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Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.
Possibility of program development by proof transformation
(Goad 1980).

I Discover unexpected content:
I U. Berger 1993: Tait’s proof of the existence of normal forms

for the typed λ-calculus ⇒ “normalization by evaluation”.
I Content in weak (or “classical”) existence proofs, of

∃̃xA := ¬∀x¬A,

via proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation.
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Falsity as a predicate variable ⊥

In some proofs no knowledge about F is required. Then a predicate
variable ⊥ instead of F will do, and we can define

∃̃yG := ∀y (G → ⊥) → ⊥.

Why is this of interest? We can substitute an arbitrary formula for
⊥, for instance, ∃yG . Then a proof of ∃̃yG is turned into a proof of

∀y (G → ∃yG ) → ∃yG .

As the premise is provable, we have a proof of ∃yG . –
(A-translation; H. Friedman 1978, Dragalin 1979).
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Problems

Unfortunately, this simple argument is not quite correct.

I G may contain ⊥, and hence is changed under the
substitution ⊥ 7→ ∃yG .

I We may have used axioms or lemmata involving ⊥ (e.g.,
⊥ → P), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something
useful. Assume that

I the lemmata ~D and the goal formula G are such that we can
derive ~D → Di [⊥ := ∃yG ], G [⊥ := ∃yG ] → ∃yG .

I the substitution ⊥ 7→ ∃yG turns the axioms into instances of
the same scheme with different formulas, or else into derivable
formulas.
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Problems (continued)

Then from our given derivation (in minimal logic) of
~D → ∀y (G → ⊥) → ⊥ we obtain

~D[⊥ := ∃yG ] → ∀y (G [⊥ := ∃yG ] → ∃yG ) → ∃yG .

Now ~D → Di [⊥ := ∃yG ] allows to drop the substitution in ~D, and
by G [⊥ := ∃yG ] → ∃yG the second premise is derivable. Hence we
obtain as desired

~D → ∃yG .
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Definite and goal formulas

A formula is relevant if it “ends” with ⊥. More precisely:

I ⊥ is relevant,

I if C is relevant and B is arbitrary, then B → C is relevant, and

I if C is relevant, then ∀xC is relevant.

We define goal formulas G and definite formulas D inductively.
P ranges over prime formulas (including ⊥).

G ::= P | D → G if G relevant & D irrelevant ⇒ D quantifier-free

| ∀xG if G irrelevant,

D ::= P | G → D if D irrelevant ⇒ G irrelevant

| ∀xD.

Let AF denote A[⊥ := F].
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Properties of definite and goal formulas

Lemma
For definite formulas D and goal formulas G we have derivations
from F → ⊥ of

((DF → F) → ⊥) → D for D relevant,

DF → D,

G → GF for G irrelevant,

G → (GF → ⊥) → ⊥.

Lemma
For goal formulas ~G = G1, . . . ,Gn we have a derivation from
F → ⊥ of

(~GF → ⊥) → ~G → ⊥.
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Elimination of ⊥ from weak existence proofs

Assume that for arbitrary formulas ~A, definite formulas ~D and goal
formulas ~G we have a derivation of

~A → ~D → ∀~y (~G → ⊥) → ⊥.

Then we can also derive

(F → ⊥) → ~A → ~DF → ∀~y (~GF → ⊥) → ⊥.

In particular, substitution of the formula

∃~y
~GF := ∃~y (GF

1 ∧ · · · ∧ GF
n )

for ⊥ yields
~A[⊥ := ∃~y

~GF] → ~DF → ∃~y
~GF.
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The type of a formula

I Every formula A can be seen as a computational problem
(Kolmogorov). We define τ(A) as the type of a potential
realizer of A, i.e., the type of the term to be extracted from a
proof of A.

I Assign A 7→ τ(A) (a type or the “nulltype” symbol ε). In case
τ(A) = ε proofs of A have no computational content.

