
Logic of inductive definitions with formal
neighbourhoods

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Advances in Constructive Topology and Logical Foundations
in honor of the 60th birthday of Giovanni Sambin

Padua, 8.-11. October 2008

1. Computable functionals of finite types

I Gödel 1958: “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunkts”: computable finite type
functions.

I Need partial continuous functionals as their intendend domain
(Scott 1969). The total ones then appear as a dense subset
(Kreisel 1959, Ershov 1972, Berger 1990).

I We define them concretely, based on (a simplified form of)
information systems (Scott 1982).

Atomic coherent information systems (acis’s)

I Acis: (A,`,≥) such that ` (consistent) is reflexive and
symmetric, ≥ (entails) is reflexive and transitive and

a ` b → b ≥ c → a ` c .

I Formal neighborhood: U ⊆ A finite and consistent. We write
U ≥ a for ∃b∈U(b ≥ a), and U ≥ V for ∀a∈V (U ≥ a).

I Function space: Let A = (A,`A,≥A) and B = (B,`B ,≥B)
be acis’s. Define A → B = (C ,`,≥) by

C := ConA × B,

(U, b) ` (V , c) := (U `A V → b `B c),

(U, b) ≥ (V , c) := (V ≥A U ∧ b ≥B c).

A → B is an acis again.

Ideals, Scott topology

I Ideal: x ⊆ A consistent and deductively closed. |A| is the set
of ideals (points, objects) of A.

I |A| carries a natural topology, with cones Ũ := { z | z ⊇ U }
generated by the formal neighborhoods U as basis.

Theorem (Scott 1982)

The continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are
in a bijective correspondence.

Definition
An ideal x ⊆ A is computable if it is recursively enumerable as a
set of (finite) tokens.

Turning a free algebra into an acis

Commonly done by adding ⊥: “flat cpo”.

I Problem 1: Constructors are not injective:
C (⊥, b) = ⊥ = C (a,⊥).

I Problem 2: Constructors do not have disjoint ranges:
C1(⊥) = ⊥ = C2(⊥).

Solution: Use as tokens constructor trees of the form CiU1 . . .Un.

I Essentially the same idea is carried out in an appendix
“Nonstandard elements as formal points” by Venanzio
Capretta and Giovanni Sambin to the second author’s
forthcoming book.

Example: tokens and entailment for N

•0 • S∅@
@@
•S{0}

�
��
• S{S∅}@

@@
•S{S{0}}

�
��
• S{S{S∅}}@

@@
•S{S{S{0}}}

�
��

..
.

Constructor trees

Nodes alternate between atomic and neighborhood nodes. Every
atomic node is labelled by a constructor, and has as many (typed)
neighborhood successor nodes as the constructor has arguments.
Every neighborhood node has finitely many (possibly zero) atomic
successor nodes. Example: C{C∅{0},C{0}∅}∅

•CHH
HHH

�
�

���◦ ◦HHH
HH

���
��•C •C@

@@

�
��

◦ ◦

@
@@

�
��

◦ ◦

•0 •0

Total and cototal ideals for finitary algebras

I A total ideal for the acis of a finitary algebra is the deductive
closure of a constructor tree all of whose neighborhood nodes
have successors (i.e., formed without empty neighborhoods).

Example: every total ideal for the algebra N is the deductive
closure of a token S{S . . . {S{0}} . . . }.

I A cototal ideal for the acis of a finitary algebra is determined
by a possibly non-wellfounded constructor tree, as the
deductive closure of all finite constructor subtrees obtained by
removing branches of neighborhood nodes.

Example: a cototal ideal of N is the deductive closure of set of all
tokens of the form S{S . . . {S∅} . . . }.

A common extension T+ of Gödel’s T and Plotkin’s PCF

I Terms M,N ::= xρ | C | D | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Constants D defined by computation rules. Examples:
Recursion Rτ

N : N → τ → (N → τ → τ) → τ .

R0xy = x , R(Sn)xy = yn(Rnxy).

Corecursion Cτ
N : τ → (τ → U + τ + N) → N.

