Intro 000 (Co)inductive predicates

Realizers

ivision

Conclusion O

Logic for exact real arithmetic

Helmut Schwichtenberg (j.w.w. Franziskus Wiesnet)

Mathematisches Institut, LMU, München

Dedicated to Vladimir P. Orevkov on occasion of his 80th birthday

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
•00	0000	00000	000000	00000	0

Proofs have two aspects:

- 1. they guarantee correctness, and
- 2. they may have computational content.

We address (2), and use a BHK-interpretation to extract programs from proofs. Features:

- The extract is a term in the underlying theory, hence we have a framework to formally prove its properties.
- Computational content in (co)inductive predicates only.
- From proofs in constructive analysis¹ we can extract programs operating on stream-represented real numbers.

¹E. Bishop, Foundations of Constructive Analysis, 1967

Minimal logic, natural deduction

- Introduction and elimination rules for \rightarrow , \forall .
- Introduction and elimination axioms for (co)inductive predicates (e.g. ∃, ∨, ∧).
- Proof terms with formulas as types, $\sim\lambda$ -terms with constants.
- Normalization is essential (eliminate use of lemmas, evaluate realizers).

Division 00000 Conclusion O

Efficiency of normalization

- Needed to simplify terms in formulas (in interactive proofs with a proof assistant).
- Needed to evaluate realizing terms extracted from proofs.
- Superexponential for typed λ -terms².
- Analysis of efficiency for λ -terms with constants beautyfully done by Vladimir Orevkov³.

 2 R. Statman, The typed $\lambda-$ calculus is not elementary recursive, TCS 1979 $^3V.$ Orevkov, Lower bounds for increasing complexity of derivations after cut elimination, Zapiski 1979

Model (Co)inductive pre

Realizers

ivision 0000 Conclusion O

Infinite data of base type

Consider the base type \mathbb{L} of lists of signed digits $\overline{1}, 0, 1$. \mathbb{L} -objects can be total, cototal or partial (strict inclusions).

- A total object: 1 :: 0 :: 1 :: 0 :: []
- A cototal object: 1 :: 0 :: 1 :: 0 :: 1 :: 0 :: . . .

A partial object is the "deductive closure" of a finite "consistent" set of "tokens". For example, 1 :: * :: 1 :: * is a token, asserting that the 0th and 2nd element is 1.

Corecursion

 $^{\mathrm{co}}\mathcal{R}^{ au}_{\mathbb{N}}$ of type $au o (au o \mathbb{U} + (\mathbb{N} + au)) o \mathbb{N}$ is defined by

$${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbb{N}}xf = \begin{cases} 0 & \text{if } fx \equiv \mathrm{DummyL}^{\mathbb{U}+(\mathbb{N}+\tau)} \\ Sn & \text{if } fx \equiv \mathrm{Inr}(\mathrm{InL}^{\mathbb{N}\to\mathbb{N}+\tau}n) \\ S({}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbb{N}}x'f) & \text{if } fx \equiv \mathrm{Inr}(\mathrm{InR}^{\tau\to\mathbb{N}+\tau}x'). \end{cases}$$

As a rule this is non-terminating, but still the constant ${}^{co}\mathcal{R}^{\tau}_{\mathbb{N}}$ denotes a (partial) object in our model.

 Model
 (Co)inductive predicates
 Realizers

 OOOO
 OOOOO
 OOOOOO

vision 0000 Conclusion O

Formal neighborhoods

We use information systems⁴ to represent the objects of our model. Types are built from base types ι (free algebras) by $\tau \to \sigma$.

• Formal neighborhoods U are finite "consistent" sets of tokens.

•
$$(U,a)$$
 is a token of type $au o \sigma_{+}$

• $\{(U_1, a_1), \dots, (U_n, a_n)\}$: formal neighborhood of type $\tau \to \sigma$.

Application of $\{(U_1, a_1), \ldots, (U_n, a_n)\}$ to U:

 $\{a_i \mid U \vdash U_i\}$ where \vdash means "entails".

 $^{^{4}\}mbox{K}.$ Larsen and G. Winskel, Using information systems to solve recursive domain equations effectively, 1984

Model

ivision

Conclusion O

Computability and continuity

Partial continuous functional⁵: consistent "deductively closed" (possibly infinite) set of tokens. f is computable if this set is recursively enumerable. Continuity:

- Let f, x be infinite objects of types $au
 ightarrow \sigma$, au
- Let V be an approximation of f(x).

Then we can find approximations W of f and U of x such that

- W(U) approximates f(x), and
- $W(U) \vdash V$.

 $^{^{5}}$ D. Scott, Outline of a mathematical theory of computation, 1970, and Y. Ershov, Model C of partial continuous functionals, 1984

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

We inductively define a predicate I_0 on reals by the clauses

$$\forall_x (x = 0 \to x \in I_0), \quad \forall_{d \in \mathrm{Sd}} \forall_x \forall_{x' \in I_0} \Big(x = \frac{x' + d}{2} \to x \in I_0 \Big).$$

Then the induction (or least-fixed-point) axiom is

$$\forall_x (x=0 \to x \in P) \to \forall_{d \in \mathrm{Sd}} \forall_x \forall_{x' \in I_0 \cap P} \left(x=\frac{x'+d}{2} \to x \in P \right) \to I_0 \subseteq P.$$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	0000	000000	00000	0

