∈ ClX (~Y )

(n ≥ 0).

K0 must be “nullary” (i.e., no “recursive” premises).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Logic for inductive definitions
LID is the system in minimal logic for → and ∀. Formulas: in F.
Axioms: Consider I := µX (K0, . . . Kk−1). Let

Ki (X ) := ∀~x

(
~A →

(
∀~yν

(~Bν → X~sν)
)
ν<n

→ X~t
)
.

Then the corresponding introduction axiom I+
i is Ki (I ), i.e.,

∀~x

(
~A →

(
∀~yν

(~Bν → I~sν)
)
ν<n

→ I~t
)
.

The elimination axiom I− is

∀~x

(
I~x →

(
Ki (I , {~x | C (~x ) })

)
i<k

→ C (~x )
)
,

where

K (I , {~x | C (~x ) }) := ∀~x

(
~A →

(
∀~yν

(~Bν → I~sν)
)
ν<n

→(
∀~yν

(~Bν → C (~sν))
)
ν<n

→ C (~t )
)
.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Example: totality

Totality predicates Tρ are defined by induction on ρ.

I For base types, e.g. for N. Inductive definition, by the clauses

T0, ∀n(Tn → T (Sn)).

Elimination axiom (writing ∀n∈TA for ∀n(Tn → A)):

∀n∈T (A(0) → ∀n∈T (A(n) → A(Sn)) → A(n)).

This is the induction scheme.

I For ρ → σ. Explicit definition (formally: inductive), by

∀xρ∈TTσ(fx) → Tρ→σf ,

writing ∀xρ∈TA for ∀xρ(Tρx → A).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Example: Leibniz equality Eq

I Inductively defined by the introduction axiom

∀xEq(xρ, xρ).

I Elimination axiom:

∀x ,y

(
Eq(x , y) → ∀xC (x , x) → C (x , y)

)
.

I With C (x , y) := A(x) → A(y) this implies

∀x ,y (Eq(x , y) → A(x) → A(y)) (compatibility of Eq).

I Compatibility gives symmetry and transitivity of Eq.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Ex-Falso-Quodlibet

need not be assumed, but can be proved.

F → A, with F := Eq(ff, tt) (“falsity”).

The proof is in 2 steps. (1) F → Eq(xρ, yρ), since from Eq(ff, tt)
by compatibility

Eq [if tt then x else y ]︸ ︷︷ ︸
x

[if ff then x else y ]︸ ︷︷ ︸
y

.

(2) Induction on (the sim. definition of) predicates and formulas.

I Case I~s. Let K0 be the nullary clause A1 → · · · → An → I~t.
By IH: F → Ai . Hence I~t. From F we also obtain Eq(si , ti ),
by (1). Hence I~s by compatibility.

I The cases A → B and ∀xA are clear.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Embedding classical arithmetic

I Let ¬A := (A → F), and

∃̃xA := ¬∀x¬A, A ∨̃ B := (¬A → ¬B → F).

I Consider a total boolean term rB as representing a decidable
predicate. Let

atom(r) := Eq(r , tt).

I Prove ∀p∈T (¬¬atom(p) → atom(p)) by boolean induction.

I Lift this via →,∀ using

` (¬¬B → B) → ¬¬(A → B) → A → B,

` (¬¬A → A) → ¬¬∀xA → ∀xA.

I For formulas A built from atom(·) by →,∀x∈T prove stability

T (~x ) → ¬¬A → A (FV(A) among ~x).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Predicates and formulas
Inductive definition of totality, Leibniz equality, ∃, ∧, ∨

Examples: ∃, ∧, ∨

are defined inductively by the introduction and elimination axioms

∀x(A → ∃xA),

∃xA → ∀x(A → B) → B (x /∈ FV(B)),

A → B → A ∧ B,

A ∧ B → (A → B → C ) → C ,

A → A ∨ B, B → A ∨ B,

A ∨ B → (A → C ) → (B → C ) → C .

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Computational content of proofs

I Traditionally arises when the formula contains a strictly
positive occurrence of ∃, as in ∀x∃yA(x , y).

I For us ∃ is inductively defined, and inductive definitions are
the only way computational content can arise.

I The computational content of a proof of I~r is a “generation
tree”, witnessing how the arguments ~r were put into I .

I For example, consider the clauses

Even(0), ∀n(Even(n) → Even(S(Sn))).

A generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Computational and non-computational variants of →, ∀

I Idea: switch on and off the computational effect of →, ∀.
I For instance, in ∀n(Even(n) → Even(S(Sn))) only the premise

Even(n) should be computationally relevant, not the ∀n.

I Following Ulrich Berger (1993) we distinguish between a
computational ∀c and non-computational (“uniform”) ∀.

I Also: allow a computational →c and non-computational →.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Example: ∃

I For ∃xA one may decorate in its single clause ∀x(A → ∃xA)
independently both, ∀ and →.

I This gives four (only) computationally different variants
∃d,∃l,∃r,∃ of the existential quantifier, with axioms

∀c
x(A →c ∃d

xA),

∀c
x(A → ∃l

xA),

∀x(A →c ∃r
xA),

∀x(A → ∃xA),

∃d
xA →c ∀c

x(A →c B) →c B,

∃l
xA →c ∀c

x(A → B) →c B,

∃r
xA →c ∀x(A →c B) →c B,

∃xA → ∀x(A → B) →c B.

Similarly for ∧, ∨.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Formulas as computational problems (Kolmogorov)

I Kolmogorov (1925) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I τ(A) should be the type of the term (or “program”) to be
extracted from a proof of A.

I Formally, we assign to every formula A an object τ(A) (a type
or the nulltype symbol ε).

I In case τ(A) = ε proofs of A have no computational content;
such formulas A are called computationally irrelevant (c.i.);
the other ones computationally relevant (c.r.).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

The type of a formula

Extend the use of ρ → σ and ρ× σ to the nulltype symbol ε:

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε,

(ρ× ε) := ρ, (ε× σ) := σ, (ε× ε) := ε.

Define

τ(I~r ) := ε for I not requiring witnesses (e.g., Eq),

τ(A →c B) := τ(A) → τ(B), τ(A → B) := τ(B),

τ(∀c
xρA) := ρ → τ(A), τ(∀xρA) := τ(A),

τ(∃d
xρA) := ρ× τ(A), τ(∃l

xρA) := ρ, τ(∃r
xρA) := τ(A), τ(∃xρA) := ε

and similarly for ∧, ∨ and other inductively defined I ’s.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Computational variables of a derivation

For MA with A c.i. let CV(M) := ∅. Assume A is c.r. Then

CV(uA) := {xτ(A)
u } (x

τ(A)
u uniquely associated with uA),

CV(λuAMB)A→
cB := CV(M) \ {xτ(A)

u },
CV(MA→cBNA)B := CV(M) ∪ CV(N),

CV(λxρMA)∀
c
xA := CV(M) \ {xρ},

CV(M∀c
xA(x)r)A(r) := CV(M) ∪ FV(r),

CV(λuAMB)A→B := CV(MA→BNA)B := CV(λxρMA)∀xA

:= CV(M∀xA(x)r)A(r) := CV(M).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Correct derivations

Restrictions to →+ and ∀+: consider

[u : A]

| M
B →+ uA → B

or as term (λuAM)A→B .

(λuAM)A→B is correct if M is and xu /∈ CV(M). Consider

| M
A ∀+ x∀xA

or as term (λxM)∀xA (VarC).

(λxM)∀xA is correct if M is and x /∈ CV(M).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Computational strengthening
Define a relation A1 w A2 (A1 is a computational strengthening of
A2) between c.r. formulas A1,A2 inductively. It is reflexive,
transitive and satisfies

(A → B) w (A →c B),

(A →c B) w (A → B) if A is c.i.,

(A →̆ B1) w (A →̆ B2) if B1 w B2, with →̆∈ {→c,→},
(A2 →̆ B) w (A1 →̆ B) if A1 w A2, with →̆∈ {→c,→},
∀xA w ∀c

xA,

∀̆xA1 w ∀̆xA2 if A1 w A2, with ∀̆ ∈ {∀c,∀}.

and similarly for ∃, ∧, ∨.

If A1 w A2, then ` A1 →c A2.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Realizability

Let t be either a term of type τ(A) if this is a type, or ε if
τ(A) = ε. Extend term application to the nullterm symbol ε:

εt := ε, tε := t, εε := ε.

We define the formula t r A, to be read t realizes A. This formula
is “invariant” in the sense that ε r (t r A) and t r A are identical.

