
Intro Model Terms TCF Realizers Applications

Computational content of proofs

Helmut Schwichtenberg
(j.w.w. Ulrich Berger, Nils Köpp, Kenji Miyamoto, Monika

Seisenberger, Hideki Tsuiki and Franziskus Wiesnet)

Mathematisches Institut, LMU, München

Proof Society Workshop, Swansea, 13. September 2019

1 / 31

Intro Model Terms TCF Realizers Applications

Proofs have two aspects:

1. they guarantee correctness, and

2. they may have computational content.

We address (2), and use a BHK-interpretation to extract programs
from proofs. Features:

• The extract is a term in the underlying theory, hence we have
a framework to formally prove its properties.

• Computational content in (co)inductive predicates only.

• From proofs in constructive analysis1 we can extract programs
operating on stream-represented real numbers.

1E. Bishop, Foundations of Constructive Analysis, 1967

2 / 31

Intro Model Terms TCF Realizers Applications

In more detail:

M 7→ et(M) ∈ T+, sp(M) : et(M) r A

where

• M proof of A in TCF,

• et(M) term of “cotype” ϕ(A) in T+,

• sp(M) soundness proof in TCF, of et(M) r A,

• r Keisel’s modified realizability.

3 / 31

Intro Model Terms TCF Realizers Applications

Related work, comparison.

• HAω and Martin-Löf style type theories use total functionals
only. In contrast, TCF is based on the Scott2-Ershov3 model
of partial continuous functionals.

• Coq extracts programs in a programming language (OCaml,
Scheme), and Agda uses whole proofs as programs. In both
cases it is difficult to formally prove properties of these.

2D. Scott, Outline of a mathematical theory of computation, Oxford 1970
3Y. Ershov, Model C of partial continuous functionals, Logic. Coll. 1977

4 / 31

Intro Model Terms TCF Realizers Applications

The model. An information system A = (A,Con,`) id given by:

• A countable set of “tokens”,

• Con set of finite subsets of A,

• ` (“entails”) subset of Con× A.

such that

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,

U,V ∈ Con→ ∀a∈V (U ` a)→ V ` b → U ` b.

x ⊆ A is an ideal if

U ⊆ x → U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

5 / 31

Intro Model Terms TCF Realizers Applications

Function spaces
Let A = (A,ConA,`A) and B = (B,ConB ,`B) be information
systems. Define A→ B := (C ,Con,`) where

• C := ConA × B,

•

{ (Ui , bi) | i ∈ I } ∈ Con :=

∀J⊆I (
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB),

• { (Ui , bi) | i ∈ I } ` (U, b) means { bi | U `A Ui } `B b.

A→ B is an information system.

Application of an ideal x in A→ B to an ideal y in A is defined by

x(y) := { b ∈ B | ∃U⊆y ((U, b) ∈ x) }.

6 / 31

Intro Model Terms TCF Realizers Applications

(Free) algebras given by constructors:

N by 0N, SN→N

Y by 0Y,CY→Y→Y (binary trees)

α× β by 〈., .〉α→β→α×β

α + β by (InLαβ)α→α+β, (InRαβ)β→α+β

L(α) by []L(α), consα→L(α)→L(α)

S(α) by SConsα→S(α)→S(α)

S(α) has no nullary constructor, hence no “total” objects.

7 / 31

Intro Model Terms TCF Realizers Applications

Information systems C ρ = (Cρ,Conρ,`ρ)
Cρ→σ := Cρ → Cσ. At base types ι:

Tokens are type correct constructor expressions Ca∗1 . . . a
∗
n.

(Examples: 0, C∗0, C0∗, C (C∗0)0.)

U = {a1, . . . , an} is consistent if

• all ai start with the same constructor,

• (proper) tokens at j-th argument positions are consistent.

(Example: {C∗0,C0∗}.)

U ` a (entails) if

• all ai ∈ U and also a start with the same constructor,

• (proper) tokens at j-th argument positions of ai entail j-th
argument of a.

(Example: {C∗0,C0∗} ` C00).

8 / 31

Intro Model Terms TCF Realizers Applications

Definition

• A partial continuous functional of type ρ is an ideal in Cρ.

• A partial continuous functional is computable if it is a
(primitive) recursively enumerable set of tokens.

Ideals in Cρ: Scott-Ershov domain of type ρ.

