Decorating proofs

Helmut Schwichtenberg (with Diana Ratiu)

Mathematisches Institut, LMU, München

Classical Logic and Computation, Reykjavik, 13. July 2008

Why extract computational content from proofs?

- ▶ Proofs are machine checkable ⇒ no logical errors.
- Program on the proof level ⇒ maintenance becomes easier. Possibility of program development by proof transformation (Goad 1980).
- Discover unexpected content:
 - ▶ U. Berger 1993: Tait's proof of the existence of normal forms for the typed λ -calculus \Rightarrow "normalization by evaluation".
 - ▶ Content in weak (or "classical") existence proofs, of

$$\tilde{\exists}_{x}A:=\neg\forall_{x}\neg A,$$

via proof interpretations: (refined) A-translation or Gödel's Dialectica interpretation.

Falsity as a predicate variable \perp

In some proofs no knowledge about ${\bf F}$ is required. Then a predicate variable \perp instead of ${\bf F}$ will do, and we can define

$$\tilde{\exists}_y G := \forall_y (G \to \bot) \to \bot.$$

Why is this of interest? We can substitute an arbitrary formula for \bot , for instance, $\exists_y G$. Then a proof of $\tilde{\exists}_y G$ is turned into a proof of

$$\forall_y (G \to \exists_y G) \to \exists_y G.$$

As the premise is provable, we have a proof of $\exists_y G$. – (A-translation; H. Friedman 1978, Dragalin 1979).

Problems

Unfortunately, this simple argument is not quite correct.

- ▶ *G* may contain \bot , and hence is changed under the substitution $\bot \mapsto \exists_{V} G$.
- ▶ We may have used axioms or lemmata involving \bot (e.g., $\bot \to P$), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something useful. Assume that

- ▶ the lemmata \vec{D} and the goal formula G are such that we can derive $\vec{D} \to D_i[\bot := \exists_y G], \ G[\bot := \exists_y G] \to \exists_y G.$
- ▶ the substitution $\bot \mapsto \exists_y G$ turns the axioms into instances of the same scheme with different formulas, or else into derivable formulas.

Problems (continued)

Then from our given derivation (in minimal logic) of $\vec{D} \to \forall_y (G \to \bot) \to \bot$ we obtain

$$\vec{D}[\bot := \exists_y G] \rightarrow \forall_y (G[\bot := \exists_y G] \rightarrow \exists_y G) \rightarrow \exists_y G.$$

Now $\vec{D} \to D_i[\bot := \exists_y G]$ allows to drop the substitution in \vec{D} , and by $G[\bot := \exists_y G] \to \exists_y G$ the second premise is derivable. Hence we obtain as desired

$$\vec{D} \to \exists_y G$$
.

Definite and goal formulas

A formula is relevant if it "ends" with \bot . More precisely:

- ▶ ⊥ is relevant,
- ▶ if C is relevant and B is arbitrary, then $B \rightarrow C$ is relevant, and
- ▶ if *C* is relevant, then $\forall_x C$ is relevant.

We define goal formulas G and definite formulas D inductively. P ranges over prime formulas (including \bot).

$$G ::= P \mid D \to G$$
 if G relevant & D irrelevant $\Rightarrow D$ quantifier-free $\mid \forall_x G \mid G$ irrelevant,

$$D ::= P \mid G \rightarrow D \quad \text{if } D \text{ irrelevant} \Rightarrow G \text{ irrelevant} \ \mid \forall_x D.$$

Let $A^{\mathbf{F}}$ denote $A[\bot := \mathbf{F}]$.

Properties of definite and goal formulas

Lemma

For definite formulas D and goal formulas G we have derivations from $\mathbf{F} \to \bot$ of

$$((D^{\mathbf{F}} \to \mathbf{F}) \to \bot) \to D$$
 for D relevant, $D^{\mathbf{F}} \to D$, $G \to G^{\mathbf{F}}$ for G irrelevant, $G \to (G^{\mathbf{F}} \to \bot) \to \bot$.

Lemma

For goal formulas $\vec{G} = G_1, \dots, G_n$ we have a derivation from $\mathbf{F} \to \bot$ of

$$(\vec{G}^{\textbf{F}} \to \bot) \to \vec{G} \to \bot.$$

Elimination of \bot from weak existence proofs

Assume that for arbitrary formulas \vec{A} , definite formulas \vec{D} and goal formulas \vec{G} we have a derivation of

$$\vec{A} \rightarrow \vec{D} \rightarrow \forall_{\vec{y}} (\vec{G} \rightarrow \bot) \rightarrow \bot.$$

Then we can also derive

$$(\mathbf{F} \to \bot) \to \vec{A} \to \vec{D}^{\mathbf{F}} \to \forall_{\vec{y}} (\vec{G}^{\mathbf{F}} \to \bot) \to \bot.$$

