Program development by proof transformation

Helmut Schwichtenberg

joint work with Luca Chiarabini and Diana Ratiu Mathematisches Institut, LMU, München

AIST, Osaka, 11. June 2009

Logic

- ▶ The only (basic) logical connectives are \rightarrow , \forall .
- Proofs have two aspects:
 - (i) They guarantee correctness.
 - (ii) They may have computational content.
- Computational content only enters a proof via inductively (or coinductively) defined predicates.
- ▶ To fine tune the computational content of a proof, distinguish \rightarrow^c , \forall^c (computational) and \rightarrow , \forall (non-computational).

Natural deduction: assumption variables u^A . Rules for \rightarrow^c :

derivation	proof term
$[u: A]$ $ M$ $\frac{B}{A \to^{c} B} (\to^{c})^{+} u$	$(\lambda_{u^A}M^B)^{A o^c B}$
$ \begin{array}{c cc} & M & N \\ & A \rightarrow^{c} B & A \\ \hline & B & A \\ \end{array} (\rightarrow^{c})^{-} $	$(M^{A \rightarrow {}^{c}B}N^{A})^{B}$

Natural deduction: rules for \forall^c

derivation	proof term
$\frac{ M }{\frac{A}{\forall_x^c A}} (\forall^c)^+ x \text{(var. cond.)}$	$(\lambda_{\scriptscriptstyle X} M^A)^{orall_{\scriptscriptstyle X}^c A}$ (var. cond.)
$\frac{ M }{\frac{\forall_{x}^{c} A(x)}{A(r)}} (\forall^{c})^{-}$	$(M^{\forall_x^c A(x)} r)^{A(r)}$

Restrictions to \rightarrow^+ and \forall^+ (non-computational)

 $\mathrm{CV}(M) :=$ the set of "computational variables" of a derivation M, relative to a fixed assignment $u^A \mapsto x_u^{\tau(A)}$. Consider

$$\begin{array}{c|c} [u\colon A] \\ & \mid M \\ \hline B \\ \hline A \to B \end{array} \to^+ u \qquad \text{or as proof term} \quad (\lambda_{u^A} M^B)^{A \to B}.$$

 $(\lambda_{u^A}M^B)^{A\to B}$ is correct if M^B is and $x_u\notin \mathrm{CV}(M^B)$. Consider

$$\begin{array}{c} \mid M \\ \underline{A} \\ \forall_x A \end{array} \ \text{or as proof term} \quad (\lambda_x M^A)^{\forall_x A} \qquad \text{(with var. condition)}.$$

 $(\lambda_x M^A)^{\forall_x A}$ is correct if M^A is and $x \notin CV(M^A)$.

Formulas as computational problems

- ▶ Kolmogorov (1925) proposed to view a formula A as a computational problem, of type $\tau(A)$, the type of a potential solution or "realizer" of A.
- ► Example: $\forall_n^c \exists_{m>n}^l \text{Prime}(m)$ has type $\mathbf{N} \to \mathbf{N}$.
- ▶ $A \mapsto \tau(A)$, a type or the "nulltype" symbol ε .
- ▶ In case $\tau(A) = \varepsilon$ proofs of A have no computational content; such formulas A are called computationally irrelevant (c.i.) or Harrop formulas; the others computationally relevant (c.r.).

Realizability

Let t be either a term of type $\tau(A)$ if this is a type, or ε if $\tau(A) = \varepsilon$. Extend term application to the "nullterm" symbol ε :

$$\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$$

We define the formula $t \mathbf{r} A$, read t realizes A.

$$\varepsilon \mathbf{r} I \vec{r} := I \vec{r}$$
 for I not requiring witnesses (e.g., Eq),
 $t \mathbf{r} (A \rightarrow^{c} B) := \forall_{x} (x \mathbf{r} A \rightarrow t \mathbf{x} \mathbf{r} B),$
 $t \mathbf{r} (A \rightarrow B) := \forall_{x} (x \mathbf{r} A \rightarrow t \mathbf{r} B),$
 $t \mathbf{r} \forall_{x}^{c} A := \forall_{x} (t \mathbf{x} \mathbf{r} A), \quad t \mathbf{r} \forall_{x} A := \forall_{x} (t \mathbf{r} A)$

and similarly for \exists , \land , \lor and other inductively defined I's.

Derivations and extracted terms

For M^A with A c.i. let $[\![M]\!] := \varepsilon$. Assume A is c.r. Then

Define $CV(M) := FV(\llbracket M \rrbracket)$.

