Inverting monotone continuous functions in constructive analysis

Helmut Schwichtenberg

Mathematisches Institut der Universität München

CiE, Swansea, 3. July 2006

Contents

- 1. Motivation
- 2. Tools: Reals, continuous functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

3. Inverse functions

Motivation

- "Mathematics as a numerical language".
- Extract programs from proofs, for exact real numbers.
- Special emphasis on low type level witnesses (making use of separability).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

... for algorithmically reasonable proofs: Small variants of Bishop/Bridges' development of constructive analysis.

Idea: use separability to avoid high type levels. Where?

- "Order located" instead of "totally bounded".
- Continuity in \mathbb{R} , and \mathbb{R}^2 .
- Uniformly convergent sequences of functions.

Reals

A real number x is a pair $((a_n)_{n\in\mathbb{N}}, \alpha)$ with $a_n \in \mathbb{Q}$ and $\alpha \colon \mathbb{N} \to \mathbb{N}$ such that $(a_n)_n$ is a Cauchy sequence with modulus α , that is

$$\forall_{k,n,m} \left(\alpha(k) \leq n, m \to |a_n - a_m| \leq 2^{-k} \right),$$

and α is weakly increasing.

Two reals $x := ((a_n)_n, \alpha)$, $y := ((b_n)_n, \beta)$ are equivalent (written x = y), if $\forall_k |a_{\alpha(k+1)} - b_{\beta(k+1)}| \le 2^{-k}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nonnegative and positive reals

A real $x := ((a_n)_n, \alpha)$ is nonnegative (written $x \in \mathbb{R}^{0+}$) if

$$\forall_k - 2^{-k} \leq a_{\alpha(k)}$$

It is k-positive (written $x \in_k \mathbb{R}^+$) if

$$2^{-k} \leq a_{\alpha(k+1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $x \in \mathbb{R}^{0+}$ and $x \in_k \mathbb{R}^+$ are compatible with equivalence. Can define $x \mapsto k_x$ such that $a_n \leq 2^{k_x}$ for all n. However, $x \mapsto k_x$ is not compatible with equivalence.

Arithmetical functions

Given $x := ((a_n)_n, \alpha)$ and $y := ((b_n)_n, \beta)$, define

Z	Cn	$\gamma(k)$
x + y	$a_n + b_n - a_n$	$\max(\alpha(k+1),\beta(k+1))$
-x	$-a_n$	$\alpha(k)$
x	$ a_n $ $a_n \cdot b_n$	$\alpha(k)$
$x \cdot y$	$a_n \cdot b_n$	$\max(lpha(k+1+k_{ \mathcal{Y} }),\ eta(k+1+k_{ \mathcal{X} }))$
		$\beta(k+1+k_{ x }))$
$rac{1}{x}$ for $ x \in_I \mathbb{R}^+$	$\begin{cases} \frac{1}{a_n} & \text{if } a_n \neq 0\\ 0 & \text{if } a_n = 0 \end{cases}$	$\alpha(2(l+1)+k)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

After some computations involving reals, rationals in the Cauchy sequences may become complex. Hence: clean up a real, as follows.

Lemma

For every real $x = ((a_n)_n, \alpha)$ we can construct an equivalent real $y = ((b_n)_n, \beta)$ where the rationals b_n are of the form $c_n/2^n$ with integers c_n , and with modulus $\beta(k) = k + 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

 $c_n := \lfloor a_{\alpha(n)} \cdot 2^n \rfloor.$

Redundant dyadic representation of reals

The existence of the usual *b*-adic representation of reals cannot be proved constructively (1.000... vs .999...). Cure: in addition to $0, \ldots, b-1$ also admit -1 as a numeral. For b = 2:

Lemma

Every real x can be represented in the form

$$\sum_{n=-k}^{\infty}a_n2^{-n}$$
 with $a_n\in\{-1,0,1\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice: uniqueness is lost (this is not a problem).

Comparison of reals

Write
$$x \leq y$$
 for $y - x \in \mathbb{R}^{0+}$ and $x < y$ for $y - x \in \mathbb{R}^+$.
 $x \leq y \leftrightarrow \forall_k \exists_p \forall_{n \geq p} a_n \leq b_n + 2^{-k}$
 $x < y \leftrightarrow \exists_{k,q} \forall_{n \geq q} a_n + 2^{-k} \leq b_n$

Write $x <_{k,q} y$ (or simply $x <_k y$ if q is not needed) when we want to call these witnesses. Notice:

$$x \leq y \leftrightarrow y \not< x.$$

Continuous functions

A continuous function $f: I \to \mathbb{R}$ on a compact interval I with rational end points is given by

- ▶ an approximating map $h_f : (I \cap \mathbb{Q}) \times \mathbb{N} \to \mathbb{Q}$,
- a (uniform) modulus map α_f: N → N such that (h_f(c, n))_n is a real with modulus α_f;
- $\omega_f : \mathbb{N} \to \mathbb{N}$ (uniform) modulus of continuity:

$$|\mathsf{a}-\mathsf{b}| \leq 2^{-\omega_f(k)+1}
ightarrow |h_f(\mathsf{a},\mathsf{n}) - h_f(\mathsf{b},\mathsf{n})| \leq 2^{-k}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $n \ge \alpha_f(k)$. α_f , ω_f required to be weakly increasing. Notice: h_f , α_f , ω_f are of type level 1 only.