In particular, substitution of the formula

$$\exists_{\vec{v}}\vec{G}^{\mathsf{F}} := \exists_{\vec{v}}(G_1^{\mathsf{F}} \wedge \cdots \wedge G_n^{\mathsf{F}})$$

for \perp yields

$$\vec{A}[\bot := \exists_{\vec{y}} \vec{G}^{\mathsf{F}}] \to \vec{D}^{\mathsf{F}} \to \exists_{\vec{y}} \vec{G}^{\mathsf{F}}.$$

The type of a formula

- Every formula A can be seen as a computational problem (Kolmogorov). We define $\tau(A)$ as the type of a potential realizer of A, i.e., the type of the term to be extracted from a proof of A.
- ▶ Assign $A \mapsto \tau(A)$ (a type or the "nulltype" symbol ε). In case $\tau(A) = \varepsilon$ proofs of A have no computational content.

$$\tau(T(x)) := \tau(\text{Eq}(x,y)) := \varepsilon, \quad \tau(\exists_{x^{\rho}} A) := \begin{cases} \rho & \text{if } \tau(A) = \varepsilon \\ \rho \times \tau(A) & \text{otherwise,} \end{cases}$$
$$\tau(A \to B) := (\tau(A) \to \tau(B)), \quad \tau(\forall_{x^{\rho}} A) := (\rho \to \tau(A)),$$

with the convention

$$(\rho \to \varepsilon) := \varepsilon, \quad (\varepsilon \to \sigma) := \sigma, \quad (\varepsilon \to \varepsilon) := \varepsilon.$$

Realizability

Let A be a formula and z either a variable of type $\tau(A)$ if it is a type, or the nullterm symbol ε if $\tau(A) = \varepsilon$. We define the formula z r A, to be read z realizes A:

$$z \mathbf{r} \operatorname{Eq}(r,s) := \operatorname{Eq}(r,s),$$

$$z \mathbf{r} T(r) := T(r),$$

$$z \mathbf{r} \exists_{x} A(x) := \begin{cases} A(z) & \text{if } \tau(A) = \varepsilon \\ z_{0} \mathbf{r} A(z_{1}) & \text{otherwise,} \end{cases}$$

$$z \mathbf{r} (A \to B) := \forall_{x} (x \mathbf{r} A \to zx \mathbf{r} B),$$

$$z \mathbf{r} \forall_{x} A := \forall_{x} zx \mathbf{r} A,$$

with the convention $\varepsilon x := \varepsilon$, $z\varepsilon := z$, $\varepsilon\varepsilon := \varepsilon$.

Extracted terms

For derivations M^A with $\tau(A) = \varepsilon$ let $\llbracket M \rrbracket := \varepsilon$ (nullterm symbol). Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$.

Extracted terms for axioms

The extracted term of an induction axiom is defined to be a recursion operator. For example, in case of an induction scheme

$$\operatorname{Ind}_{n,A} \colon \forall_m (A(0) \to \forall_n (A(n) \to A(\operatorname{S}n)) \to A(m^{\mathbf{N}}))$$

we have

$$\llbracket \operatorname{Ind}_{n,A} \rrbracket := \mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau \quad (\tau := \tau(A) \neq \varepsilon).$$

Soundness

Theorem

Let M be a derivation of A from assumptions u_i : C_i (i < n). Then we can find a derivation of $[\![M]\!]$ \mathbf{r} A from assumptions \bar{u}_i : x_{u_i} \mathbf{r} C_i .

Proof.

Induction on M.

Uniform universal quantifier \forall^{U} and implication \rightarrow^{U}

- We want to select relevant parts of the computational content of a proof.
- This will be possible if some "uniformities" hold. Use a uniform variant ∀^U of ∀ (U. Berger 2005) and →^U of →.
- ▶ Both are governed by the same rules as the non-uniform ones. However, we will put some uniformity conditions on a proof to ensure that the extracted computational content is correct.

Extending the definitions of $\tau(A)$ and z r A

▶ The definition of the type $\tau(A)$ of a formula A is extended by the two clauses

$$\tau(A \to^{\mathsf{U}} B) := \tau(B), \quad \tau(\forall_{\mathsf{x}^{\rho}}^{\mathsf{U}} A) := \tau(A).$$

▶ The definition of realizability is extended by

$$z \mathbf{r} (A \rightarrow^{\mathsf{U}} B) := (A \rightarrow z \mathbf{r} B), \quad z \mathbf{r} (\forall_{x}^{\mathsf{U}} A) := \forall_{x} z \mathbf{r} A.$$

Extracted terms and uniform proofs

We define the extracted term of a proof, and (using this concept) the notion of a uniform proof, which gives a special treatment to the uniform universal quantifier \forall^{U} and uniform implication \rightarrow^{U} .