ε r I~r := I~r for I not requiring witnesses (e.g., Eq),

t r (A →c B) := ∀x(x r A → tx r B),

t r (A → B) := ∀x(x r A → t r B),

t r ∀c
xA := ∀x(tx r A), t r ∀xA := ∀x(t r A)

and similarly for ∃, ∧, ∨ and other inductively defined I ’s.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Derivations and extracted terms

For MA with A c.i. let [[M]] := ε. Assume A is c.r. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAMB)A→
cB ]] := λ

x
τ(A)
u

[[M]],

[[(MA→cBNA)B ]] := [[M]][[N]],

[[(λxρMA)∀
c
xA]] := λxρ [[M]],

[[(M∀c
xA(x)r)A(r)]] := [[M]]r ,

[[(λuAMB)A→B ]] := [[(MA→BNA)B ]] := [[(λxρMA)∀xA]]

:= [[(M∀xA(x)r)A(r)]] := [[M]].

Notice that CV(M) = FV([[M]]).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Extracted terms for axioms

I Consider

∀c
v (A(nil) →c ∀c

x ,v (A(v) →c A(xv)) →c A(v)),

with x , v variables of type ρ,L(ρ) and xv denoting cons(x , v).
We write ∀c

vA for ∀v (Tv →c A) etc.

I The extracted term is the corresponding recursion operator in
the sense of Gödel (1958), of type

Rτ
L(ρ) : L(ρ) → τ → (ρ → L(ρ) → τ → τ) → τ

where τ := τ(A).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Computational and non-computational logic
Formulas as computational problems (Kolmogorov)
Realizability

Soundness

Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions

xui r Ci for τ(Ci ) 6= ε and xui ∈ CV(M)

∃x(x r Ci ) for τ(Ci ) 6= ε and xui /∈ CV(M)

ε r Ci for τ(Ci ) = ε.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract [[M]] will contain the extract [[Ld]].

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened L : A ∨ B.

I Since [[L]] is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract [[Ld]] has disappeared.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Decorating proofs

Goal: Insertion of as few as possible decorations into a proof.
Write ∀c

nA for ∀n(TNn →c A).

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern U(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a c.i. formula)
all →c, ∀c into →, ∀, except “uninstantiated” formulas of
axioms, e.g., ∀c

n(P0 →c ∀c
n(Pn →c P(Sn)) →c Pn).

I A formula D extends C if D is obtained from C by changing
some →, ∀ into →c, ∀c.

I A proof N extends M if (1) N and M are the same up to
variants of →, ∀ in their formulas, and (2) every c.r. formula
of M is extended by the corresponding one in N.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Decoration algorithm

Assumption: We have an algorithm assigning to every axiom A and
every decoration variant C of A another axiom whose formula D
extends C , and D is the least among those extensions.

Theorem (Ratiu, H.S.)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Case →−. Consider a uniform proof pattern

Φ, Γ

| U
A → B

Γ,Ψ

| V
A →−

B

Given: extension Π,∆,Σ ⇒ D of Φ, Γ,Ψ ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆ ⇒ A→D 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 →̆ D1 extends Π,∆ ⇒ A→D.
Suffices if A is c.i.: extension ∆1,Σ ⇒ C1 of V is a proof (in
c.i. parts of a proof →, ∀ and →c, ∀c are identified). For A c.r:

I IHa(V ) for the extension ∆1,Σ ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →̆ D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→̆D3 extends Π1,∆2 ⇒ C2→̆D1.

I IHa(V ) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: list reversal (Ulrich Berger)
Define the graph Rev of the list reversal function inductively, by

Rev(nil,nil), (1)

Rev(v ,w) → Rev(vx , xw). (2)

We prove weak existence of the reverted list:

∀c
v ∃̃l

wRev(v ,w) ( := ∀c
v (∀c

w (Rev(v ,w) → ⊥) →c ⊥)).

Fix v and assume u : ∀c
w¬Rev(v ,w). To show ⊥. To this end we

prove that all initial segments v1 of v are non-revertible, which
contradicts (1). More precisely, from u and (2) we prove

∀c
v2

A(v2), A(v2) := ∀c
v1

(v1v2 = v → ∀c
w¬Rev(v1,w))

by induction on v2. Base v2 = nil: Use u. Step. Assume
v1(xv2) = v , fix w and assume further Rev(v1,w). Properties of
the append function imply that (v1x)v2 = v . IH for v1x gives
∀c

w¬Rev(v1x ,w). Now (2) yields ⊥.
Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Results of demo

I Weak existence proof formalized.