Cxy = [case yx of 0 | λz(S[case zτ+N of λu(Cuy) | λnn])].

The computation rules consist of finitely many equations

D~Pi (~yi) = Mi (~yi) i = 1, . . . , n

with constructor patterns ~Pi . To ensure consistency, we require
that for i 6= j either ~Pi and ~Pj are non-unifiable, or else for the

most general unifier ξ of ~Pi and ~Pj we have Miξ = Mjξ.

Destructors

Every algebra ι with k constructors each of arity ni (i < k) has a
destructor Dι of type

ι →
∑
i<k

∏
j<ni

ι.

Computation rules:

Dι(Ci (~x)) = ini (~x).

Example: DN : N → U + N is defined by the computation rules

DN(Sn) = inr(n),

DN(0) = inl(u).

Denotational semantics: definition of (~U , b) ∈ [[λ~xM]]

Ui ≥ b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V) ⊆ [[λ~xN]] (~U,V , c) ∈ [[λ~xM]]

(~U, c) ∈ [[λ~xMN]]
(A).

For every constructor C and defined constant D we have

~V ≥ ~W

(~U, ~V ,C ~W) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]]

(~U, ~P(~V), b) ∈ [[λ~xD]]
(D)

with one such rule (D) for every computation rule D~P(~y) = M.

Theorem (Adequacy; Plotkin 1977, Martin-Löf 1983)

If b ∈ [[M]] for a closed term M, then M head-reduces to a token
entailing b.

2. Logic of inductive definitions LID

I Based on T+. Terms with a common reduct are identified.

I Contains inductively and coinductively defined predicates,
given by their clauses and (least and greatest) fixed point
axioms. Examples: T ,T∞,Eq,∃ (cf. Martin-Löf 1971).

I Ex-falso-quodlibet is provable, when one defines falsity by
F := EqB(ff, tt).

Minimal logic: introduction and elimination rules only, for

I computational →c, ∀c:

τ(A →c B) := (τ(A) → τ(B)), τ(∀c
xρB) := (ρ → τ(B)).

I non-computational →, ∀:

τ(A → B) := τ(∀xρB) := τ(B).

Correct derivations and extracted terms

Restrictions to →+ and ∀+: consider

[u : A]

| M
B →+ uA → B

or as term (λuAM)A→B .

(λuAM)A→B is correct if M is and xu /∈ FV([[M]]). Similarly:
Consider

| M
A ∀+ x∀xA

or as term (λxM)∀xA (VarC).

(λxM)∀xA is correct if M is and x /∈ FV([[M]]).

Totality for N

I Inductively define totality by the clauses

T0, ∀n(Tn →c T (Sn)).

Its (least) fixed point axiom is

∀n(Tn →c A(0) →c ∀n(Tn →c A(n) →c A(Sn)) →c A(n)).

I T can be understood as the least set of pairs witness -
argument satisfying the clauses. Witness: total ideal in N.

I Inductively define T r(s, n) to express that s witnesses T (n).

Cototality for N

I Coinductively define cototality by the clause

∀n∈T∞(n = 0 ∨c ∃r
m(n = Sm ∧r T∞m))

Its (greatest) fixed point axiom is

∀n(A(n) →c

∀n(A(n) →c n = 0 ∨c ∃r
m(n = Sm ∧r (A(m) ∨c T∞m))) →c

T∞n).

I T∞ can be understood as the greatest set of pairs witness -
argument satisfying the clause. Witness: cototal ideal in N.

I Coinductively define (T∞)r(s, n) to express that s witnesses
T∞(n).

Example: existential quantifiers ∃c, ∃r, ∃l, ∃

The respective clause is

∀c
x(A →c ∃c

xA),

∀c
x(A → ∃l

xA),

∀x(A →c ∃r
xA),

∀x(A → ∃xA).

and the (least) fixed point axiom (with x /∈ FV(C))

∃c
xA →c ∀c

x(A →c C) →c C ,

∃l
xA →c ∀c

x(A → C) →c C ,

∃r
xA →c ∀x(A →c C) →c C ,

∃xA → ∀x(A → C) →c C .