More precisely, for a proof M we simultaneously define

- ▶ its extracted term $\llbracket M \rrbracket$, of type $\tau(A)$, and
- ▶ when *M* is uniform.

Extracted terms and uniform proofs (continued)

For derivations M^A where $\tau(A) = \varepsilon$ let $\llbracket M \rrbracket := \varepsilon$ (the nullterm symbol); every such M is uniform. Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$. Then

In all these cases uniformity is preserved, except possibly in those involving λ :

Extracted terms and uniform proofs (continued)

Consider

$$[u:A] | M \frac{B}{A \to^{\mathsf{U}} B} (\to^{\mathsf{U}})^{+} u$$
 or as term $(\lambda_{u^{A}} M)^{A \to^{\mathsf{U}} B}$.

 $(\lambda_{u^A}M)^{A\to^U B}$ is uniform if M is and $x_u \notin \mathrm{FV}(\llbracket M \rrbracket)$. Similarly: Consider

$$\frac{|M|}{A} (\forall^{\mathsf{U}})^{+} x \quad \text{or as term} \quad (\lambda_{x} M)^{\forall^{\mathsf{U}}_{x} A} \qquad (\mathsf{VarC}).$$

 $(\lambda_x M)^{\forall_x^U A}$ is uniform if M is and $x \notin FV(\llbracket M \rrbracket)$.

Why uniformity?

- ▶ Suppose that in a proof M we have made use of a case distinction based on a lemma stating a disjunction: $L: A \lor B$.
- ▶ Then the extract [M] will contain the extract [L] of the proof of the auxiliary lemma, which may be large.
- ▶ Suppose further that in the proof *M*, the only computationally relevant use of the lemma was which one of the two alternatives holds true, *A* or *B*.
- ▶ We can express this fact by using a weakened form of the lemma instead: L': $A \lor^U B$.
- Since the extract [L'] is a boolean, the extract of the modified proof has been "purified" in the sense that the (possibly large) extract [L] has disappeared.

Decorating proofs

Goal: "optimal" insertion of uniformity marks into a proof.

- ▶ The sequent Seq(M) of a proof M consists of its context and its end formula.
- ▶ The uniform proof pattern UP(M) of a proof M is the result of changing in M all occurrences of \rightarrow , \forall , \exists , \land in its formulas into their uniform counterparts \rightarrow ^U, \forall ^U, \exists ^U, \land ^U, except the uninstantiated formulas of axioms and theorems.
- ▶ A formula D extends C if D is obtained from C by changing some connectives into one of their more informative versions, according to the following ordering: $\rightarrow^{U} \leq \rightarrow$, $\forall^{U} \leq \forall$, $\exists^{U} \leq \exists^{L}, \exists^{R} \leq \exists$ and $\wedge^{U} \leq \wedge^{L}, \wedge^{R} \leq \wedge$.

Decorating proofs (continued)

- ▶ A proof N extends M if (1) UP(M) = UP(N), and (2) each formula in N extends the corresponding one in M. In this case $FV(\llbracket N \rrbracket)$ is essentially (i.e., up to extensions of assumption formulas) a superset of $FV(\llbracket M \rrbracket)$.
- ▶ Every proof M whose uniform proof pattern UP(M) is U is called a decoration of U.

Decoration algorithm

We define a decoration algorithm, assigning to every uniform proof pattern U and every extension of its sequent an "optimal" decoration M_{∞} of U, which further extends the given extension. Need such an algorithm for every axiom. Examle: induction.

$$\operatorname{Ind}_{n,A} \colon \forall_m (A(0) \to \forall_n (A(n) \to A(Sn)) \to A(m^{\mathbf{N}})).$$

- ► The given extension of the four A's might be different. One needs to pick their "least upper bound" as further extension.
- ▶ If $\tau(A) \neq \varepsilon$, the \rightarrow , \forall must be made proper.

Decoration algorithm

Theorem (Ratiu, S)

For every uniform proof pattern U and every extension of its sequent $\mathrm{Seq}(U)$ we can find a decoration M_∞ of U such that

- (a) $\operatorname{Seq}(M_{\infty})$ extends the given extension of $\operatorname{Seq}(U)$, and
- (b) M_{∞} is optimal in the sense that any other decoration M of U whose sequent $\mathrm{Seq}(M)$ extends the given extension of $\mathrm{Seq}(U)$ has the property that M also extends M_{∞} .