τ(T (x)) := τ(Eq(x , y)) := ε, τ(∃xρA) :=

{
ρ if τ(A) = ε

ρ× τ(A) otherwise,

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

with the convention

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε.
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Realizability

Let A be a formula and z either a variable of type τ(A) if it is a
type, or the nullterm symbol ε if τ(A) = ε. We define the formula
z r A, to be read z realizes A:

z r Eq(r , s) := Eq(r , s),

z r T (r) := T (r),

z r ∃xA(x) :=

{
A(z) if τ(A) = ε

z0 r A(z1) otherwise,

z r (A → B) := ∀x(x r A → zx r B),

z r ∀xA := ∀x zx r A,

with the convention εx := ε, zε := z , εε := ε.
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Extracted terms

For derivations MA with τ(A) = ε let [[M]] := ε (nullterm symbol).
Now assume that M derives a formula A with τ(A) 6= ε.

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B ]] := λ
x

τ(A)
u

[[M]],

[[MA→BN]] := [[M]][[N]],

[[(λxρM)∀xA]] := λxρ [[M]],

[[M∀xAr ]] := [[M]]r .
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Extracted terms for axioms

The extracted term of an induction axiom is defined to be a
recursion operator. For example, in case of an induction scheme

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
we have

[[Indn,A]] := Rτ
N : N → τ → (N → τ → τ) → τ (τ := τ(A) 6= ε).
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Soundness

Theorem
Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions ūi : xui r Ci .

Proof.
Induction on M.
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Uniform universal quantifier ∀U and implication →U

I We want to select relevant parts of the computational content
of a proof.

I This will be possible if some “uniformities” hold. Use a
uniform variant ∀U of ∀ (U. Berger 2005) and →U of →.

I Both are governed by the same rules as the non-uniform ones.
However, we will put some uniformity conditions on a proof to
ensure that the extracted computational content is correct.
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Extending the definitions of τ(A) and z r A

I The definition of the type τ(A) of a formula A is extended by
the two clauses

τ(A →U B) := τ(B), τ(∀U
xρA) := τ(A).

I The definition of realizability is extended by

z r (A →U B) := (A → z r B), z r (∀U
x A) := ∀x z r A.
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Extracted terms and uniform proofs

We define the extracted term of a proof, and (using this concept)
the notion of a uniform proof, which gives a special treatment to
the uniform universal quantifier ∀U and uniform implication →U.

More precisely, for a proof M we simultaneously define

I its extracted term [[M]], of type τ(A), and

I when M is uniform.
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Extracted terms and uniform proofs (continued)

For derivations MA where τ(A) = ε let [[M]] := ε (the nullterm
symbol); every such M is uniform. Now assume that M derives a
formula A with τ(A) 6= ε. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAM)A→B ]] := λ
x

τ(A)
u

[[M]],

[[MA→BN]] := [[M]][[N]],

[[(λxρM)∀xA]] := λxρ [[M]],

[[M∀xAr ]] := [[M]]r ,

[[(λuAM)A→
UB ]] := [[MA→UBN]] := [[(λxρM)∀

U
x A]] := [[M∀U

x Ar ]] := [[M]].

In all these cases uniformity is preserved, except possibly in those
involving λ:
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Extracted terms and uniform proofs (continued)

Consider

[u : A]

| M
B

(→U)+ u
A →U B

or as term (λuAM)A→
UB .

(λuAM)A→
UB is uniform if M is and xu /∈ FV([[M]]). Similarly:

Consider

| M
A

(∀U)+ x
∀U

x A

or as term (λxM)∀
U
x A (VarC).

(λxM)∀
U
x A is uniform if M is and x /∈ FV([[M]]).
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Why uniformity?

I Suppose that in a proof M we have made use of a case
distinction based on a lemma stating a disjunction: L : A ∨ B.

I Then the extract [[M]] will contain the extract [[L]] of the proof
of the auxiliary lemma, which may be large.

I Suppose further that in the proof M, the only computationally
relevant use of the lemma was which one of the two
alternatives holds true, A or B.

I We can express this fact by using a weakened form of the
lemma instead: L′ : A ∨U B.

I Since the extract [[L′]] is a boolean, the extract of the modified
proof has been “purified” in the sense that the (possibly large)
extract [[L]] has disappeared.
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Decorating proofs

Goal: “optimal” insertion of uniformity marks into a proof.

I The sequent Seq(M) of a proof M consists of its context and
its end formula.