Similarly for ∧, ∨.

Realizers for the T -axioms

I Abbreviating ∀x(Tx →c A) by ∀x∈TA the clauses and the
(least) fixed point axiom for T are

T0, ∀n∈TT (Sn),

∀n∈T (A(0) →c ∀n∈T (A(n) →c A(Sn)) →c A(n))

I Its types are N and N → N for the clauses and

N → τ → (N → τ → τ) → τ

for the fixed point axiom.

I Its extracted terms are the constructors and the recursion
operator of N.

Realizing the clause for T∞

I Recall the clause for T∞

∀n∈T∞(n = 0 ∨c ∃r
m(n = Sm ∧r T∞m))

I Its type is
N → U + N

since τ(T∞) := N and τ(∀xA) := τ(∃r
xA) := τ(A).

I Its extracted term is the destructor DN.

Realizing the fixed point axiom for T∞

I Recall the (greatest) fixed point axiom for T∞

∀n(A(n) →c

∀n(A(n) →c n = 0 ∨c ∃r
m(n = Sm ∧r (A(m) ∨c T∞m))) →c

T∞n).

I Its type is
N → (N → U + τ + N) → N,

since τ(T∞) := N and τ(∀xA) := τ(∃r
xA) := τ(A).

I Its extracted term is the corecursion operator.

Leibniz equality Eq

I Inductively defined by the clause

∀xEq(xρ, xρ).

I The (least) fixed point axiom is

∀x ,y

(
Eq(x , y) → ∀xC (x , x) →c C (x , y)

)
.

I The fixed point axiom with C (x , y) := A(x) →c A(y) implies

∀x ,y (Eq(x , y) → A(x) →c A(y)) (compatibility of Eq).

I Compatibility gives symmetry and transitivity of Eq.

Lemma (Ex-Falso-Quodlibet)

F → A for τ(A) = ε, with falsity defined by F := Eq(ff, tt).

Proof.
(1) F → Eq(xρ, yρ), since from Eq(ff, tt) by compatibility

Eq [if tt then x else y]︸ ︷︷ ︸
x

[if ff then x else y]︸ ︷︷ ︸
y

.

Hence Eq(xρ, yρ).
(2) Induction on A ∈ F.

I Case I~s. Let Ki be the nullary clause, with final conclusion I~t.
By IH: F → Ai . Hence I~t. From F we also obtain Eq(si , ti),
by (1). Hence I~s by compatibility.

I Case J~s. Use the greatest fixed point axiom for J with
C (~x) := F. Since k > 0 and n0 = 0 it suffices to prove
F → ∃~yi

∧∧ ~Ai . This holds by IH.

I The cases A → B and ∀xA are clear.

(AC), (IP) and (IQ)

These axioms express the intended meaning of computational and
non-computational connectives. (AC) is the axiom of choice:

∀c
xρ∃c

yσA(x , y) →c ∃c
f ρ→σ∀c

xρA(x , f (x)).

Independence of premise axiom (IP)

(A → ∃c
xB) →c ∃c

x(A → B) (x /∈ FV(A)).

Independence of quantifier axiom (IQ)

∀x∃c
yA →c ∃c

y∀xA.

Similarly for ∃l and ∃r.

Characterization and soundness theorems

Using (AC), (IP) and (IQ) we can prove

Theorem (Characterization)

Every formula A is computationally equivalent to ∃c
x(x r A) if it

has computational content, and to ε r A if not.

Corollary (Ex-falso-quodlibet)

F → A for arbitrary (possibly c.r.) formulas A.

Proof.
Recall F → ερ r A, where ερ is the canonical inhabitant of type ρ.
Hence ∃c

x(x r A) and therefore A.

Theorem (Soundness)

Assume M derives A from assumptions ui : Ci (i < n). Then we
can find a derivation of [[M]] r A from assumptions ūi : xui r Ci for
ui computational (i.e., xui ∈ FV([[M]])), and ūi : Ci for the other.