Application of a continuous function to a real

Definition

Given a continuous function f (by h_f , α_f , ω_f) and a real $x := ((a_n)_n, \alpha)$, application f(x) is defined to be

 $(h_f(a_n, n))_n$

with modulus $k \mapsto \max(\alpha_f(k+2), \alpha(\omega_f(k+1)-1))$.

Lemma

$$egin{aligned} &x=y
ightarrow f(x)=f(y),\ &|x-y|\leq 2^{-\omega_f(k)}
ightarrow |f(x)-f(y)|\leq 2^{-k} \end{aligned}$$

•

Intermediate value theorem

Let a < b be rationals. If $f: [a, b] \to \mathbb{R}$ is continuous with $f(a) \le 0 \le f(b)$, and with a uniform lower bound on its slope, then we can find $x \in [a, b]$ such that f(x) = 0.

Proof sketch.

- 1. Approximate Splitting Principle. Let x, y, z be given with x < y. Then either $z \le y$ or $x \le z$.
- 2. IVTAux. Assume $a \le c < d \le b$, say $2^{-n} < d c$, and $f(c) \le 0 \le f(d)$. Construct c_1, d_1 with $d_1 c_1 = \frac{2}{3}(d c)$, such that $a \le c \le c_1 < d_1 \le d \le b$ and $f(c_1) \le 0 \le f(d_1)$.
- 3. IVTcds. Iterate the step $c, d \mapsto c_1, d_1$ in IVTAux.

Let $x = (c_n)_n$ and $y = (d_n)_n$ with the obvious modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

Inverse functions

Theorem

Let $f: [a, b] \to \mathbb{R}$ be continuous with a uniform lower bound on its slope. Let $f(a) \le a' < b' \le f(b)$. We can find a continuous $g: [a', b'] \to \mathbb{R}$ such that f(g(y)) = y for every $y \in [a', b']$ and g(f(x)) = x for every $x \in [a, b]$ such that $a' \le f(x) \le b'$.

Proof sketch.

Let $f(a) \le a' < b' \le f(b)$. Construct a continuous $g: [a', b'] \to \mathbb{R}$ by the Intermediate Value Theorem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: squaring $f: [1,2] \rightarrow [1,4]$

Given by

- the approximating map $h_f(a, n) := a^2$,
- the uniform Cauchy modulus $\alpha_f(k) := 1$, and
- the modulus $k \mapsto k + 1$ of uniform continuity.

The lower bound on its slope is I := 0, because for all $c, d \in [1, 2]$

$$2^{-m} \leq d-c \to c^2 <_m d^2.$$

(日) (同) (三) (三) (三) (○) (○)

Then $h_g(u, n) := c_n^{(u)}$, as constructed in the IVT for $x^2 - u$, iterating IVTAux. The Cauchy modulus α_g is such that $(2/3)^n \le 2^{-k+3}$ for $n \ge \alpha_g(k)$, and the modulus of uniform continuity is $\omega_f(k) := k + 2$.

Formalization: many details. Important: representation of data. Here: direct approach, by explicitely building the required number systems (natural numbers in binary, rationals, reals as Cauchy sequences of rationals with a modulus, continuous functions in the sense of the type-1 representation described above, etc.)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Method of program extraction based on modified realizability

Animation

Suppose a proof of a theorem uses a lemma.

- ▶ Then the proof term contains the name of the lemma, say L.
- In the term extracted from this proof we want to preserve the structure of the original proof. So we use a new constant cL at places where the computational content of the lemma is needed.
- When we want to execute the program, we have to replace the constant cL corresponding to a lemma L by the extracted program of its proof. This can be achieved by adding computation rules for cL.
- We can be rather flexible here and enable/block rewriting by using animate/deanimate as desired.

It often happens that a subterm has many occurrences in a term, which leads to unwanted recomputations when evaluating it.

- ► Cure: "optimize" the term after extraction, and replace for instance M[x := N] with many occurrences of x in M by (λxM)N (or a corresponding "let"-expression).
- This can already be done at the proof level: When an object (value of a variable or realizer of a premise) is used more than once, make sure (if necessary by a cut) that the goal has the form A → B or ∀_xA.
- Now use the "identity lemma" Id: P̂ → P̂, with a predicate variable P̂. Its realizer then has the form λf, x.fx.
- If cId is not animated, the extracted term has the form cId(λxM)N, which is printed as [let x N M].

Quantifiers without computational content

Besides the usual quantifiers, \forall and \exists , Minlog has so-called non-computational quantifiers, \forall^{nc} and \exists^{nc} , which allow for the extraction of simpler programs.

- The nc-quantifiers, which were first introduced by Berger (1993), can be viewed as a refinement of the Set/Prop distinction in constructive type systems like Coq or Agda.
- Intuitively, a proof of ∀^{nc}_x A(x) (A(x) non-Harrop) represents a procedure that assigns to every x a proof M(x) of A(x) where M(x) does not make "computational use" of x, i.e., the extracted program [[M(x)]] does not depend on x.
- Dually, a proof of ∃^{nc}_xA(x) is a proof of M(x) for some x where the witness x is "hidden", that is, not available for computational use.

Conclusion

 Constructive analysis with witnesses of low type level. Type level 1 representation of continuous functions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

• Extraction of reasonable programs is possible.