
Proofs
Uniformity

Decorating proofs

Helmut Schwichtenberg (with Diana Ratiu)

Mathematisches Institut, LMU, München

Classical Logic and Computation, Reykjavik, 13. July 2008

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.
Possibility of program development by proof transformation
(Goad 1980).

I Discover unexpected content:
I U. Berger 1993: Tait’s proof of the existence of normal forms

for the typed λ-calculus ⇒ “normalization by evaluation”.
I Content in weak (or “classical”) existence proofs, of

∃̃xA := ¬∀x¬A,

via proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Falsity as a predicate variable ⊥

In some proofs no knowledge about F is required. Then a predicate
variable ⊥ instead of F will do, and we can define

∃̃yG := ∀y (G → ⊥) → ⊥.

Why is this of interest? We can substitute an arbitrary formula for
⊥, for instance, ∃yG . Then a proof of ∃̃yG is turned into a proof of

∀y (G → ∃yG) → ∃yG .

As the premise is provable, we have a proof of ∃yG . –
(A-translation; H. Friedman 1978, Dragalin 1979).

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Problems

Unfortunately, this simple argument is not quite correct.

I G may contain ⊥, and hence is changed under the
substitution ⊥ 7→ ∃yG .

I We may have used axioms or lemmata involving ⊥ (e.g.,
⊥ → P), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something
useful. Assume that

I the lemmata ~D and the goal formula G are such that we can
derive ~D → Di [⊥ := ∃yG], G [⊥ := ∃yG] → ∃yG .

I the substitution ⊥ 7→ ∃yG turns the axioms into instances of
the same scheme with different formulas, or else into derivable
formulas.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Problems (continued)

Then from our given derivation (in minimal logic) of
~D → ∀y (G → ⊥) → ⊥ we obtain

~D[⊥ := ∃yG] → ∀y (G [⊥ := ∃yG] → ∃yG) → ∃yG .

Now ~D → Di [⊥ := ∃yG] allows to drop the substitution in ~D, and
by G [⊥ := ∃yG] → ∃yG the second premise is derivable. Hence we
obtain as desired

~D → ∃yG .

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Definite and goal formulas

A formula is relevant if it “ends” with ⊥. More precisely:

I ⊥ is relevant,

I if C is relevant and B is arbitrary, then B → C is relevant, and

I if C is relevant, then ∀xC is relevant.

We define goal formulas G and definite formulas D inductively.
P ranges over prime formulas (including ⊥).

G ::= P | D → G if G relevant & D irrelevant ⇒ D quantifier-free

| ∀xG if G irrelevant,

D ::= P | G → D if D irrelevant ⇒ G irrelevant

| ∀xD.

Let AF denote A[⊥ := F].

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Properties of definite and goal formulas

Lemma
For definite formulas D and goal formulas G we have derivations
from F → ⊥ of

((DF → F) → ⊥) → D for D relevant,

DF → D,

G → GF for G irrelevant,

G → (GF → ⊥) → ⊥.

Lemma
For goal formulas ~G = G1, . . . ,Gn we have a derivation from
F → ⊥ of

(~GF → ⊥) → ~G → ⊥.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Elimination of ⊥ from weak existence proofs

Assume that for arbitrary formulas ~A, definite formulas ~D and goal
formulas ~G we have a derivation of

~A → ~D → ∀~y (~G → ⊥) → ⊥.

Then we can also derive

(F → ⊥) → ~A → ~DF → ∀~y (~GF → ⊥) → ⊥.

In particular, substitution of the formula

∃~y
~GF := ∃~y (GF

1 ∧ · · · ∧ GF
n)

for ⊥ yields
~A[⊥ := ∃~y

~GF] → ~DF → ∃~y
~GF.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

The type of a formula

I Every formula A can be seen as a computational problem
(Kolmogorov). We define τ(A) as the type of a potential
realizer of A, i.e., the type of the term to be extracted from a
proof of A.

I Assign A 7→ τ(A) (a type or the “nulltype” symbol ε). In case
τ(A) = ε proofs of A have no computational content.

