
Inverting monotone continuous functions in
constructive analysis

Helmut Schwichtenberg

Mathematisches Institut der Universität München

CiE, Swansea, 3. July 2006

Contents

1. Motivation

2. Tools: Reals, continuous functions

3. Inverse functions

Motivation

I “Mathematics as a numerical language”.

I Extract programs from proofs, for exact real numbers.

I Special emphasis on low type level witnesses (making use of
separability).

Tools

. . . for algorithmically reasonable proofs: Small variants of
Bishop/Bridges’ development of constructive analysis.

Idea: use separability to avoid high type levels. Where?

I “Order located” instead of “totally bounded”.

I Continuity in R, and R2.

I Uniformly convergent sequences of functions.

Reals

A real number x is a pair ((an)n∈N, α) with an ∈ Q and α : N → N
such that (an)n is a Cauchy sequence with modulus α, that is

∀k,n,m

(
α(k) ≤ n,m → |an − am| ≤ 2−k

)
,

and α is weakly increasing.

Two reals x := ((an)n, α), y := ((bn)n, β) are equivalent (written
x = y), if

∀k |aα(k+1) − bβ(k+1)| ≤ 2−k .

Nonnegative and positive reals

A real x := ((an)n, α) is nonnegative (written x ∈ R0+) if

∀k −2−k ≤ aα(k).

It is k-positive (written x ∈k R+) if

2−k ≤ aα(k+1).

x ∈ R0+ and x ∈k R+ are compatible with equivalence.
Can define x 7→ kx such that an ≤ 2kx for all n.
However, x 7→ kx is not compatible with equivalence.

Arithmetical functions

Given x := ((an)n, α) and y := ((bn)n, β), define

z cn γ(k)

x + y an + bn max(α(k + 1), β(k + 1))
−x −an α(k)
|x | |an| α(k)
x · y an · bn max(α(k + 1 + k|y |),

β(k + 1 + k|x |))

1
x for |x | ∈l R+

{
1
an

if an 6= 0

0 if an = 0
α(2(l + 1) + k)

Cleaning up a real

After some computations involving reals, rationals in the Cauchy
sequences may become complex. Hence: clean up a real, as
follows.

Lemma
For every real x = ((an)n, α) we can construct an equivalent real
y = ((bn)n, β) where the rationals bn are of the form cn/2n with
integers cn, and with modulus β(k) = k + 2.

Proof.
cn := baα(n) · 2nc.

Redundant dyadic representation of reals

The existence of the usual b-adic representation of reals cannot be
proved constructively (1.000 . . . vs .999 . . .). Cure: in addition to
0, . . . , b − 1 also admit −1 as a numeral. For b = 2:

Lemma
Every real x can be represented in the form

∞∑
n=−k

an2
−n with an ∈ {−1, 0, 1}.

Notice: uniqueness is lost (this is not a problem).

Comparison of reals

Write x ≤ y for y − x ∈ R0+ and x < y for y − x ∈ R+.

x ≤ y ↔ ∀k∃p∀n≥p an ≤ bn + 2−k

x < y ↔ ∃k,q∀n≥q an + 2−k ≤ bn

Write x <k,q y (or simply x <k y if q is not needed) when we
want to call these witnesses. Notice:

x ≤ y ↔ y 6< x .

Continuous functions

A continuous function f : I → R on a compact interval I with
rational end points is given by

I an approximating map hf : (I ∩Q)× N → Q,

I a (uniform) modulus map αf : N → N such that (hf (c , n))n is
a real with modulus αf ;

I ωf : N → N (uniform) modulus of continuity:

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k

for n ≥ αf (k). αf , ωf required to be weakly increasing.

Notice: hf , αf , ωf are of type level 1 only.

Application of a continuous function to a real

Definition
Given a continuous function f (by hf , αf , ωf) and a real
x := ((an)n, α), application f (x) is defined to be

(hf (an, n))n

with modulus k 7→ max(αf (k + 2), α(ωf (k + 1)− 1)).

