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Motivation

» “Mathematics as a numerical language”.
» Extract programs from proofs, for exact real numbers.

» Special emphasis on low type level witnesses (making use of
separability).



Tools

... for algorithmically reasonable proofs: Small variants of
Bishop/Bridges’ development of constructive analysis.

Idea: use separability to avoid high type levels. Where?
> “Order located” instead of “totally bounded"”.

» Continuity in R, and R2.
» Uniformly convergent sequences of functions.



Reals

A real number x is a pair ((an)nen, @) with a, € Q and a: N - N
such that (a,), is a Cauchy sequence with modulus «, that is

Vi.nm (a(k) <nm-—|a,—am| < 2"‘),
and « is weakly increasing.
Two reals x := ((an)n, @), ¥y := ((bn)n, 3) are equivalent (written

x=y),if
Viclaa(ks1) — brrn) <275,



Nonnegative and positive reals

A real x := ((an)n, @) is nonnegative (written x € ROt) if
Vie—27K < ag (-
It is k-positive (written x €, R1) if
27k < Ao (k+1)-

x € R and x €, R are compatible with equivalence.
Can define x — ky such that a, < 2% for all n.
However, x — k, is not compatible with equivalence.



Arithmetical functions

Given x := ((an)n, ) and y := ((bp)n, 3), define

V4 Cn ’Y(k)
X+y an+ by max(a(k + 1), B(k + 1))
—X —ap a(k)
[x] |an| a(k)
Xy an - by max(a(k + 1+ k),
,3(/( + 1+ k|X|))
L oifa,#0
Lfor x| g/ R+ |{an an 7 a(2(1+ 1) + k)
x 0 ifa,=0



Cleaning up a real

After some computations involving reals, rationals in the Cauchy
sequences may become complex. Hence: clean up a real, as
follows.

Lemma

For every real x = ((an)n, ) we can construct an equivalent real
y = ((bn)n, 3) where the rationals b,, are of the form c,/2" with
integers c,, and with modulus (k) = k + 2.

Proof.
Cp 1= Laa(n) : 2"J.



Redundant dyadic representation of reals

The existence of the usual b-adic representation of reals cannot be
proved constructively (1.000... vs .999...). Cure: in addition to
0,...,b—1 also admit —1 as a numeral. For b = 2:

Lemma
Every real x can be represented in the form

(o]
> 2,27 with a, € {~1,0,1}.
n=—k

Notice: uniqueness is lost (this is not a problem).



Comparison of reals

Write x < y for y — x € R and x < y for y — x € RT.

X <y e YV 3pVnspan < by +27K

X <y Ihg¥nsgan+275 < b,

Write x <) q v (or simply x <, y if q is not needed) when we
want to call these witnesses. Notice:

XSyeoyLx



Continuous functions

A continuous function f: I — R on a compact interval | with
rational end points is given by

» an approximating map hs: (INQ) x N — Q,

» a (uniform) modulus map af: N — N such that (h¢(c, n)), is
a real with modulus af;

» wr: N — N (uniform) modulus of continuity:
|la— b| < 27T — |he(a, n) — he(b,n)] <27%

for n > af(k).  af, wr required to be weakly increasing.

Notice: hf, af, wr are of type level 1 only.



Application of a continuous function to a real

Definition
Given a continuous function f (by hf, af, wr) and a real
x := ((an)n, @), application f(x) is defined to be

(ht(an, n))n
with modulus k — max(ar(k + 2), a(wr(k + 1) — 1)).

Lemma

x =y —f(x)=1(y),
x =yl <277 — Jf(x) — f(y)] < 27K,



Intermediate value theorem

Let a < b be rationals. If f: [a, b] — R is continuous with
f(a) <0 < f(b), and with a uniform lower bound on its slope,
then we can find x € [a, b] such that f(x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x, y, z be given with
x < y. Then either z < y or x < z.

