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Introduction
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® Proofs may have computational content, which can be
extracted (via realizability).

® Proofs (but not programs) can be checked for correctness.
Issues:
® Algorithms for exact real numbers extracted from proofs.

® Bounds for look-ahead formally verified.
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For simplicity x € [—1,1]. Dyadic rationals:

E:zii with a; € {—1,1}

i<k

with 1:= —1.
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Problem with productivity:
1111+ 1111+ =7

What is the first digit? Cure: delay: add 0. Signed digit code

d; .
> T Wwith d e {~1,0,1}

i<k

Widely used for real number computation. There is a lot of
redundancy: 11 and 01 both denote —%.
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Algorithms on stream-represented real numbers

We define an inductive predicate / by the single clause

x' +d

Vaxx(d€Sd—x' €l —x= —xel).

The dual “f of I is defined by its closure axiom “/~:

VX(XECOI —>3d,x/<d€ SAAX € A x — x’;—d))

and the coinduction (or greatest-fixed-point) axiom o/ :

't d
Ve(x € X = 3y (deSanx e N X Ax =" il )) -

Vi(x € X = x € ).
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Goal: compute the average of two stream-coded reals. Prove
X+
X,y S CO/ — Ty S COI.
Computational content of this proof will be the desired algorithm.

Informal proof!. Define sets P, @ of averages, Q with a “carry”
i€Z:

CO/ }
x+y+l

={————|x,ye,ieSdy} (Sdp:={-2,-1,0,1,2}).
Suffices: Q satisfies the clause coinductively defining “°/. Then by
the greatest-fixed-point axiom for “°/ we have Q C /. Since also
P C @ we obtain P C , which is our claim.

1U. Berger & M. Seisenberger, Proofs, programs, processes, 2012
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P CQ:
x,y € “l —
, X + X Ly i (1)
Elix’y/<’€Sd2/\X,ay/€COI/\ y: . )
o 2 4
Proof.
From x = X34y = Y 1€ gt X1y — xX4yifdte O

Computational content:

1:S—S—>Dy,xSxS
ﬁ_(Cd(U),Ce(V)) = <d+€, u, V>
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Q satisfies the clause coinductively defining “°/:

i€SdyAx,y el — Eld,j,x’,y’(

. x'+y'+j d (2)
deSdAje&bA%J%#WAX+Z+’: 42+ ).
Proof. .
From x = % +d L y=2% +e get XY = X +g +k for k := d+e+2i.

Write k = J(k) + 4D(K) with |D(k)| < 1, [J(k)| < 2 for |K| <6.

: : "ty +i
x+y+/:x’+y’+1—|—4d’:%+d’ 0
4 8 2 ’

Computational content:

:DyxSxS—-DxDyxSxS
(i, Cq(u), Ce(v)) = (D(k), J(k), u,v) with k :=d+ e+ 2i.
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P C 9. The average of two real numbers x, y in “/ is in <.

meW%igzéw (3)

Proof.
By coinduction from (1) and (2). Ol
Computational content: Uses corecursion.

® From u,v € S form initial triple fi(u,v) € D2 x S x S.

® |terate f,: Dy x Sx S — D x Dy x S x S starting with fi(u, v).

® Return stream of generated d € D.
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Bounds for the look-ahead

We replace the unary coinductive predicate “°/ on reals by a binary
inductive predicate / with the property that
a realizer of Ixn is a list of length n of signed digits
approximating x with error bound 2—1,,

Below we will prove

Rk
ne Tn— Ix(3n+3) — Iy(3n+3) — I(xy)n.

ne TN—>/x(n+1)—>ly(n+1)—>/(
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We inductively define a predicate / by the clauses

Iy Vx(x €R = |x| <1 — Ix0),
/

d
/1+: Vd,X/7X7,,<d €Sd = IxX'n— x= l — Ix(n+ 1))

The elimination (induction, least-fixed-point) axiom is /~:

Vi(x €eR = x| <1 — Xx0) —
X' +d

vd,X’,X,n (d €8d — IxX'n—= Xx'n— x =

Vn(Ixn — Xxn).

— Xx(n+ 1)) —

This axiom expresses that every “competitor” X satisfying the
same clauses contains /. We take all substitution instances (w.r.t.
the predicate variable X) of li+, |~ as axioms.
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Properties of /

Lemma (ICompat)
Vun(x =y — Ixn— lyn).

Proof.
Use I~ and properties of real equality. O

Lemma (IClosure)

Vi (Ix(n+1) = 3a.x(d € SAA K'n A x = X ; d)).

Proof.

Assume Ixm and m = n+ 1. Using /= leaves us with two goals.
The first one has a premise 0 = n+ 1; we can use ex-falso. The
second one has an existential conclusion which easily follows from

what we have. O
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Properties of / (continued)

Lemma (IUMinus)
Vn(Ixn — [(—x)n).
Proof.

Assume Ixn. Using /= leaves us with two goals. The first one
follows from /5", and the second one from /;".

Lemma (ISdTimes)
Vdx,n(d € Sd — Ixn — I(dx)n).
Proof.

Cases on d € Sd, together with a Lemma |Zero: V,/0n, and
IUMinus. In each case ICompat is applied.

