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Exact real numbers

can be given in different formats:

I Cauchy sequences (of rationals, with Cauchy modulus).

I Infinite sequences (“streams”) of signed digits {−1, 0, 1}, or

I {−1, 1,⊥} with at most one ⊥ ( “undefined”): Gray code.

Want formally verified algorithms on reals given as streams.

I Consider formal proofs M and apply realizability to extract
their computational content.

I Switch between different formats of reals by decoration.
Example:

∀xA 7→ ∀ncx (x ∈ coI → A)).

I Computational content of x ∈ coI is a stream representing x .
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A real number can be represented as a Cauchy sequence (an)n of
rationals together with a Cauchy modulus M satisfying

|an − am| ≤
1

2p
for n,m ≥ M(p).

Arithmetical operations on real numbers x , y are defined by

cn L(p)

x + y an + bn max
(
M(p + 1),N(p + 1)

)
−x −an M(p)
|x | |an| M(p)
x · y an · bn max

(
M(p + 1 + py ),N(p + 1 + px)

)
1
x for |x | ∈q R+

{
1
an

if an 6= 0

0 if an = 0
M(2(q + 1) + p)

where 2px is the upper bound of x provided by the Archimedian
property.
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Representation of real numbers x ∈ [−1, 1]
Dyadic rationals:∑

n<m

kn
2n+1

with kn ∈ {−1, 1}.
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16
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16

1̄ 1

1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1

with 1̄ := −1. Adjacent dyadics can differ in many digits:

7

16
∼ 11̄11,

9

16
∼ 111̄1̄.
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Cure: flip after 1. Binary reflected (or Gray-) code.
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7

16
∼ RRRL,

9

16
∼ RLRL.
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Problem with productivity:

1̄111 + 11̄1̄1̄ · · · = ? (or LRLL . . . + RRRL · · · = ?)

What is the first digit? Cure: delay.

I For binary code: add 0. Signed digit code∑
n<m

kn
2n+1

with kn ∈ {−1, 0, 1}.

Widely used for real number computation. There is a lot of
redundancy: 1̄1 and 01̄ both denote −1

4 .

I For Gray-code: add U (undefined), D (delay), FinL/R (finally
left / right). Pre-Gray code.
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Pre-Gray code
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R
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U
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R

FinR
D

FinL

R
U

U
L

FinR FinL
D U

L

Can remove Fina (by U ◦ Fina 7→ a ◦ R, D ◦ Fina 7→ Fina ◦ L)

RRRLLL . . . RLRLLL . . . RUDDDD . . .

all denote 1
2 . Only keep the latter to denote 1

2 .
Result: unique representation, called pure Gray code.
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Average for signed digit streams

Goal:

x , y ∈ coI → x + y

2
∈ coI .

I Need to accomodate streams in our logical framework.

I Model streams as “cototal objects” in the (free) algebra I
given by the single constructor C : SD→ I→ I.

Intuitively, k0, k1, k2 . . . represents

∞∑
n=0

kn
2n+1

with kn ∈ {−1, 0, 1}.
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Φ(X ) := { x | ∃k∈SD∃x ′∈X (x =
x ′ + k

2
) }.

Then

I := µXΦ(X ) least fixed point
coI := νXΦ(X ) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩ X ) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪ X )→ X ⊆ coI coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property Φ(X ) = X ).
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Goal: compute the average of two stream-coded reals. Prove

x , y ∈ coI → x + y

2
∈ coI .

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P,Q of averages, Q with a “carry” i ∈ Z:

P := { x + y

2
| x , y ∈ coI }, Q := { x + y + i

4
| x , y ∈ coI , i ∈ SD2 },

Suffices: Q satisfies the clause coinductively defining coI . Then by
the greatest-fixed-point axiom for coI we have Q ⊆ coI . Since also
P ⊆ Q we obtain P ⊆ coI , which is our claim.
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Q satisfies the coI -clause:

i ∈ SD2 → x , y∈coI → ∃j∈SD2∃k∈SD∃x ′,y ′∈coI (
x + y + i

4
=

x ′+y ′+j
4 + k

2
).

Proof. Define J,K : Z→ Z such that

i = J(i) + 4K (i), |J(i)| ≤ 2, |i | ≤ 6→ |K (i)| ≤ 1.

Then we can relate x+k
2 and x+y+i

4 by

x+k
2 + y+l

2 + i

4
=

x+y+J(k+l+2i)
4 + K (k + l + 2i)

2
.
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By coinduction we obtain Q ⊆ coI :

∃i∈SD2∃x ,y∈coI (z =
x + y + i

4
)→ z ∈ coI .

This gives our claim

x , y ∈ coI → x + y

2
∈ coI .

Implicit algorithm. P ⊆ Q computes the first “carry” i ∈ SD2 and
the tails of the inputs. Then f : SD2 × I× I→ I defined
corecursively by

f (i ,Cd(u),Ce(v)) = CK(k+l+2i)(f (J(k + l + 2i), u, v))

is called repeatedly and computes the average step by step.
(Here (k , d), (l , e) ∈ SDr).
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Realizability

Define the realizability extension Φr of Φ by

Φr(Y ) := { (x , u) | ∃(k,d)∈SDr∃(x ′,u′)∈Y (x =
x ′ + k

2
∧ u = Cd(u′)) }

Let

I r := µY Φr(Y ) least fixed point

(coI )r := νY Φr(Y ) greatest fixed point.

They satisfy the (strengthened) axioms

Φr(I r ∩ Y ) ⊆ Y → I r ⊆ Y induction

Y ⊆ Φr((coI )r ∪ Y )→ Y ⊆ (coI )r coinduction.
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From the proof M of

x , y ∈ coI → x + y

2
∈ coI

extract a term et(M). The Soundness theorem gives a proof of

et(M) r ∀x ,y (x , y ∈ coI → x + y

2
∈ coI ).

Brouwer-Heyting-Kolmogorov interpretation:

u r (x ∈ coI )→ v r (y ∈ coI )→ et(M)(u, v) r (
x + y

2
∈ coI ).

This is a formal verification that et(M) computes the average
w.r.t. signed digit streams.
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Average for pre-Gray code

Method essentially the same as for signed digit streams.

I Only need to insert a different computational content to the
predicates expressing how a real x is given.

I Instead of coI for signed digit streams we now need two such
predicates coG and coH, corresponding to the two “modes” in
pre-Gray code.

15 / 18



Method also works for multiplication and division:

x , y ∈ coI → x + y

2
∈ coI ,

x , y ∈ coI → x · y ∈ coI ,

x , y ∈ coI → 1

4
≤ y → x

y
∈ coI ,

both w.r.t. signed digit and Gray code.
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Conclusion

I Want formally verified algorithms on real numbers given as
streams (signed digits or pre-Gray code).

I Consider formal proofs M and apply realizability to extract
their computational content.

I Switch between different representations of reals by
relativising x to a coinductive predicate whose computational
content is a stream representing x .

I The desired algorithm is obtained as the extracted term et(M)
of the proof M.

I Verification by (automatically generated) formal soundness
proof of the realizability interpretation.
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