
Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Logic of inductive definitions with formal
neighbourhoods

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Proof and Computational Complexity, Oslo, 8-9. August 2008

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.

I Discover unexpected content, in proofs of ∃̃xA := ¬∀x¬A, via
proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation (Ratiu, Trifonov).

Here:

I Content of proofs in analysis.

I Allow abstract treatment (Cruz-Filipe 2004, O’Connor 2008,
Zumkeller 2008). Concrete data types for realizers only:
real ∼ stream of signed digits,
continuous function ∼ stream transformer.

(Cf. U. Berger, From coinductive proofs to exact real arithmetic.
Draft, 2008).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Computable functionals of finite types

I Gödel 1958: “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunkts”, namely computable
finite type functions.

I Need partial continuous functionals as their intendend domain
(Scott 1969). The total ones then appear as a dense subset
(Kreisel 1959, Ershov 1972).

I Type theory of Martin-Löf 1983 deals with total (structural
recursive) functionals only. Fresh start, based on (a simplified
form of) information systems (Scott 1982).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Atomic coherent information systems (acis’s)

I Acis: (A,`,≥) such that ` (consistent) is reflexive and
symmetric, ≥ (entails) is reflexive and transitive and
a ` b → b ≥ c → a ` c .

I Formal neighborhood: U ⊆ A finite and consistent. We write
U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a.

I Function space: Let A = (A,`A,≥A) and B = (B,`B ,≥B)
be acis’s. Define A → B = (C ,`,≥) by

C := ConA × B,

(U, b) ` (V , c) := U `A V → b `B c ,

(U, b) ≥ (V , c) := V ≥A U ∧ b ≥B c .

A → B is an acis again.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Ideals, Scott topology

I Ideal: x ⊆ A consistent and deductively closed. |A| is the set
of ideals (points, objects) of A.

I |A| carries a natural topology, with cones Ũ := { z | z ⊇ U }
generated by the formal neighborhoods U as basis.

Theorem (Scott 1982)

The continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are
in a bijective correspondence.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Free algebras

are given by their constructors. Examples

I Natural numbers N: 0, S.

I Binary trees T: nil, C.

I Unit U: u.

I Booleans B: tt, ff.

I Signed digits SD: −1, 0, +1.

I Lists of signed digits L(SD): nil, d :: l .

We always require a nullary constructor.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Turning free algebras into information systems

I Commonly done by adding ⊥: “flat cpo”. Problems arise:

I Problem 1: Constructors are not injective:
C(⊥, b) = ⊥ = C(a,⊥).

I Problem 2: Constructors do not have disjoint ranges:
C1(⊥) = ⊥ = C2(⊥).

I Solution: Use as atoms constructor expressions involving a
symbol ∗, meaning “no information”.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Example: atoms and entailment for N

•∗@
@@
•0

�
��
• S∗@

@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Example: ideals for N

•⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��
• S(S(S⊥))@

@@
•S(S(S0))

�
��

..
. • ∞

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Total and cototal ideals

For a base type ι, the total ideals are defined inductively:

I 0 is total (0 being the nullary constructor), and

I If ~z are total, then so is C~z .

The cototal ideals x are those of the form C~z with C a constructor
of ι and ~z cototal. – For example, in L(SD),

I the total ideals are the finite and

I the cototal ideals are the finite or infinite

lists of signed digits (∼ an interval with rational end points or a
stream real, both in [−1, 1]).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality and cototality

Totality in higher types, density

I An ideal r of type ρ → σ is total iff for all total z of type ρ,
the result |r |(z) of applying r to z is total.

I Density theorem (Kreisel 1959, Ershov 1972, U. Berger 1993):
Assume that all base types are finitary. Then for every
U ∈ Conρ we can find a total x such that U ⊆ x .

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Constants defined by computation rules
Denotational and operational semantics

A common extension T+ of Gödel’s T and Plotkin’s PCF

I Terms M,N ::= xρ | C | D | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Constants D defined by computation rules. Examples:
Recursion Rτ

N : N → (U× τ ×N → τ) → τ .

R0xy = x , R(Sn)xy = yn(Rnxy).

Corecursion Cτ
N : τ → (τ → U + τ + N) → N.

Cxy = [case yx of 0 | λz(S[case zτ+N of λu(Cuy) | λnn])].

Case of type ρ + σ → (ρ → τ) → (σ → τ) → τ :

[case (inl(M))ρ+σ of λxN(x) | λyK (y)] = N(M),

[case (inr(M))ρ+σ of λxN(x) | λyK (y)] = K (M).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Constants defined by computation rules
Denotational and operational semantics

Destructors

Every algebra ι with k constructors each of arity ni (i < k) has a
destructor Dι of type

ι →
∑
i<k

∏
j<ni

ι.

Computation rules:

Dι(Ci (~x)) = ini (~x).

