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• Proofs may have computational content, which can be
extracted (via realizability).

• Proofs (but not programs) can be checked for correctness.

Issues:

• Algorithms for exact real numbers extracted from proofs.

• Bounds for look-ahead formally verified.
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For simplicity x ∈ [−1, 1]. Dyadic rationals:∑
i<k

ai
2i+1

with ai ∈ {−1, 1}
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with 1̄ := −1.
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Problem with productivity:

1̄111 + 11̄1̄1̄ · · · = ?

What is the first digit? Cure: delay: add 0. Signed digit code∑
i<k

di
2i+1

with di ∈ {−1, 0, 1}.

Widely used for real number computation. There is a lot of
redundancy: 1̄1 and 01̄ both denote −1

4 .
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Algorithms on stream-represented real numbers

We define an inductive predicate I by the single clause

∀d ,x ′,x(d ∈ Sd→ x ′ ∈ I → x =
x ′ + d

2
→ x ∈ I ).

The dual coI of I is defined by its closure axiom coI−:

∀x
(
x ∈ coI → ∃d ,x ′

(
d ∈ Sd ∧ x ′ ∈ coI ∧ x =

x ′ + d

2

))
and the coinduction (or greatest-fixed-point) axiom coI+:

∀x
(
x ∈ X → ∃d ,x ′

(
d ∈ Sd ∧ x ′ ∈ coI ∩ X ∧ x =

x ′ + d

2

))
→

∀x(x ∈ X → x ∈ coI ).
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Goal: compute the average of two stream-coded reals. Prove

x , y ∈ coI → x + y

2
∈ coI .

Computational content of this proof will be the desired algorithm.

Informal proof1. Define sets P,Q of averages, Q with a “carry”
i ∈ Z:

P := { x + y

2
| x , y ∈ coI },

Q := { x + y + i

4
| x , y ∈ coI , i ∈ Sd2 } (Sd2 := {−2,−1, 0, 1, 2}).

Suffices: Q satisfies the clause coinductively defining coI . Then by
the greatest-fixed-point axiom for coI we have Q ⊆ coI . Since also
P ⊆ Q we obtain P ⊆ coI , which is our claim.

1U. Berger & M. Seisenberger, Proofs, programs, processes, 2012
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P ⊆ Q:

x , y ∈ coI →

∃i ,x ′,y ′

(
i ∈ Sd2 ∧ x ′, y ′ ∈ coI ∧ x + y

2
=

x ′ + y ′ + i

4

) (1)

Proof.
From x = x ′+d

2 , y = y ′+e
2 get x+y

2 = x ′+y ′+d+e
4 .

Computational content:

f1 : S→ S→ D2 × S× S

f1(Cd(u),Ce(v)) = 〈d + e, u, v〉
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Q satisfies the clause coinductively defining coI :

i ∈ Sd2 ∧ x , y ∈ coI → ∃d , j ,x ′,y ′

(
d ∈ Sd ∧ j ∈ Sd2 ∧ x ′, y ′ ∈ coI ∧ x + y + i

4
=

x ′+y ′+j
4 + d

2

)
.

(2)

Proof.
From x = x ′+d

2 , y = y ′+e
2 get x+y+i

4 = x ′+y ′+k
8 for k := d+e+2i .

Write k = J(k) + 4D(k) with |D(k)| ≤ 1, |J(k)| ≤ 2 for |k | ≤ 6.

x + y + i

4
=

x ′ + y ′ + j + 4d ′

8
=

x ′+y ′+j
4 + d ′

2
.

Computational content:

f2 : D2 × S× S→ D× D2 × S× S

f2〈i ,Cd(u),Ce(v)〉 = 〈D(k), J(k), u, v〉 with k := d + e + 2i .
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P ⊆ coI : The average of two real numbers x , y in coI is in coI .

x , y ∈ coI → x + y

2
∈ coI (3)

Proof.
By coinduction from (1) and (2).

Computational content: Uses corecursion.

• From u, v ∈ S form initial triple f1(u, v) ∈ D2 × S× S.

• Iterate f2 : D2×S×S→ D×D2×S×S starting with f1(u, v).

• Return stream of generated d ∈ D.
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Bounds for the look-ahead

We replace the unary coinductive predicate coI on reals by a binary
inductive predicate I with the property that

a realizer of Ixn is a list of length n of signed digits
approximating x with error bound 1

2n .

Below we will prove

n ∈ TN → Ix(n + 1)→ Iy(n + 1)→ I
(x + y

2

)
n,

n ∈ TN → Ix(3n + 3)→ Iy(3n + 3)→ I (xy)n.