Conclusion
[e]e]
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Multiplication

Ix(n+1) = ly(n+1) —
/ / .
EIi,x’,y' (I S Sd2 AIxX'n A Iy/n/\ X—;y _ X +Z =+
Proof.
From X = __yTe +e get X+y %

Computatlonal content:

fa: L—-L—DyxLxL
ﬁl(cd(u)vce(\/)) = <d+ €, u, V>

)

Conclusion
[e]e]
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ieSdyAIx(n+1)Aly(n+1) — Eld7j7X/7y/<
xX'+y'+j (5)
L +d

dGSd/\jGSdg/\/x'n/\ly'n/\X—i_Z—i_l: 5 )
Proof. o
From x = X/T*'d, y = £ get X+y+' = Xﬂé +K for k == d+e+2i.

Write k = J(k) +4D( ) with \D( )| <1, |J(k)| <2 for |k| <6.

: : "+y'+i
xty+i X4y +j+4d Tt +d
4 8 2 '

Computational content:

fs: Do xLxL—=DxDyxLxL
f5 (i, Cq(u), Ce(v)) = (D(k), J(k), u,v) with k :=d+ e+ 2i.
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ne TN—>lx(n+1)—>ly(n+1)—>/<x—£y>n (6)

Proof.
By induction from (4) and (5). O
Computational content: Uses recursion. Given n (wlog 0 < n).

® From u,v € L form initial triple f4(u,v) € Dy x L x L.

® |terate ntimes f5: Dy x L x L — D x Dy x L x L, starting
with f3(u, v).
® Return list of generated d € D.
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ne Tn— x(n+3) = Iy(n+3) > Jiwy s
X'y’+2+i) (7)

Iy'(n+2)Ai€SdyAIX'(n+2)Alzn A xy = 1

Proof.
Assume Ix(n+ 3) and ly(n+ 3). By IClosure: x = X 2“’ and

y = y+e with Ix'(n+ 2) and ly’(n+ 2) and d, e € Sd. Using

ISdTlmes and (6) we obtain I(W)(n +1). By IClosure: z, dy
such that /zn, dy € Sd and

ex'+dyl  z+dy

> =5 hence
(X' +d)(y +e) Xy +(exX+dy)+de Xy +z4 (do+ de)
4 B 4 B 4 ’
which is of the required form. O
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ly(n+2) —ie€Sdy — Ix(m+1) = Iz(n+3) — Eld’j7x/,z,<

RN
deSd A j€Sdy A IX'm A I A Xy+4z+’ = + )

Proof Let ly(n+2), i € Sda, Ix(m+ 1) and /z(n+ 3). By IClosure

X:X1—|2—d1 Z:ZO—|2-d0 with bqm, Izg(n+2) and dy, dy € Sd.
Then
xy+z+i_(X1+d1)y+(20+d0)+2i
4 - 8
_xiy+(2o+diy+i)+do+i
f— 8 N
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Proof of (8) (continued)
Have I(diy)(n+ 2) by ISdTimes and Iv(n + 2) for v := W
by (4), (5). Using v we can continue the chain of equations by

_oxiy +4v+do+i
= 5 _

Because of Iv(n+ 2) by IClosure we can write

nte
v=2 —; 0 _ 2 2+ 0 with [z1(n+ 1), Izon and e, e € Sd.

Therefore

 xiy+(z2+e+2e)+do+i
= 5 .
Let k := e+ 2ey + do + i. Write k = J(k) 4+ 4D(k) Hence

_xay+zn+j+ad Y 4 d

5 . with j == J(k), d := D(k).
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ne Tn—i€Sdy— ly(3n—1) — Ix(3n) — 1z(3n) —
i 9
I(xy +z4 /)n 9)
4
Proof Induction on n. We only consider the step case. Assume
i € Sda, ly(3n+2), Ix(3n+3), 1z(3n + 3). Get /(%) (n+1)
by ;7. Need d € Sd and x” with Ix'n such that
xy+z+i X' +d
4 2
From (8) we obtain d € Sd, j € Sdp, x” and z” such that
Ix"(3n+2), I1z"(3n) and

xy+z+i X y+z”+1+d

4 2

It suffices to show I(%)n. To this end we use the IH. This
requires ly(3n — 1), Ix”(3n) and Iz”(3n). The latter we have, and
the former two follow from ly(3n+ 2) and Ix”(3n + 2). 20 /24
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ne Ty — Ix(3n+3) — ly(3n+3) — I(xy)n (10)

Proof.
Assume Ix(3n+ 3) and ly(3n+ 3). Using (7) for x, y, 3n we

obtain i, X', y/, zs.t. Iy'(3n+2), i € Sda, IxX'(3n+2), Iz(3n) and
Xy +z+1i
XY=

To prove I(%)n we apply (9). It suffices to prove ly’(3n—1)

and Ix’(3n), which follows from ly’(3n + 2) and Ix'(3n + 2). O
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The term extracted from this proof is

[n,u,u0]
[let utvw
(cIMultToMultc (n+n+n)u u0)
(cIMultcToI n
(cIToIPred(n+n+n)
(cISuccToI(n+n+n) (cISuccToI(Succ(n+n+n))clft utvw)))
clft crht utvw
(cISuccToI(n+n+n)
(cISuccToI(Succ(n+n+n))clft crht crht utvw))
crht crht crht utvw)]

Here utvw is a variable of type L x Do x L x L.
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Open questions

e Do the same with division?.

® Can one obtain a bound for the look-ahead as a term read off
from the proof?

2Wiesnet & S., LMCS 2021, gives an informal argument for a certain bound
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Conclusion

e Constructive logic (and arithmetic) can and should be seen as
an extension of the classical setup.

® Using the realizability interpretation of proofs one can extract
computational content.

® \erification is automated: add-sound applied to a proof
returns an internal proof of the soundness theorem.
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