Example: DN : N → U + N is defined by the computation rules

DN(Sn) = inr(n),

DN(0) = inl(u).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Constants defined by computation rules
Denotational and operational semantics

Operational and denotational semantics

I Denotational: inductive definition of (~U, b) ∈ [[λ~x M]].

I Operational: define M ∈ [a], by induction on the type of a.

I Plotkin (1977) proved: Whenever an atom b belongs to the
value of a closed term M, then M head-reduces to an atom
entailing b. Here we have more generally:

Theorem (Adequacy)

(~U, b) ∈ [[λ~x M]] → λ~x M ∈ [(~U, b)].

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Inductive definition of totality
Coinductive definition of cototality

Logic of inductive definitions LID

I is based on T+. Terms with the same reduct are identified.

I It contains inductively and coinductively defined predicates,
given by their clauses and (least and greatest) fixed point
axioms. Examples: T ,T∞,Eq,∃.

I Uses minimal logic only: introduction and elimination rules for
→ and ∀.

I Ex falso quodlibet is provable, when one defines falsity by
F := EqB(ff, tt).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Inductive definition of totality
Coinductive definition of cototality

Totality

Totality TN is inductively defined by the clauses

∃m∈TN
(m=0),

∀n∈TN
∃m∈TN

(m=Sn).

and the least fixed point axiom (or induction)

∀n∈TN

(
A(0) → ∀n∈TN

(A(n) → A(Sn)) → A(nN)
)
.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Inductive definition of totality
Coinductive definition of cototality

Cototality

Cototality T∞N is coinductively defined by the clause

∀U
n∈T∞N

(n=0 ∨ ∃U
m∈T∞N

(n=Sm))

and the greatest fixed point axiom (or coinduction)

∀U
n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃U
m[n=Sm ∧ (A(m) ∨ T∞N (m))]) →

T∞N (n)).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Soundness
Content of the axioms for T∞

Continuous functions on the reals

Soundness

For every proof M in LID we can define its extracted term [[M]]
(modified realizability interpretation: Kreisel 1959, Seisenberger
2003). In particular this needs to be done for the axioms.

Theorem
Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions ūi : xui r Ci .

Proof.
Induction on M.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Soundness
Content of the axioms for T∞

Continuous functions on the reals

Realizing the fixed point axiom of T∞

I Recall the (greatest) fixed point axiom (T∞N)fp for cototality

∀U
n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃U
m[n=Sm ∧ (A(m) ∨ T∞N (m))]) →

T∞N (n)).

I Its type is
τ → (τ → U + τ + N) → N,

since τ(T∞N (n)) := N and τ(∀U
x B) := τ(∃U

x B) := τ(B).

I Its extracted term is the corecursion operator Cτ
N.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Soundness
Content of the axioms for T∞

Continuous functions on the reals

Realizing the clause of T∞

I Recall the clause for cototality

∀U
n∈T∞N

(n=0 ∨ ∃U
m∈T∞N

(n=Sm)).

I Its type is
N → U + N

since τ(T∞N (n)) := N and τ(∀U
x B) := τ(∃U

x B) := τ(B).

I Its extracted term is the destructor DN.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Soundness
Content of the axioms for T∞

Continuous functions on the reals

Continuous functions f : I → I where I := [−1, 1]
Wf coinductively defined: f continuous function in write mode.
Rf inductively defined: f continuous function in read mode.
(Simultaneous) clauses:

∀f (Wf → Idf ∨ Rf),

∀f (f [I] ⊆ Id → W (outd ◦ f) → Rf) (d ∈ SD),

∀f (∀dR(f ◦ ind) → Rf).

The corresponding (greatest and least) fixed point axioms are

∀f (A(f) → ∀f (A(f) → Idf ∨ Rf) → Wf),

∀f (Rf → (∀f (f [I] ⊆ Id → W (outd ◦ f) → A(f)))d∈SD →
∀f (∀dA(f ◦ ind) → ∀dR(f ◦ ind) → A(f)) →
A(f)).

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Soundness
Content of the axioms for T∞

Continuous functions on the reals

Conclusion

I Partial continuous functionals: Acis’s, ideals, free algebras,
totality and cototality.

I T+, a common extension of Gödel’s T and Plotkin’s PCF:
Constants defined by computation rules, denotational and
operational semantics, adequacy theorem.

I Logic of inductive definitions LID: based on T+.

I Computational content: Soundness theorem. May treat
continuous functions abstractly. Concrete data types for
realizers only: real ∼ stream of signed digits, continuous
function ∼ stream transformer.

Helmut Schwichtenberg Logic of inductive definitions with formal neighbourhoods

	Partial continuous functionals
	Information systems
	Ideals
	Free algebras
	Totality and cototality

	Terms denoting computable functionals
	Constants defined by computation rules
	Denotational and operational semantics

	Logic of inductive definitions
	Inductive definition of totality
	Coinductive definition of cototality

	Computational content
	Soundness
	Content of the axioms for T
	Continuous functions on the reals