2. IVTAux. Assumea<c<d<b,say27"<d—c, and
f(c) <0< f(d). Construct c1,dy with di — c; = 3(d — ¢),
suchthata<c<¢ <di <d<band f(c) <0< f(dr).

3. IVTcds. lterate the step ¢,d — ¢y, di in IVTAux.

Let x = (cn)n and y = (dp), with the obvious modulus. As f is
continuous, f(x) =0 = f(y) for the real number x = y.



Inverse functions

Theorem

Let f: [a, b] — R be continuous with a uniform lower bound on its
slope. Let f(a) < a < b’ < f(b). We can find a continuous

g: [d,b'] — R such that f(g(y)) =y for every y € [d',b/] and
g(f(x)) = x for every x € [a, b] such that &’ < f(x) < b'.

Proof sketch.
Let f(a) < &' < b’ < f(b). Construct a continuous g: [d',b'] — R
by the Intermediate Value Theorem. []



Example: squaring f: [1,2] — [1, 4]

Given by
> the approximating map h¢(a, n) := a2,
» the uniform Cauchy modulus af(k) := 1, and
» the modulus k — k 4 1 of uniform continuity.

The lower bound on its slope is / := 0, because for all ¢,d € [1,2]
27M<d—c— c? <,y d

Then hg(u, n) := c,(,”), as constructed in the IVT for x2 — u,
iterating IVTAux. The Cauchy modulus ay is such that
(2/3)" < 27k+3 for n > a,(k), and the modulus of uniform
continuity is wr(k) := k + 2.



Program extraction

Formalization: many details. Important: representation of data.
Here: direct approach, by explicitely building the required number
systems (natural numbers in binary, rationals, reals as Cauchy
sequences of rationals with a modulus, continuous functions in the
sense of the type-1 representation described above, etc.)

Method of program extraction based on modified realizability



Animation

Suppose a proof of a theorem uses a lemma.
» Then the proof term contains the name of the lemma, say L.

» In the term extracted from this proof we want to preserve the
structure of the original proof. So we use a new constant cL
at places where the computational content of the lemma is
needed.

» When we want to execute the program, we have to replace
the constant cL corresponding to a lemma L by the extracted
program of its proof. This can be achieved by adding
computation rules for cL.

» We can be rather flexible here and enable/block rewriting by
using animate/deanimate as desired.



Let

It often happens that a subterm has many occurrences in a term,
which leads to unwanted recomputations when evaluating it.

» Cure: “optimize” the term after extraction, and replace for
instance M[x := N] with many occurrences of x in M by
(AXM)N (or a corresponding “let"-expression).

» This can already be done at the proof level: When an object
(value of a variable or realizer of a premise) is used more than
once, make sure (if necessary by a cut) that the goal has the
form A — B or V,A.

» Now use the “identity lemma” Id: P — P, with a predicate
variable P. lts realizer then has the form \f, x.fx.

» If cId is not animated, the extracted term has the form
cId(AxM)N, which is printed as [Llet x N M)].



Quantifiers without computational content

Besides the usual quantifiers, ¥V and 3, Minlog has so-called
non-computational quantifiers, ¥Y"¢ and 3", which allow for the
extraction of simpler programs.

» The nc-quantifiers, which were first introduced by Berger
(1993), can be viewed as a refinement of the Set/Prop
distinction in constructive type systems like Coq or Agda.

> Intuitively, a proof of V}°A(x) (A(x) non-Harrop) represents a
procedure that assigns to every x a proof M(x) of A(x) where
M(x) does not make “computational use” of x, i.e., the
extracted program [M(x)] does not depend on x.

» Dually, a proof of 33°A(x) is a proof of M(x) for some x
where the witness x is “hidden”, that is, not available for
computational use.



Conclusion

» Constructive analysis with witnesses of low type level. Type
level 1 representation of continuous functions.

» Extraction of reasonable programs is possible.