Soundness

Let M be a derivation of A from assumptions u_i : C_i (i < n). Then we can find a derivation of $[\![M]\!]$ r A from assumptions

$$\begin{cases} x_{u_i} \mathbf{r} \ C_i & \text{for } \tau(C_i) \neq \varepsilon \text{ and } x_{u_i} \in \mathrm{CV}(M) \\ \exists_x (x \mathbf{r} \ C_i) & \text{for } \tau(C_i) \neq \varepsilon \text{ and } x_{u_i} \notin \mathrm{CV}(M) \\ \varepsilon \mathbf{r} \ C_i & \text{for } \tau(C_i) = \varepsilon. \end{cases}$$

Bin packing (Goad 1980)

- $X = i_0, i_1, \dots, i_{p-1}$ list of blocks.
- ▶ $B = j_0, j_1, ..., j_{q-1}$ list of bins.
- ▶ $A = k_0, k_1, ..., k_{p-1}$ assigns to an index of a block the index of the bin it should go into.
- ▶ Legal(A, X, B) defined by

$$Legal(kA, iX, B) := Legal(A, X, Decr(B, k, i)).$$

Bin packing

Specification:

$$egin{aligned} & orall_{X,B}^{\mathrm{c}} \exists_{m{p}}^{\mathrm{d}}((m{p}
ightarrow \exists_{m{A}}^{\mathrm{l}} \mathrm{Legal}(m{A}, m{X}, m{B})) \land \ & ((m{p}
ightarrow m{F})
ightarrow \exists_{m{A}}^{\mathrm{l}} \mathrm{Legal}(m{A}, m{X}, m{B})
ightarrow m{F}) \end{aligned}$$

Specializations of the proof contain many case distinctions

$$[u:A] \qquad [v:B]$$

$$\mid M \qquad \mid N$$

$$A \lor B \qquad C \qquad C$$

- ▶ Remove predecided case distinctions: replace *v* : *B* in *N* by a proof of *B* from the present context. Result: *N'*.
- ▶ Simplification (Prawitz): replace the whole case dist. by N'.

Bin packing: extracted terms for $X = [i_1, i_2]$, B = [j, j]

```
[if (i1<=j)
  [if (i2<=j--i1)
      (True@0::0:)
      [if (i2<=j) (True@0::1:) (False@(Nil nat))]]
  (False@(Nil nat))]
With i2<=j as premise
[if (i1<=j) (True@0::1:) (False@(Nil nat))]</pre>
```

- ► Extensionally different program: it never returns 0::0:
- Program transformation cannot do this.

Decoration can simplify extracts

- ▶ Suppose that a proof M uses a lemma L^d : $A \vee^d B$.
- ► Then the extract [M] will contain the extract [L^d].
- Suppose that the only computationally relevant use of L^d in M was which one of the two alternatives holds true, A or B.
- ▶ Express this by using a weakened lemma $L: A \lor B$.
- ▶ Since $\llbracket L \rrbracket$ is a boolean, the extract of the modified proof is "purified": the (possibly large) extract $\llbracket L^{\mathrm{d}} \rrbracket$ has disappeared.

Decorating proofs

Goal: Insert as few as possible decorations into a proof.

- $ightharpoonup \operatorname{Seq}(M)$ of a proof M consists of its context and end formula.
- ▶ The uniform proof pattern U(M) of a proof M is the result of changing in c.r. formulas of M (i.e., not above a c.i. formula) all \rightarrow ^c, \forall ^c into \rightarrow , \forall , except "uninstantiated" formulas of axioms, e.g., \forall ^c_n $(Q0 \rightarrow$ ^c \forall ^c_n $(Qn \rightarrow$ ^c $Q(Sn)) \rightarrow$ ^c Qn).
- ▶ A formula D extends C if D is obtained from C by changing some \rightarrow , \forall into \rightarrow ^c, \forall ^c.
- ▶ A proof N extends M if (i) N and M are the same up to variants of \rightarrow , \forall in their formulas, and (ii) every c.r. formula of M is extended by the corresponding one in N.

Decoration algorithm

Assumption: We have an algorithm assigning to every axiom A and every decoration variant C of A another axiom whose formula D extends C, and D is the least among those extensions.

Theorem (Ratiu, H.S.)

Under the assumption above, for every uniform proof pattern U and every extension of its sequent $\mathrm{Seq}(U)$ we can find a decoration M_{∞} of U such that

- (a) $\operatorname{Seq}(M_{\infty})$ extends the given extension of $\operatorname{Seq}(U)$, and
- (b) M_{∞} is optimal in the sense that any other decoration M of U whose sequent $\mathrm{Seq}(M)$ extends the given extension of $\mathrm{Seq}(U)$ has the property that M also extends M_{∞} .

Passing continuations

► The idea of continuation passing style programming can be expressed by a formula

$$\forall_{n}^{c}(Qn \to^{c} Q(Sn)) \to^{c}$$

$$\forall_{n,m}^{c}((Qn \to^{c} Q(n+m)) \to^{c} Q0 \to^{c} Q(n+m)).$$

▶ We prove induction $\forall_n^c(Qn \rightarrow^c Q(Sn)) \rightarrow^c \forall_n^c(Q0 \rightarrow^c Qn)$ in continuation passing style, i.e., not directly, but using the formula above as an intermediate assertion.

Result of demo: extracted term E

```
[f0,n1] (Rec nat=>nat=>(alpha=>alpha)=>alpha=>alpha)n1([n3,k4]k4) ([n3,p4,n5,k6]p4(Succ n5)([x8]k6(f0 n3 x8))) applied to 0 and ([x3]x3). 
 E has value type \mathbf{N} \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha. E(f,0,\mathbf{m},k)=k,
```

 $E(f, n + 1, m, k) = E(f, n, m + 1, k \circ f(n)).$

This is almost continuation passing style: *m* is unwanted.