10 / 24



Introduction Streams Look-ahead Average Multiplication Conclusion

We inductively define a predicate I by the clauses

I+0 : ∀x(x ∈ R→ |x | ≤ 1→ Ix0),

I+1 : ∀d ,x ′,x ,n
(
d ∈ Sd→ Ix ′n→ x =

x ′ + d

2
→ Ix(n + 1)

)
.

The elimination (induction, least-fixed-point) axiom is I−:

∀x(x ∈ R→ |x | ≤ 1→ Xx0)→

∀d ,x ′,x ,n
(
d ∈ Sd→ Ix ′n→ Xx ′n→ x =

x ′ + d

2
→ Xx(n + 1)

)
→

∀x ,n(Ixn→ Xxn).

This axiom expresses that every “competitor” X satisfying the
same clauses contains I . We take all substitution instances (w.r.t.
the predicate variable X ) of I+i , I− as axioms.
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Properties of I

Lemma (ICompat)

∀x ,n(x = y → Ixn→ Iyn).

Proof.
Use I− and properties of real equality.

Lemma (IClosure)

∀x ,n
(
Ix(n + 1)→ ∃d ,x

(
d ∈ Sd ∧ Ix ′n ∧ x =

x ′ + d

2

))
.

Proof.
Assume Ixm and m = n + 1. Using I− leaves us with two goals.
The first one has a premise 0 = n + 1; we can use ex-falso. The
second one has an existential conclusion which easily follows from
what we have.
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Properties of I (continued)

Lemma (IUMinus)

∀x ,n(Ixn→ I (−x)n).

Proof.
Assume Ixn. Using I− leaves us with two goals. The first one
follows from I+0 , and the second one from I+1 .

Lemma (ISdTimes)

∀d ,x ,n(d ∈ Sd→ Ixn→ I (dx)n).

Proof.
Cases on d ∈ Sd, together with a Lemma IZero: ∀nI0n, and
IUMinus. In each case ICompat is applied.
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Ix(n + 1)→ Iy(n + 1)→

∃i ,x ′,y ′

(
i ∈ Sd2 ∧ Ix ′n ∧ Iy ′n ∧ x + y

2
=

x ′ + y ′ + i

4

) (4)

Proof.
From x = x ′+d

2 , y = y ′+e
2 get x+y

2 = x ′+y ′+d+e
4 .

Computational content:

f4 : L→ L→ D2 × L× L

f4(Cd(u),Ce(v)) = 〈d + e, u, v〉
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i ∈ Sd2 ∧ Ix(n + 1) ∧ Iy(n + 1)→ ∃d , j ,x ′,y ′

(
d ∈ Sd ∧ j ∈ Sd2 ∧ Ix ′n ∧ Iy ′n ∧ x + y + i

4
=

x ′+y ′+j
4 + d

2

)
.

(5)

Proof.
From x = x ′+d

2 , y = y ′+e
2 get x+y+i

4 = x ′+y ′+k
8 for k := d+e+2i .

Write k = J(k) + 4D(k) with |D(k)| ≤ 1, |J(k)| ≤ 2 for |k | ≤ 6.

x + y + i

4
=

x ′ + y ′ + j + 4d ′

8
=

x ′+y ′+j
4 + d ′

2
.

Computational content:

f5 : D2 × L× L→ D× D2 × L× L

f5〈i ,Cd(u),Ce(v)〉 = 〈D(k), J(k), u, v〉 with k := d + e + 2i .
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n ∈ TN → Ix(n + 1)→ Iy(n + 1)→ I
(x + y

2

)
n (6)

Proof.
By induction from (4) and (5).

Computational content: Uses recursion. Given n (wlog 0 < n).

• From u, v ∈ L form initial triple f4(u, v) ∈ D2 × L× L.

• Iterate n times f5 : D2 × L× L→ D× D2 × L× L, starting
with f4(u, v).

• Return list of generated d ∈ D.
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n ∈ TN → Ix(n + 3)→ Iy(n + 3)→ ∃i ,x ′,y ′,z

(
Iy ′(n + 2) ∧ i ∈ Sd2 ∧ Ix ′(n + 2) ∧ Izn ∧ xy =

x ′y ′ + z + i

4

)
.

