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Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.

I Discover unexpected content, in proofs of ∃̃xA := ¬∀x¬A, via
proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation (Ratiu, Trifonov).

Here:

I Content of proofs in analysis.

I Allow abstract treatment (Cruz-Filipe 2004, O’Connor 2008,
Zumkeller 2008). Concrete data types for realizers only:
real ∼ stream of signed digits,
continuous function ∼ stream transformer.

(Cf. U. Berger, From coinductive proofs to exact real arithmetic.
Draft, 2008).
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Computable functionals of finite types

I Gödel 1958: “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunkts”, namely computable
finite type functions.

I Need partial continuous functionals as their intendend domain
(Scott 1969). The total ones then appear as a dense subset
(Kreisel 1959, Ershov 1972).

I Type theory of Martin-Löf 1983 deals with total (structural
recursive) functionals only. Fresh start, based on (a simplified
form of) information systems (Scott 1982).
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Atomic coherent information systems (acis’s)

I Acis: (A,`,≥) such that ` (consistent) is reflexive and
symmetric, ≥ (entails) is reflexive and transitive and
a ` b → b ≥ c → a ` c .

I Formal neighborhood: U ⊆ A finite and consistent. We write
U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a.

I Function space: Let A = (A,`A,≥A) and B = (B,`B ,≥B)
be acis’s. Define A → B = (C ,`,≥) by

C := ConA × B,

(U, b) ` (V , c) := U `A V → b `B c ,

(U, b) ≥ (V , c) := V ≥A U ∧ b ≥B c .

A → B is an acis again.
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Ideals, Scott topology

I Ideal: x ⊆ A consistent and deductively closed. |A| is the set
of ideals (points, objects) of A.

I |A| carries a natural topology, with cones Ũ := { z | z ⊇ U }
generated by the formal neighborhoods U as basis.

Theorem (Scott 1982)

The continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are
in a bijective correspondence.
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Free algebras

are given by their constructors. Examples

I Natural numbers N: 0, S.

I Binary trees T: nil, C.

I Unit U: u.

I Booleans B: tt, ff.

I Signed digits SD: −1, 0, +1.

I Lists of signed digits L(SD): nil, d :: l .

We always require a nullary constructor.
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Turning free algebras into information systems

I Commonly done by adding ⊥: “flat cpo”. Problems arise:

I Problem 1: Constructors are not injective:
C(⊥, b) = ⊥ = C(a,⊥).

I Problem 2: Constructors do not have disjoint ranges:
C1(⊥) = ⊥ = C2(⊥).

I Solution: Use as atoms constructor expressions involving a
symbol ∗, meaning “no information”.
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Example: atoms and entailment for N
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Example: ideals for N
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Total and cototal ideals

For a base type ι, the total ideals are defined inductively:

I 0 is total (0 being the nullary constructor), and

I If ~z are total, then so is C~z .

The cototal ideals x are those of the form C~z with C a constructor
of ι and ~z cototal. – For example, in L(SD),

I the total ideals are the finite and

I the cototal ideals are the finite or infinite

lists of signed digits (∼ an interval with rational end points or a
stream real, both in [−1, 1]).
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Totality in higher types, density

I An ideal r of type ρ → σ is total iff for all total z of type ρ,
the result |r |(z) of applying r to z is total.

I Density theorem (Kreisel 1959, Ershov 1972, U. Berger 1993):
Assume that all base types are finitary. Then for every
U ∈ Conρ we can find a total x such that U ⊆ x .
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A common extension T+ of Gödel’s T and Plotkin’s PCF

I Terms M,N ::= xρ | C | D | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Constants D defined by computation rules. Examples:
Recursion Rτ

N : N → (U× τ ×N → τ) → τ .

R0xy = x , R(Sn)xy = yn(Rnxy).

Corecursion Cτ
N : τ → (τ → U + τ + N) → N.

Cxy = [case yx of 0 | λz(S[case zτ+N of λu(Cuy) | λnn])].

Case of type ρ + σ → (ρ → τ) → (σ → τ) → τ :

[case (inl(M))ρ+σ of λxN(x) | λyK (y)] = N(M),

[case (inr(M))ρ+σ of λxN(x) | λyK (y)] = K (M).
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Destructors

Every algebra ι with k constructors each of arity ni (i < k) has a
destructor Dι of type

ι →
∑
i<k

∏
j<ni

ι.