τ(T (x)) := τ(Eq(x , y)) := ε, τ(∃xρA) :=

{
ρ if τ(A) = ε

ρ× τ(A) otherwise,

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

with the convention

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Realizability

Let A be a formula and z either a variable of type τ(A) if it is a
type, or the nullterm symbol ε if τ(A) = ε. We define the formula
z r A, to be read z realizes A:

z r Eq(r , s) := Eq(r , s),

z r T (r) := T (r),

z r ∃xA(x) :=

{
A(z) if τ(A) = ε

z0 r A(z1) otherwise,

z r (A → B) := ∀x(x r A → zx r B),

z r ∀xA := ∀x zx r A,

with the convention εx := ε, zε := z , εε := ε.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Extracted terms

For derivations MA with τ(A) = ε let [[M]] := ε (nullterm symbol).
Now assume that M derives a formula A with τ(A) 6= ε.

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B]] := λ
x

τ(A)
u

[[M]],

[[MA→BN]] := [[M]][[N]],

[[(λxρM)∀xA]] := λxρ [[M]],

[[M∀xAr]] := [[M]]r .

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Extracted terms for axioms

The extracted term of an induction axiom is defined to be a
recursion operator. For example, in case of an induction scheme

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
we have

[[Indn,A]] := Rτ
N : N → τ → (N → τ → τ) → τ (τ := τ(A) 6= ε).

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Refined A-translation
Computational content of proofs

Soundness

Theorem
Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions ūi : xui r Ci .

Proof.
Induction on M.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Uniform universal quantifier ∀U and implication →U

I We want to select relevant parts of the computational content
of a proof.

I This will be possible if some “uniformities” hold. Use a
uniform variant ∀U of ∀ (U. Berger 2005) and →U of →.

I Both are governed by the same rules as the non-uniform ones.
However, we will put some uniformity conditions on a proof to
ensure that the extracted computational content is correct.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Extending the definitions of τ(A) and z r A

I The definition of the type τ(A) of a formula A is extended by
the two clauses

τ(A →U B) := τ(B), τ(∀U
xρA) := τ(A).

I The definition of realizability is extended by

z r (A →U B) := (A → z r B), z r (∀U
x A) := ∀x z r A.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Extracted terms and uniform proofs

We define the extracted term of a proof, and (using this concept)
the notion of a uniform proof, which gives a special treatment to
the uniform universal quantifier ∀U and uniform implication →U.

More precisely, for a proof M we simultaneously define

I its extracted term [[M]], of type τ(A), and

I when M is uniform.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Extracted terms and uniform proofs (continued)

For derivations MA where τ(A) = ε let [[M]] := ε (the nullterm
symbol); every such M is uniform. Now assume that M derives a
formula A with τ(A) 6= ε. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B]] := λ
x

τ(A)
u

[[M]],

[[MA→BN]] := [[M]][[N]],

[[(λxρM)∀xA]] := λxρ [[M]],

[[M∀xAr]] := [[M]]r ,

[[(λuAM)A→
UB]] := [[MA→UBN]] := [[(λxρM)∀

U
x A]] := [[M∀U

x Ar]] := [[M]].

In all these cases uniformity is preserved, except possibly in those
involving λ:

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Extracted terms and uniform proofs (continued)

Consider

[u : A]

| M
B

(→U)+ u
A →U B

or as term (λuAM)A→
UB .

(λuAM)A→
UB is uniform if M is and xu /∈ FV([[M]]). Similarly:

Consider

| M
A

(∀U)+ x
∀U

x A

or as term (λxM)∀
U
x A (VarC).

(λxM)∀
U
x A is uniform if M is and x /∈ FV([[M]]).

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Why uniformity?

I Suppose that in a proof M we have made use of a case
distinction based on a lemma stating a disjunction: L : A ∨ B.

I Then the extract [[M]] will contain the extract [[L]] of the proof
of the auxiliary lemma, which may be large.

I Suppose further that in the proof M, the only computationally
relevant use of the lemma was which one of the two
alternatives holds true, A or B.

I We can express this fact by using a weakened form of the
lemma instead: L′ : A ∨U B.

I Since the extract [[L′]] is a boolean, the extract of the modified
proof has been “purified” in the sense that the (possibly large)
extract [[L]] has disappeared.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Decorating proofs

Goal: “optimal” insertion of uniformity marks into a proof.

I The sequent Seq(M) of a proof M consists of its context and
its end formula.