• x ι is total iff x = { a | {b} ` a } for some token (i.e.,
constructor expression) b without ∗.

• x ι is cototal iff every token b(∗) ∈ x has a “one-step
extension” b(C~∗) ∈ x .

9 / 31

Intro Model Terms TCF Realizers Applications

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms of T+ are built from (typed) variables and (typed)
constants (constructors C or defined constants D, see below) by
(type-correct) application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation
rules, consisting of finitely many equations

D ~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where the arguments
on the left hand side must be “constructor patterns”, i.e., lists of
applicative terms built from constructors and distinct variables.

10 / 31

Intro Model Terms TCF Realizers Applications

Examples

• +: N→ N→ N defined by

n + 0 = n

n + Sm = S(n + m)

• =N : N→ N→ B

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

11 / 31

Intro Model Terms TCF Realizers Applications

Recursion operators

• Introduced by Hilbert4 and Gödel5.

• Used to construct maps from the algebra ι to τ , by recursion
on the structure of ι.

• Example: RτN of type N→ τ → (N→ τ → τ)→ τ .

• The first argument is the recursion argument, the second one
gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the
next value.

• For example, RN
Nnmλn,p(Sp) defines addition m + n by

recursion on n.

4D. Hilbert, Über das Unendliche, Math. Ann. 1925
5K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten

Standpunkts, Dialectica 1958

12 / 31

Intro Model Terms TCF Realizers Applications

Corecursion operators

Recall

S(α) by SConsα→S(α)→S(α).

The corecursion operator coRτS(ρ) of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf :=

{
SCons(y , z) if f (x) ≡ 〈y , InL(z)〉,
SCons(y , coRx ′f) if f (x) ≡ 〈y , InR(x ′)〉.

13 / 31

Intro Model Terms TCF Realizers Applications

A theory TCF of partial computable functionals

TCF can be seen as a variant of both HAω and Martin-Löf type
theory. Features:

• Based on the model C: partial functionals allowed.

• Logic enriched type theory6: formulas and types kept separate.

• Computational content only arises from (co)inductive
definitions.

6N. Gambino & P. Aczel, The generalized type-theoretic interpretation of
constructive set theory, JSL 2006

14 / 31

Intro Model Terms TCF Realizers Applications

On closed base types (binary trees Y) inductively define totality:

(TY)+0 : 0 ∈ TY,

(TY)+1 : ∀x ,x ′(x , x ′ ∈ TY → Cxx ′ ∈ TY)

T−Y : 0 ∈ X → ∀x ′,x ′′(x ′, x ′′ ∈ X → Cx ′x ′′ ∈ X)→ TY ⊆ X

and coinductively define cototality, by the closure axiom

coT−Y : ∀x(x ∈ coTY → x ≡ 0 ∨ ∃x ′,x ′′(x ′, x ′′ ∈ coTY ∧ x ≡ Cx ′x ′′))

and the greatest-fixed-point (or coinduction) axiom coT+
Y :

∀x(x ∈ X → x ≡ 0 ∨ ∃x ′,x ′′(x ′, x ′′ ∈ (coTY ∪ X) ∧ x ≡ Cx ′x ′′))→
X ⊆ coTY.

We have

TY ⊂ coTY ⊂ |CY| (proper inclusions)

15 / 31

Intro Model Terms TCF Realizers Applications

Definition of predicates and formulas.

P,Q ::= X | { ~x | A } | I (~ρ, ~P) | coI (~ρ, ~P) (predicates),

A,B ::= P~t | A→ B | ∀xA (formulas)

Call a predicate or formula C computationally relevant (c.r.) or
non-computational (n.c). if its final predicate is.

Definition of the type τ(C) of a c.r. predicate or formula C .
Assume a global injective assignment of type variables ξ to X c .

τ(X c) := ξ,

τ({ ~x | A }) := τ(A),

τ((I/coI)(~ρ, ~P)) := ιI (τ(~Pc)),

τ(P~t) := τ(P),

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.)

τ(∀xA) := τ(A),

Call ιI (τ(~Pc)) the algebra associated with (I/coI)(~ρ, ~P).

16 / 31

Intro Model Terms TCF Realizers Applications

The cotype ϕ(C) has

ϕ(I (~ρ, ~P)) := ιI (ϕ(~Pc)),

ϕ(coI (~ρ, ~P)) := coιI (ϕ(~Pc)).