I The uniform proof pattern UP(M) of a proof M is the result
of changing in M all occurrences of →,∀,∃,∧ in its formulas
into their uniform counterparts →U,∀U,∃U,∧U, except the
uninstantiated formulas of axioms and theorems.

I A formula D extends C if D is obtained from C by changing
some connectives into one of their more informative versions,
according to the following ordering: →U≤→, ∀U ≤ ∀,
∃U ≤ ∃L,∃R ≤ ∃ and ∧U ≤ ∧L,∧R ≤ ∧.
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Decorating proofs (continued)

I A proof N extends M if (1) UP(M) = UP(N), and (2) each
formula in N extends the corresponding one in M. In this case
FV([[N]]) is essentially (i.e., up to extensions of assumption
formulas) a superset of FV([[M]]).

I Every proof M whose uniform proof pattern UP(M) is U is
called a decoration of U.
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Decoration algorithm

We define a decoration algorithm, assigning to every uniform proof
pattern U and every extension of its sequent an “optimal”
decoration M∞ of U, which further extends the given extension.
Need such an algorithm for every axiom. Examle: induction.

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
.

I The given extension of the four A’s might be different. One
needs to pick their “least upper bound” as further extension.

I If τ(A) 6= ε, the →,∀ must be made proper.
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Decoration algorithm

Theorem (Ratiu, S)

For every uniform proof pattern U and every extension of its
sequent Seq(U) we can find a decoration M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.
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Proof, by induction on U
Case (→U)−. Consider a uniform proof pattern

Φ, Γ

| U
A →U B

Γ,Ψ

| V
A

(→U)−
B

Given: extension Π,∆,Σ ⇒ D of Φ, Γ,Ψ ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆ ⇒ A→UD 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 →̆ D1 extends Π,∆ ⇒ A→UD.

I IHa(V ) for the extension ∆1,Σ ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →̆ D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→̆D3 extends Π1,∆2 ⇒ C2→̆D1.

I IHa(V ) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .
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Example: list reversal (U. Berger)
Define the graph Rev of the list reversal function inductively, by

Rev(nil,nil), (1)

Rev(v ,w) → Rev(v :+: x :, x :: w). (2)

We prove weak existence of the reverted list:

∀v∈T ∃̃w∈TRev(v ,w) ( := ∀v∈T

(
∀w∈T (Rev(v ,w) → ⊥) → ⊥

)
).

Fix v and assume u : ∀w∈T¬Rev(v ,w). To show ⊥. To this end
we prove that all initial segments of v are non-revertible, which
contradicts (1). More precisely, from u and (2) we prove

∀v2∈TA(v2), A(v2) := ∀v1∈T

(
v1 :+: v2 = v → ∀w∈T¬Rev(v1,w)

)
by induction on v2. Base v2 = nil: Use u. Step. Assume
v1 :+: (x :: v2) = v , fix w and assume further Rev(v1,w).
Properties of the append function imply that (v1 :+: x :) :+: v2 = v .
IH for v1 :+: x : gives ∀w∈T¬Rev(v1 :+: x :,w). Now (2) yields ⊥.
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Results of demo

I Weak existence proof formalized.

I Translated into an existence proof. Extracted algorithm:
f (v1) := h(v1,nil,nil) with

h(nil, v2, v3) := v3, h(x :: v1, v2, v3) := h(v1, v2:+:x :, x :: v3).

The second argument of h is not needed, but makes the
algorithm quadratic. (In each recursion step v2 :+: x : is
computed, and the list append function :+: is defined by
recursion over its first argument.)

I Optimal decoration of existence proof computed. Extracted
algorithm: f (v1) := g(v1,nil) with

g(nil, v2) := v2, g(x :: v1, v2) := g(v1, x :: v2).

This is the usual linear algorithm, with an accumulator.
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Future work

I Explore applications of refined A-translation and automated
decoration: Combinatorics, Gröbner bases (Diana Ratiu).

I Logic of inductive definitions: Include formal neighborhoods
into the language (Basil Karadais).

I Compare refined A-translation and Gödel’s Dialectica
interpretation (Trifon Trifonov).
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