I The uniform proof pattern UP(M) of a proof M is the result
of changing in M all occurrences of →,∀,∃,∧ in its formulas
into their uniform counterparts →U,∀U,∃U,∧U, except the
uninstantiated formulas of axioms and theorems.

I A formula D extends C if D is obtained from C by changing
some connectives into one of their more informative versions,
according to the following ordering: →U≤→, ∀U ≤ ∀,
∃U ≤ ∃L,∃R ≤ ∃ and ∧U ≤ ∧L,∧R ≤ ∧.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Decorating proofs (continued)

I A proof N extends M if (1) UP(M) = UP(N), and (2) each
formula in N extends the corresponding one in M. In this case
FV([[N]]) is essentially (i.e., up to extensions of assumption
formulas) a superset of FV([[M]]).

I Every proof M whose uniform proof pattern UP(M) is U is
called a decoration of U.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Decoration algorithm

We define a decoration algorithm, assigning to every uniform proof
pattern U and every extension of its sequent an “optimal”
decoration M∞ of U, which further extends the given extension.
Need such an algorithm for every axiom. Examle: induction.

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
.

I The given extension of the four A’s might be different. One
needs to pick their “least upper bound” as further extension.

I If τ(A) 6= ε, the →,∀ must be made proper.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Decoration algorithm

Theorem (Ratiu, S)

For every uniform proof pattern U and every extension of its
sequent Seq(U) we can find a decoration M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Proof, by induction on U
Case (→U)−. Consider a uniform proof pattern

Φ, Γ

| U
A →U B

Γ,Ψ

| V
A

(→U)−
B

Given: extension Π,∆,Σ ⇒ D of Φ, Γ,Ψ ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆ ⇒ A→UD 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 →̆ D1 extends Π,∆ ⇒ A→UD.

I IHa(V) for the extension ∆1,Σ ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →̆ D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→̆D3 extends Π1,∆2 ⇒ C2→̆D1.

I IHa(V) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Example: list reversal (U. Berger)
Define the graph Rev of the list reversal function inductively, by

Rev(nil,nil), (1)

Rev(v ,w) → Rev(v :+: x :, x :: w). (2)

We prove weak existence of the reverted list:

∀v∈T ∃̃w∈TRev(v ,w) (:= ∀v∈T

(
∀w∈T (Rev(v ,w) → ⊥) → ⊥

)
).

Fix v and assume u : ∀w∈T¬Rev(v ,w). To show ⊥. To this end
we prove that all initial segments of v are non-revertible, which
contradicts (1). More precisely, from u and (2) we prove

∀v2∈TA(v2), A(v2) := ∀v1∈T

(
v1 :+: v2 = v → ∀w∈T¬Rev(v1,w)

)
by induction on v2. Base v2 = nil: Use u. Step. Assume
v1 :+: (x :: v2) = v , fix w and assume further Rev(v1,w).
Properties of the append function imply that (v1 :+: x :) :+: v2 = v .
IH for v1 :+: x : gives ∀w∈T¬Rev(v1 :+: x :,w). Now (2) yields ⊥.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Results of demo

I Weak existence proof formalized.

I Translated into an existence proof. Extracted algorithm:
f (v1) := h(v1,nil,nil) with

h(nil, v2, v3) := v3, h(x :: v1, v2, v3) := h(v1, v2:+:x :, x :: v3).

The second argument of h is not needed, but makes the
algorithm quadratic. (In each recursion step v2 :+: x : is
computed, and the list append function :+: is defined by
recursion over its first argument.)

I Optimal decoration of existence proof computed. Extracted
algorithm: f (v1) := g(v1,nil) with

g(nil, v2) := v2, g(x :: v1, v2) := g(v1, x :: v2).

This is the usual linear algorithm, with an accumulator.

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

Proofs
Uniformity

Uniform proofs
Decorating proofs
Example: list reversal

Future work

I Explore applications of refined A-translation and automated
decoration: Combinatorics, Gröbner bases (Diana Ratiu).

I Logic of inductive definitions: Include formal neighborhoods
into the language (Basil Karadais).

I Compare refined A-translation and Gödel’s Dialectica
interpretation (Trifon Trifonov).

Helmut Schwichtenberg (with Diana Ratiu) Decorating proofs

	Proofs
	Refined A-translation
	Computational content of proofs

	Uniformity
	Uniform proofs
	Decorating proofs
	Example: list reversal