Extracted term D after decoration

applied to ([x3]x3). D has value type $(\alpha \to \alpha) \to \alpha \to \alpha$.

$$D(f, 0, k) = k,$$

 $D(f, n + 1, k) = D(f, n, k \circ f(n)).$

This is continuation passing style: f, n are mapped to $k \mapsto k \circ f(n-1) \circ ... \circ f(0)$.

Example: Maximal Scoring Segment (MSS)

▶ Let X be linearly ordered by \leq . Given $seg: \mathbb{N} \to \mathbb{N} \to X$. Want: maximal segment

$$\forall_n^{\mathrm{c}} \exists_{i \leq k \leq n}^{\mathrm{l}} \forall_{i' \leq k' \leq n} (\mathrm{seg}(i', k') \leq \mathrm{seg}(i, k)).$$

Example: Regions with high G, C content in DNA.

$$X := \{G, C, A, T\},\$$
 $g : \mathbf{N} \to X \quad (\text{gene}),\$
 $f : \mathbf{N} \to \mathbf{Z}, \quad f(i) := \begin{cases} 1 & \text{if } g(i) \in \{G, C\},\ -1 & \text{if } g(i) \in \{A, T\},\ \end{cases}$
 $\operatorname{seg}(i, k) = f(i) + \dots + f(k).$

► Special case: maximal end segment

$$\forall_n^{c} \exists_{i \leq n}^{l} \forall_{j' \leq n} (\operatorname{seg}(j', n) \leq \operatorname{seg}(j, n)).$$

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n+1

$$\forall_n^{\mathrm{c}} \exists_{j \leq n+1}^{\mathrm{l}} \forall_{j' \leq n+1} (\operatorname{seg}(j', n+1) \leq \operatorname{seg}(j, n+1)).$$

▶ Introduce an auxiliary parameter m; prove by induction on m

$$\forall_n^{\mathrm{c}}\forall_{m\leq n+1}^{\mathrm{c}}\exists_{j\leq n+1}^{\mathrm{l}}\forall_{j'\leq m}(\mathrm{seg}(j',n+1)\leq \mathrm{seg}(j,n+1)).$$

▶ Use ES_n : $\exists_{j\leq n}^{\mathrm{l}} \forall_{j'\leq n} (\mathrm{seg}(j',n) \leq \mathrm{seg}(j,n))$ and the additional assumption of monotonicity

$$\forall_{i,j,n}(\mathrm{seg}(i,n)\leq\mathrm{seg}(j,n)\rightarrow\mathrm{seg}(i,n+1)\leq\mathrm{seg}(j,n+1)).$$

Proceed by cases on $seg(j, n + 1) \le seg(n + 1, n + 1)$. If \le , take n + 1, else the previous j.

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n, simultaneously with the existence of a maximal end segment.

$$\forall_{n}^{c}(\exists_{i\leq k\leq n}^{l}\forall_{i'\leq k'\leq n}(\operatorname{seg}(i',k')\leq \operatorname{seg}(i,k))\wedge^{d}$$
$$\exists_{j\leq n}^{l}\forall_{j'\leq n}(\operatorname{seg}(j',n)\leq \operatorname{seg}(j,n)))$$

In the step:

- ▶ Compare the maximal segment i, k for n with the maximal end segment j, n + 1 proved separately.
- ▶ If \leq , take the new i, k to be j, n + 1. Else take the old i, k.

Depending on how the existence of a maximal end segment was proved, we obtain a quadratic or a linear algorithm.

Example: MSS (ctd.)

Could the better proof be found automatically? Have L1 and L2:

$$\forall_{n}^{c}\forall_{m\leq n+1}^{c}\exists_{j\leq n+1}^{l}\forall_{j'\leq m}(\operatorname{seg}(j',n+1)\leq \operatorname{seg}(j,n+1)),$$

$$\operatorname{Mon} \rightarrow \forall_{n}^{c}(\operatorname{ES}_{n} \rightarrow^{c}\forall_{m\leq n+1}\exists_{j\leq n+1}^{l}\forall_{j'\leq m}(\operatorname{seg}(j',n+1)\leq \operatorname{seg}(j,n+1))).$$

▶ The decoration algorithm arrives at L1 with

$$\forall_{m\leq n+1}\exists_{j\leq n+1}^{l}\forall_{j'\leq m}(\operatorname{seg}(j',n+1)\leq \operatorname{seg}(j,n+1)).$$

▶ L2 fits as well, its assumptions Mon and ES_n are in the context, and it is the less extended ($\forall_{m \leq n+1}$ rather than $\forall_{m \leq n+1}^c$), hence is preferred.

Further work, problems, outlook

- ► Luca Chiarabini applied pruning successfully in bioinformatics: string alignment, bounded perfect matching.
- Efficiency problem: proofs must be well structured.
- More experience needed.
- Code carrying proofs for high security requirements.

References

- ▶ U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).
- ▶ D. Ratiu and H.S., Decorating proofs. To appear, Mints volume (S. Feferman and W. Sieg, eds.), 2009.