3. Implicit computation with streams

I Based on a recent draft of Ulrich Berger “From coinductive
proofs to exact real arithmetic”.

I The exact computational nature of the relevant notions is left
implicit, in the clauses of their (co)inductive definitions. It is
only at the level of realizers that computational details come
to the surface. This can help for a better understanding, by
allowing a more abstract treatment.

I LID might be a proper framework to carry this out.

Coinductive definition of real numbers

Let ξ be the the (abstract) type of reals, and x , y of type ξ. Let
Rx abbreviate “x is a real in [−1, 1]”. Coinductive definition of W0:

∀x(W0x →c x = 0 ∨c ∃d∈TSD
∃r

y (x =
y + d

2
∧r W0y)).

Let Ip,k := [p − 2−k , p + 2−k] and Bkx := ∃l
q(x ∈ Iq,k). Assume

that in the abstract theory we can prove

∀x∈R∀c
p,q∈Q(p < q → x ≤ q ∨ p ≤ x),

∀x(Rx ↔c ∀c
kBkx).

Coinductive definition of real numbers (continued)

Lemma

I ∀x(Rx →c W0x).

I ∀x(W0x →c ∀c
kBkx).

Proof:

I Use the fixed point axiom for W0 with Rx for A(x).

I Prove ∀c
k∀x(W0x →c Bkx) by induction on k. In the step case

use the clause for W0 and the IH.

Using the lemma we can derive

∀x ,y (W0x →c W0y →c W0(x ∗ y))

from ∀x ,y (Rx →c Ry →c R(x ∗ y)) in the abstract setting. Its type
is that of a stream transformer.

Inductive/coinductive definition of continuous functions

Let I := [−1, 1] and let f range over (abstract) functions I → I.
Let Cf abbreviate “f is (uniformly) continuous”. Assume that in
the abstract theory we can prove

∀c
f : I→I(C (f)↔c ∀c

k∃c
l Bl ,k f) with Bl ,k f := ∀c

p∃c
q(f [Ip,l] ⊆ Iq,k).

For d ∈ SD := {−1, 0, 1} let Id be defined by

I−1 := [−1, 0] I0 := [−1

2
,
1

2
] I1 := [0, 1].

Define ind , outd such that ind [I] = Id and outd [Id] = I by

ind(x) :=
d + x

2
, outd(x) := 2x − d .

Both functions are inverse to each other.

Inductive/coinductive def. of continuous functions (ctd.)

I Inductive definition of a predicate RX depending on a
parameter X :

∀c
f (f [I] ⊆ Id → X (outd ◦ f) →c RX f),

∀c
f (∀c

d∈SDRX (f ◦ ind) →c RX f).

I Using R, we give a coinductive definition of W by the clause

∀f (Wf →c Idf ∨c RW f).

I Realizers of Wf : cototal/total ideals (i.e., alternating in write
and read mode).

Inductive/coinductive def. of continuous functions (ctd.)

Lemma

I ∀f (Cf →c Wf).

I ∀f (Wf →c ∀c
k∃c

l Bl ,k f).

Proof:

I Use the fixed point axiom for W with Cf for A(f).

I Prove ∀c
k∀f (Wf →c ∃c

l Bl ,k+1x) by induction on k. In the step
use a side induction on RW and the IH.

Using the lemma one can derive

∀f ,g (Wf →c Wg →c W (f ◦ g))

from ∀f ,g (Cf →c Cg →c C (f ◦ g)) in the abstract setting. Its
content again is a stream transformer, as in Peter Hancock’s talk.

Conclusion

I Partial continuous functionals: Acis’s, ideals, free algebras,
totality and cototality.

I T+, a common extension of Gödel’s T and Plotkin’s PCF:
Constants defined by computation rules, denotational
semantics, adequacy theorem.

I Logic of inductive definitions LID: based on T+. →,∀ as well
as →c,∀c. Characterization and soundness theorems.

I Application: Extraction of stream transformers from abstract
proofs in real analysis.