Computation rules:

Dι(Ci (~x)) = ini (~x).

Example: DN : N → U + N is defined by the computation rules

DN(Sn) = inr(n),

DN(0) = inl(u).
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Operational and denotational semantics

I Denotational: inductive definition of (~U, b) ∈ [[λ~x M]].

I Operational: define M ∈ [a], by induction on the type of a.

I Plotkin (1977) proved: Whenever an atom b belongs to the
value of a closed term M, then M head-reduces to an atom
entailing b. Here we have more generally:

Theorem (Adequacy)

(~U, b) ∈ [[λ~x M]] → λ~x M ∈ [(~U, b)].
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Logic of inductive definitions LID

I is based on T+. Terms with the same reduct are identified.

I It contains inductively and coinductively defined predicates,
given by their clauses and (least and greatest) fixed point
axioms. Examples: T ,T∞,Eq,∃.

I Uses minimal logic only: introduction and elimination rules for
→ and ∀.

I Ex falso quodlibet is provable, when one defines falsity by
F := EqB(ff, tt).
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Totality

Totality TN is inductively defined by the clauses

∃m∈TN
(m=0),

∀n∈TN
∃m∈TN

(m=Sn).

and the least fixed point axiom (or induction)

∀n∈TN

(
A(0) → ∀n∈TN

(A(n) → A(Sn)) → A(nN)
)
.
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Cototality

Cototality T∞N is coinductively defined by the clause

∀U
n∈T∞N

(n=0 ∨ ∃U
m∈T∞N

(n=Sm))

and the greatest fixed point axiom (or coinduction)

∀U
n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃U
m[n=Sm ∧ (A(m) ∨ T∞N (m))]) →

T∞N (n)).
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Continuous functions on the reals

Soundness

For every proof M in LID we can define its extracted term [[M]]
(modified realizability interpretation: Kreisel 1959, Seisenberger
2003). In particular this needs to be done for the axioms.

Theorem
Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions ūi : xui r Ci .

Proof.
Induction on M.
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Realizing the fixed point axiom of T∞

I Recall the (greatest) fixed point axiom (T∞N )fp for cototality

∀U
n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃U
m[n=Sm ∧ (A(m) ∨ T∞N (m))]) →

T∞N (n)).

I Its type is
τ → (τ → U + τ + N) → N,

since τ(T∞N (n)) := N and τ(∀U
x B) := τ(∃U

x B) := τ(B).

I Its extracted term is the corecursion operator Cτ
N.
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Realizing the clause of T∞

I Recall the clause for cototality

∀U
n∈T∞N

(n=0 ∨ ∃U
m∈T∞N

(n=Sm)).

I Its type is
N → U + N

since τ(T∞N (n)) := N and τ(∀U
x B) := τ(∃U

x B) := τ(B).

I Its extracted term is the destructor DN.
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Continuous functions f : I → I where I := [−1, 1]
Wf coinductively defined: f continuous function in write mode.
Rf inductively defined: f continuous function in read mode.
(Simultaneous) clauses:

∀f (Wf → Idf ∨ Rf ),

∀f (f [I] ⊆ Id → W (outd ◦ f ) → Rf ) (d ∈ SD),

∀f (∀dR(f ◦ ind) → Rf ).

The corresponding (greatest and least) fixed point axioms are

∀f (A(f ) → ∀f (A(f ) → Idf ∨ Rf ) → Wf ),

∀f (Rf → (∀f (f [I] ⊆ Id → W (outd ◦ f ) → A(f )))d∈SD →
∀f (∀dA(f ◦ ind) → ∀dR(f ◦ ind) → A(f )) →
A(f )).
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Conclusion

I Partial continuous functionals: Acis’s, ideals, free algebras,
totality and cototality.

I T+, a common extension of Gödel’s T and Plotkin’s PCF:
Constants defined by computation rules, denotational and
operational semantics, adequacy theorem.

I Logic of inductive definitions LID: based on T+.

I Computational content: Soundness theorem. May treat
continuous functions abstractly. Concrete data types for
realizers only: real ∼ stream of signed digits, continuous
function ∼ stream transformer.
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