(7)

Proof.
Assume Ix(n + 3) and Iy(n + 3). By IClosure: x = x ′+d

2 and

y = y ′+e
2 with Ix ′(n + 2) and Iy ′(n + 2) and d , e ∈ Sd. Using

ISdTimes and (6) we obtain I
( ex ′+dy ′

2

)
(n + 1). By IClosure: z , d0

such that Izn, d0 ∈ Sd and

ex ′ + dy ′

2
=

z + d0
2

, hence

(x ′ + d)(y ′ + e)

4
=

x ′y ′ + (ex ′ + dy ′) + de

4
=

x ′y ′ + z + (d0 + de)

4
,

which is of the required form.
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Iy(n + 2)→ i ∈ Sd2 → Ix(m + 1)→ Iz(n + 3)→ ∃d ,j ,x ′,z ′
(

d∈Sd ∧ j∈Sd2 ∧ Ix ′m ∧ Iz ′n ∧ xy + z + i

4
=

x ′y+z ′+j
4 + d

2

) (8)

Proof Let Iy(n + 2), i ∈ Sd2, Ix(m + 1) and Iz(n + 3). By IClosure

x =
x1 + d1

2
z =

z0 + d0
2

with Ix1m, Iz0(n + 2) and d1, d0 ∈ Sd.

Then

xy + z + i

4
=

(x1 + d1)y + (z0 + d0) + 2i

8

=
x1y + (z0 + d1y + i) + d0 + i

8
.

18 / 24



Introduction Streams Look-ahead Average Multiplication Conclusion

Proof of (8) (continued)
Have I (d1y)(n + 2) by ISdTimes and Iv(n + 2) for v := z0+d1y+i

4
by (4), (5). Using v we can continue the chain of equations by

=
x1y + 4v + d0 + i

8
.

Because of Iv(n + 2) by IClosure we can write

v =
z1 + e0

2
=

z2+e
2 + e0

2
with Iz1(n + 1), Iz2n and e0, e ∈ Sd.

Therefore

=
x1y + (z2 + e + 2e0) + d0 + i

8
.

Let k := e + 2e0 + d0 + i . Write k = J(k) + 4D(k) Hence

=
x1y + z2 + j + 4d

8
=

x1y+z2+j
4 + d

2
with j := J(k), d := D(k).
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n ∈ TN → i ∈ Sd2 → Iy(3n − 1)→ Ix(3n)→ Iz(3n)→

I
(xy + z + i

4

)
n

(9)

Proof Induction on n. We only consider the step case. Assume

i ∈ Sd2, Iy(3n + 2), Ix(3n + 3), Iz(3n + 3). Get I
( xy+z+i

4

)
(n + 1)

by I+1 . Need d ∈ Sd and x ′ with Ix ′n such that

xy + z + i

4
=

x ′ + d

2
.

From (8) we obtain d ∈ Sd, j ∈ Sd2, x ′′ and z ′′ such that
Ix ′′(3n + 2), Iz ′′(3n) and

xy + z + i

4
=

x ′′y+z ′′+j
4 + d

2
.

It suffices to show I
( x ′′y+z ′′+j

4

)
n. To this end we use the IH. This

requires Iy(3n − 1), Ix ′′(3n) and Iz ′′(3n). The latter we have, and
the former two follow from Iy(3n + 2) and Ix ′′(3n + 2). 20 / 24
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n ∈ TN → Ix(3n + 3)→ Iy(3n + 3)→ I (xy)n (10)

Proof.
Assume Ix(3n + 3) and Iy(3n + 3). Using (7) for x , y , 3n we
obtain i , x ′, y ′, z s.t. Iy ′(3n + 2), i ∈ Sd2, Ix ′(3n + 2), Iz(3n) and

xy =
x ′y ′ + z + i

4
.

To prove I
( x ′y ′+z+i

4

)
n we apply (9). It suffices to prove Iy ′(3n− 1)

and Ix ′(3n), which follows from Iy ′(3n + 2) and Ix ′(3n + 2).
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The term extracted from this proof is

[n,u,u0]

[let utvw

(cIMultToMultc(n+n+n)u u0)

(cIMultcToI n

(cIToIPred(n+n+n)

(cISuccToI(n+n+n)(cISuccToI(Succ(n+n+n))clft utvw)))

clft crht utvw

(cISuccToI(n+n+n)

(cISuccToI(Succ(n+n+n))clft crht crht utvw))

crht crht crht utvw)]

Here utvw is a variable of type L× D2 × L× L.
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Open questions

• Do the same with division2.

• Can one obtain a bound for the look-ahead as a term read off
from the proof?

2Wiesnet & S., LMCS 2021, gives an informal argument for a certain bound
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Conclusion

• Constructive logic (and arithmetic) can and should be seen as
an extension of the classical setup.

• Using the realizability interpretation of proofs one can extract
computational content.

• Verification is automated: add-sound applied to a proof
returns an internal proof of the soundness theorem.
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