I Translated into an existence proof. Extracted algorithm:
f (v1) := h(v1,nil,nil) with

h(nil, v2, v3) := v3, h(xv1, v2, v3) := h(v1, v2x , xv3).

The second argument of h is not needed, but makes the
algorithm quadratic. (In each recursion step v2x is computed,
and the list append function is defined by recursion over its
first argument.)

I Optimal decoration of existence proof computed. Extracted
algorithm: f (v1) := g(v1,nil) with

g(nil, v2) := v2, g(xv1, v2) := g(v1, xv2).

This is the well-known linear algorithm, with an accumulator.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: avoiding factorization
Let Pn mean “n is prime”. Consider

Fact : ∀c
n(Pn ∨r ∃l

m,k>1(n = mk)) factorization,

PTest : ∀c
n(Pn ∨ ∃l

m,k>1(n = mk)) prime number test.

(∃d
nA := ∃n(Tn ∧d A) and ∃l

m,k>1A := ∃m,k>1(Tm ∧d (Tk ∧l A))).
Euler’s ϕ has the properties{

ϕ(n) = n − 1 if Pn,

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀c
n(ϕ(n) = n − 1 ∨ ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: avoiding factorization (ctd.)

How could the better proof be found? We have

Fact : ∀c
n(Pn ∨r ∃l

m,k>1(n = mk)),

PTest : ∀c
n(Pn ∨ ∃l

m,k>1(n = mk)).

I The decoration algorithm arrives at Fact with

Pn ∨ ∃l
m,k>1(n = mk).

I PTest fits as well, and it has ∨ rather than ∨r, hence is
preferred.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: maximal segment problem

Due to Bates and Constable (1985).

I Let X be linearly ordered by ≤. Given

seg : N → N → X .

(Example: X = Z and seg(i , k) = f (i) + · · ·+ f (k) for some
f : N → Z.)

I Want: maximal segment

∀c
n∃l

i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)).

I Special case: maximal end segment

∀c
n∃l

j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)).

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: maximal segment problem (ctd.)
2 proofs of the existence of a maximal end segment for n + 1

∀c
n∃l

j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀n∀c
m≤n+1∃l

j≤n+1∀j ′≤m(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Use ESn : ∃l
j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)) and the additional

assumption of monotonicity

∀i ,j ,k(seg(i , k) ≤ seg(j , k) → seg(i , k + 1) ≤ seg(j , k + 1)).

Proceed by cases on seg(j , n + 1) ≤ seg(n + 1, n + 1). If ≤,
take n + 1, else the previous j .

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: maximal segment problem (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀c
n(∃l

i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)) ∧d

∃l
j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If ≤, take the new i , k to be j , n + 1. Else take the old i , k.

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

Example: maximal segment problem (ctd.)

How could the better proof be found? We have

L1 : ∀c
n∃l

j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)),

L2 : ∀n(ESn →c Mon→ ∃l
j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1))).

I The decoration algorithm arrives at L1 with

∃l
j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I L2 fits as well, its assumptions ESn and Mon are in the
context, and it has ∀n rather than ∀c

n, hence is preferred.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs



Logic for inductive definitions
Realizability interpretation

Decorating proofs

Motivation
Decoration algorithm
Examples: list reversal, avoiding factorization, max. segments

References

I U. Berger, Program extraction from normalization proofs. In:
Proc. TLCA 1993 (Springer LNCS 664).

I U. Berger, Uniform Heyting arithmetic. APAL 133 (2005)
125–148.

I D. Ratiu and H.S., Decorating proofs. To appear, Mints
volume (ed. S. Feferman and W. Sieg), 2009.

Helmut Schwichtenberg (j.w.w. Diana Ratiu) Extracting computational content from proofs


	Logic for inductive definitions
	Predicates and formulas
	Inductive definition of totality, Leibniz equality, , , 

	Realizability interpretation
	Computational and non-computational logic
	Formulas as computational problems (Kolmogorov)
	Realizability

	Decorating proofs
	Motivation
	Decoration algorithm
	Examples: list reversal, avoiding factorization, max. segments