Proofs

Uniformity

Proof, by induction on *U*

Case $(\rightarrow^{U})^{-}$. Consider a uniform proof pattern

$$\begin{array}{ccc}
\Phi, \Gamma & \Gamma, \Psi \\
\mid U & \mid V \\
\underline{A \to^{\mathsf{U}} B} & \underline{A} (\to^{\mathsf{U}})^{-}
\end{array}$$

Given: extension $\Pi, \Delta, \Sigma \Rightarrow D$ of $\Phi, \Gamma, \Psi \Rightarrow B$. Alternating steps:

- ▶ $\mathsf{IH}_a(U)$ for extension $\Pi, \Delta \Rightarrow A {\rightarrow}^\mathsf{U} D \mapsto \mathsf{decoration} \ M_1 \ \mathsf{of} \ U$ whose sequent $\Pi_1, \Delta_1 \Rightarrow C_1 \stackrel{\smile}{\to} D_1$ extends $\Pi, \Delta \Rightarrow A {\rightarrow}^\mathsf{U} D$.
- ▶ $\mathsf{IH}_a(V)$ for the extension $\Delta_1, \Sigma \Rightarrow C_1 \mapsto \mathsf{decoration}\ N_2$ of V whose sequent $\Delta_2, \Sigma_2 \Rightarrow C_2$ extends $\Delta_1, \Sigma \Rightarrow C_1$.
- ▶ IH_a(U) for $\Pi_1, \Delta_2 \Rightarrow C_2 \stackrel{\checkmark}{\rightarrow} D_1 \mapsto$ decoration M_3 of U whose sequent $\Pi_3, \Delta_3 \Rightarrow C_3 \stackrel{\checkmark}{\rightarrow} D_3$ extends $\Pi_1, \Delta_2 \Rightarrow C_2 \stackrel{\checkmark}{\rightarrow} D_1$.
- ▶ IH_a(V) for the extension Δ_3 , $\Sigma_2 \Rightarrow C_3 \mapsto$ decoration N_4 of V whose sequent Δ_4 , $\Sigma_4 \Rightarrow C_4$ extends Δ_3 , $\Sigma_2 \Rightarrow C_3$

Example: list reversal (U. Berger)

Define the graph Rev of the list reversal function inductively, by

$$Rev(nil, nil),$$
 (1)

$$\operatorname{Rev}(v, w) \to \operatorname{Rev}(v:+:x:,x::w).$$
 (2)

We prove weak existence of the reverted list:

$$\forall_{v \in \mathcal{T}} \tilde{\exists}_{w \in \mathcal{T}} \operatorname{Rev}(v, w) \qquad (:= \forall_{v \in \mathcal{T}} (\forall_{w \in \mathcal{T}} (\operatorname{Rev}(v, w) \to \bot) \to \bot)).$$

Fix v and assume $u: \forall_{w \in T} \neg \text{Rev}(v, w)$. To show \bot . To this end we prove that all initial segments of v are non-revertible, which contradicts (1). More precisely, from u and (2) we prove

$$\forall_{v_2 \in \mathcal{T}} A(v_2), \quad A(v_2) := \forall_{v_1 \in \mathcal{T}} (v_1 : +: v_2 = v \to \forall_{w \in \mathcal{T}} \neg \text{Rev}(v_1, w))$$

by induction on v_2 . Base $v_2 = \text{nil}$: Use u. Step. Assume $v_1:+:(x::v_2)=v$, fix w and assume further $\operatorname{Rev}(v_1,w)$.

Properties of the append function imply that $(v_1 : +: x:) : +: v_2 = v$.

IH for $v_1:+:x:$ gives $\forall_{w\in\mathcal{T}}\neg \text{Rev}(v_1:+:x:,w)$. Now (2) yields \bot .

Results of demo

- Weak existence proof formalized.
- ▶ Translated into an existence proof. Extracted algorithm: $f(v_1) := h(v_1, \text{nil}, \text{nil})$ with

$$h(\text{nil}, v_2, v_3) := v_3, \quad h(x :: v_1, v_2, v_3) := h(v_1, v_2 :+ : x :: v_3).$$

The second argument of h is not needed, but makes the algorithm quadratic. (In each recursion step $v_2:+:x:$ is computed, and the list append function :+: is defined by recursion over its first argument.)

▶ Optimal decoration of existence proof computed. Extracted algorithm: $f(v_1) := g(v_1, \text{nil})$ with

$$g(\text{nil}, v_2) := v_2, \quad g(x :: v_1, v_2) := g(v_1, x :: v_2).$$

This is the usual linear algorithm, with an accumulator.

Future work

- Explore applications of refined A-translation and automated decoration: Combinatorics, Gröbner bases (Diana Ratiu).
- Logic of inductive definitions: Include formal neighborhoods into the language (Basil Karadais).
- ▶ Compare refined A-translation and Gödel's Dialectica interpretation (Trifon Trifonov).