Lemma

x = y → f (x) = f (y),

|x − y | ≤ 2−ωf (k) → |f (x)− f (y)| ≤ 2−k .

Intermediate value theorem

Let a < b be rationals. If f : [a, b] → R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform lower bound on its slope,
then we can find x ∈ [a, b] such that f (x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then either z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 2−n < d − c , and
f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2

3(d − c),
such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c , d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .

Inverse functions

Theorem
Let f : [a, b] → R be continuous with a uniform lower bound on its
slope. Let f (a) ≤ a′ < b′ ≤ f (b). We can find a continuous
g : [a′, b′] → R such that f (g(y)) = y for every y ∈ [a′, b′] and
g(f (x)) = x for every x ∈ [a, b] such that a′ ≤ f (x) ≤ b′.

Proof sketch.
Let f (a) ≤ a′ < b′ ≤ f (b). Construct a continuous g : [a′, b′] → R
by the Intermediate Value Theorem.

Example: squaring f : [1, 2] → [1, 4]

Given by

I the approximating map hf (a, n) := a2,

I the uniform Cauchy modulus αf (k) := 1, and

I the modulus k 7→ k + 1 of uniform continuity.

The lower bound on its slope is l := 0, because for all c , d ∈ [1, 2]

2−m ≤ d − c → c2 <m d2.

Then hg (u, n) := c
(u)
n , as constructed in the IVT for x2 − u,

iterating IVTAux. The Cauchy modulus αg is such that
(2/3)n ≤ 2−k+3 for n ≥ αg (k), and the modulus of uniform
continuity is ωf (k) := k + 2.

Program extraction

Formalization: many details. Important: representation of data.
Here: direct approach, by explicitely building the required number
systems (natural numbers in binary, rationals, reals as Cauchy
sequences of rationals with a modulus, continuous functions in the
sense of the type-1 representation described above, etc.)

Method of program extraction based on modified realizability

Animation

Suppose a proof of a theorem uses a lemma.

I Then the proof term contains the name of the lemma, say L.

I In the term extracted from this proof we want to preserve the
structure of the original proof. So we use a new constant cL
at places where the computational content of the lemma is
needed.

I When we want to execute the program, we have to replace
the constant cL corresponding to a lemma L by the extracted
program of its proof. This can be achieved by adding
computation rules for cL.

I We can be rather flexible here and enable/block rewriting by
using animate/deanimate as desired.

Let

It often happens that a subterm has many occurrences in a term,
which leads to unwanted recomputations when evaluating it.

I Cure: “optimize” the term after extraction, and replace for
instance M[x := N] with many occurrences of x in M by
(λxM)N (or a corresponding “let”-expression).

I This can already be done at the proof level: When an object
(value of a variable or realizer of a premise) is used more than
once, make sure (if necessary by a cut) that the goal has the
form A → B or ∀xA.

I Now use the “identity lemma” Id : P̂ → P̂, with a predicate
variable P̂. Its realizer then has the form λf , x .fx .

I If cId is not animated, the extracted term has the form
cId(λxM)N, which is printed as [let x N M].

Quantifiers without computational content

Besides the usual quantifiers, ∀ and ∃, Minlog has so-called
non-computational quantifiers, ∀nc and ∃nc, which allow for the
extraction of simpler programs.

I The nc-quantifiers, which were first introduced by Berger
(1993), can be viewed as a refinement of the Set/Prop
distinction in constructive type systems like Coq or Agda.

I Intuitively, a proof of ∀nc
x A(x) (A(x) non-Harrop) represents a

procedure that assigns to every x a proof M(x) of A(x) where
M(x) does not make “computational use” of x , i.e., the
extracted program [[M(x)]] does not depend on x .

I Dually, a proof of ∃nc
x A(x) is a proof of M(x) for some x

where the witness x is “hidden”, that is, not available for
computational use.

Conclusion

I Constructive analysis with witnesses of low type level. Type
level 1 representation of continuous functions.

I Extraction of reasonable programs is possible.