For arbitrary cotypes ϕ we define Eϕ (exists) by

(x ∈ Eι) := (x ∈ Tι),

(x ∈ Ecoι) := (x ∈ coTι),

(f ∈ Eϕ→ψ) := ∀x(x ∈ Eϕ → fx ∈ Eψ).

Similary for
.

=ϕ (pointwise equal)

(x
.

=ι y) := (x ∼ι y),

(x
.

=coι y) := (x ≈ι y),

(f
.

=ϕ→ψ g) := ∀x ,y (x
.

=ϕ y → fx
.

=ψ gy).

17 / 31

Intro Model Terms TCF Realizers Applications

What is the relation between
.

=ϕ and Leibniz equality ≡? First
consider closed base cotypes.

• Case ι. In the model C we have

(x ∼ι y)↔ (x ∈ Tι ∧ x ≡ y).

This is also provable in TCF.

• Case coι. In the model C we have

(x ≈ι y)↔ (x ∈ coTι ∧ x ≡ y).

(Write x =
⋃

n(x�n) and use induction on n). In TCF this is
an axiom, called Bisimilarity Axiom.

18 / 31

Intro Model Terms TCF Realizers Applications

Recall that at higher types, pointwise equality relative to a cotype
is defined as a logical relation:

(f
.

=ϕ→ψ g) := ∀x ,y (x
.

=ϕ y → fx
.

=ψ gy).

Then extensionality7 relative to a cotype ϕ is defined by

Extϕ(f) := (f
.

=ϕ f).

Lemma. For closed cotypes ϕ the relation
.

=ϕ is a partial
equivalence relation (i.e., symmetric and transitive) whose domain
is the set Extϕ of objects extensional w.r.t. ϕ.

7R. Gandy, PhD 1953, and On the axiom of extensionality – part I. JSL
1956 and also G. Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

19 / 31

Intro Model Terms TCF Realizers Applications

Lemma. Eϕ and Extϕ are equivalent for closed cotypes ϕ of level
≤ 1.

Proof. For level 0 this holds be definition. For level 1 use induction
on the height of the cotype. Let ϕ→ ψ be a closed cotype of level
1. The following are equivalent.

f ∈ Extϕ→ψ

f
.

=ϕ→ψ f

∀x ,y (x
.

=ϕ y → fx
.

=ψ fy)

∀x(x ∈ Eϕ → fx
.

=ψ fx) by definition, since lev(ϕ) = 0

∀x(x ∈ Eϕ → fx ∈ Extψ)

Now use the induction hypothesis and the definition of Eϕ→ψ.

20 / 31

Intro Model Terms TCF Realizers Applications

Are Eϕ and Extϕ equivalent for levels ≥ 2? No: we would need
f
.

=ϕ g → f ≡ g for ϕ of level 1. But the following are equivalent:

f
.

=N→N g

∀n,m(n
.

=N m→ fn
.

=N gm)

∀n(n ∈ TN → fn
.

=N gn)

∀n(n ∈ TN → fn, gn ∈ TN ∧ fn ≡ gn)

f , g ∈ EN→N ∧ ∀n(n ∈ TN → fn ≡ gn)

This cannot be Leibniz equality, since nothing is said on the
behaviour of f , g on non-total arguments.

21 / 31

Intro Model Terms TCF Realizers Applications

Lemma (Extensionality of the recursion operator)

Let I be an inductive predicate and ιI its associated algebra. Then
the extracted term et(I−) := RτιI of its least-fixed-point (or
elimination) axiom I− is extensional w.r.t. the formula of I−.

Lemma (Extensionality of the corecursion operator)

Let coI be a coinductive predicate and ιI its associated algebra.
Then the extracted term et(coI+) := coRτιI of its
greatest-fixed-point (or coinduction) axiom coI+ is extensional
w.r.t. the formula of coI+.

22 / 31

Intro Model Terms TCF Realizers Applications

Realizers

Proofs have two aspects:

• they provide insight into why an argument is correct, and

• they can also have computational content.

The Brouwer-Heyting-Kolmogorov8 (BHK)-interpretation gives a
good analysis of the latter. Modification here: computational
content only arises from (co)inductive predicates.

• p proves A→ B if and only if p is a construction transforming
any proof q of A into a proof p(q) of B.

• p proves ∀xA if and only if p is a construction such that p
proves A, irrespective of what x is.

8A. Kolmogorov, Zur Deutung der intuitionistischen Logik, Math. Z. 1932

23 / 31

Intro Model Terms TCF Realizers Applications

Unexplained notions:

what is a “construction”?

what is a proof of a prime formula?

Here we propose to take

construction := computable functional,

proof of a prime formula I~t := a “construction tree” for I~t,

proof of a prime formula coI~t := a “destruction tree” for coI~t.

Such a construction or destruction tree can seen as a (co)total
ideal in the algebra ιI associated with the clauses of I .

24 / 31

Intro Model Terms TCF Realizers Applications

Realizability extension C r of c.r. predicates or formulas C

For n.c. C let C r := C . If C is c.r. C r is a predicate of arity
(~σ, τ(C)) (~σ arity of C). Write z r C for C rz if C is a c.r. formula.
For X c let X r be the n.c. predicate variable provided, and

{ ~x | A }r := { ~x , z | z r A }.

Case
I/coI := (µ/ν)X ((Ki (X))i<k

with algebra form ιI = µξ(κi (ξ))i<k where κi (ξ) := τ(Ki (X)). The
i-th constructor of ιI is Ci : κi (ιI). Let

I r/coI r := (µ/ν)X r(Ci r Ki (X))i<k .

25 / 31

Intro Model Terms TCF Realizers Applications

For c.r. formulas let

z r P~t := P r~tz ,

z r (A→ B) :=

{
∀w (w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

26 / 31

Intro Model Terms TCF Realizers Applications

Extracted term et(M) of a proof MA with A c.r.

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

Extracted terms for the axioms. Let ι := ιI .

et(I+i) := Ci (Ci i-th constructor of ι, i < k)

et(I−) := Rτι

et(coI−) := Dι

et(coI+) := coRτι
27 / 31

Intro Model Terms TCF Realizers Applications

Soundness

Recall: an n.c. part of a proof M : A is a subproof N : B with B n.c.
Such n.c. parts will not contribute to the computational content of
the whole proof: can ignore all decorations in those parts.

An assumption variable u : C with C c.r. must be replaced by a
corresponding realizability assumption u : zu r C . However, if u : C
appears in an n.c. part of the proof we can keep it (since
computational content is ignored in such parts), and consider the
two assumption variables u : zu r C and u : C to be the same.

Theorem (Soundness)

Let M be a proof of a c.r. formula A from assumptions u : C (c.r.)
and v : D (n.c.) Then we can find a proof sp(M) of et(M) r A
from assumptions u : zu r C and v : D.

28 / 31

Intro Model Terms TCF Realizers Applications

Exact real numbers can be given in different formats:

• Cauchy sequences (of rationals, with Cauchy modulus).

• Infinite sequences (“streams”) of signed digits {−1, 0, 1}, or

• {−1, 1,⊥} with at most one ⊥ (“undefined”): Gray code.

Want formally verified algorithms on reals given as streams.

• Consider formal proofs M and apply realizability to extract
their computational content.

• Switch between different formats of reals by relativising to
coinductive predicates. Instead of ∀x(x ∈ Realc → A) use

∀x(x ∈ Realnc → x ∈ coI → A) or

∀x(x ∈ Realnc → x ∈ coG → A).

Computational content of x ∈ coI (x ∈ coG) is a representation of x
as stream (via Gray code).

29 / 31

Intro Model Terms TCF Realizers Applications

Method works for average, multiplication and division:

x , y ∈ coG → x + y

2
∈ coG ,

x , y ∈ coG → x · y ∈ coG ,

x , y ∈ coG → 1

4
≤ y → x

y
∈ coG ,

both w.r.t. signed digits (coI) and Gray code (coG).

30 / 31

Intro Model Terms TCF Realizers Applications

Slides:

http://www.math.lmu.de/∼schwicht/slides/swansea19.pdf

Course notes:

http://www.math.lmu.de/∼schwicht/lectures/logic/ss19/index.php

Implementation (Minlog, in examples/analysis):

git clone http://www.math.lmu.de/∼minlogit/git/minlog.git

(Use the development branch: git checkout dev).

31 / 31

	Intro
	Goals

	Model
	Information systems

	Terms
	Tplus

	TCF
	Predicates and formulas

	Realizers
	BHK

	Applications
	Stream representation of real numbers