Then ${}^{co}l_0$ is given by the closure axiom

$$\forall_{x \in {}^{\mathrm{co}} \mathit{l}_0} \left(x = 0 \lor \exists_{d \in \mathrm{Sd}} \exists_{x' \in {}^{\mathrm{co}} \mathit{l}_0} \left(x = \frac{x' + d}{2} \right) \right)$$

and the coinduction (or greatest-fixed-point) axiom is

$$\forall_{x \in P} \Big(x = 0 \lor \exists_{d \in \mathrm{Sd}} \exists_{x' \in \mathrm{^{co}} I_0 \cup P} \Big(x = \frac{x' + d}{2} \Big) \Big) \to P \subseteq \mathrm{^{co}} I_0.$$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

- Both \textit{I}_0 and ${}^{\rm co}\textit{I}_0$ are declared as "computationally relevant".
- The associated algebra is \mathbb{L} (lists of signed digits).
- The first constructor []: \mathbb{L} is a witness for the first clause, and the second :: of type $\mathbb{D} \to \mathbb{L} \to \mathbb{L}$ a witness for the second.

Computational content of the axioms:

- Clauses: constructors
- Induction axiom: recursion operator $\mathcal{R}^{ au}_{\mathbb{L}}$
- Closure axiom: destructor $\mathcal{D}_{\mathbb{L}}$
- Coinduction axiom: corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{ au}_{\mathbb{I}}$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Since 0 as real number is represented by the stream of 0's, we can simplify I_0 by removing the nullary clause, and obtain I and coI. We only need coI, coinductively defined by the closure axiom

$$\forall_{x\in {}^{\mathrm{col}}}\exists_{d\in \mathrm{Sd}}\exists_{x'\in {}^{\mathrm{col}}}\Big(x=\frac{x'+d}{2}\Big).$$

Therefore, the coinduction axiom is

$$\forall_{x\in P} \exists_{d\in \mathrm{Sd}} \exists_{x'\in \mathrm{col}\cup P} \left(x = \frac{x'+d}{2}\right) \to P \subseteq \mathrm{col}.$$

The associated data type is the algebra S (of streams of signed digits) given by a single binary constructor of type $\mathbb{D} \to S \to S$.

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Computational content of the axioms:

• Closure axiom: destructor $\mathcal{D}_{\mathbb{S}}$ of type $\mathbb{S}\to\mathbb{D}\times\mathbb{S},$ defined by

$$\mathcal{D}_{\mathbb{S}}(d::u) = \langle d, u \rangle.$$

• Coinduction axiom: corecursion operator ${}^{co}\mathcal{R}^{\tau}_{\mathbb{S}}$ of type $\tau \to (\tau \to \mathbb{D} \times (\mathbb{S} + \tau)) \to \mathbb{S}$:

$${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbb{S}}xf = \begin{cases} d :: u & \text{if } fx = \langle d, \mathrm{InL}^{\mathbb{S} \to \mathbb{S} + \tau} u \rangle \\ d :: {}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbb{S}}x'f & \text{if } fx = \langle d, \mathrm{InR}^{\tau \to \mathbb{S} + \tau}x' \rangle. \end{cases}$$

Soundness theorem

Let *M* be an **r**-free derivation of a formula *A* from assumptions $u_i : C_i$ (i < n). Then we can derive

$$\begin{cases} et(M) \mathbf{r} A & \text{if } A \text{ is c.r.} \\ A & \text{if } A \text{ is n.c.} \end{cases}$$

from assumptions

$$\begin{cases} z_{u_i} \mathbf{r} C_i & \text{if } C_i \text{ is c.r.} \\ C_i & \text{if } C_i \text{ is n.c.} \end{cases}$$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	00000	00000	0

The proof needs invariance axioms:

- Constructively to state A means⁶ the same as to say that A has a realizer.
- This statement A ↔ ∃_x(x r A) was called "to assert is to realize" by Feferman⁷.
- For r-free c.r. formulas A we require the invariance axioms

 $\forall_z (z \mathbf{r} A \to A).$ $A \to \exists_z (z \mathbf{r} A).$

⁶A.N. Kolmogorov, Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

⁷S. Feferman, Constructive theories of functions and classes, 1979

ntro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	00000	00000	0

Proof of the soundness theorem

We only consider the cases using invariance axioms. Case $(\lambda_{u^A} M^B)^{A \to B}$ with B n.c. and A c.r. We need a derivation of $A \to B$. By IH we have a derivation of B from $z \mathbf{r} A$. Required derivation of B from A:

$$\frac{A \to \exists_z(z \mathbf{r} A) \qquad A}{\exists_z(z \mathbf{r} A) \qquad B} = \exists^-$$

Case $(M^{A \to B} N^A)^B$ with B n.c. and A c.r. We need a derivation of B. By IH we have derivations of $A \to B$ and of et(N) r A. We obtain the required derivation from

$$\frac{\forall_{z}(z \mathbf{r} A \to A) \quad \text{et}(N)}{\underbrace{\text{et}(N) \mathbf{r} A \to A} \quad et(N) \mathbf{r} A}$$

and the derivation of $A \rightarrow B$.

16/25

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Extracted term et(M) of a derivation M^A with A c.r.

$$\begin{aligned} \operatorname{et}(u^{A}) &:= z_{u}^{\tau(A)} \quad (z_{u}^{\tau(A)} \text{ uniquely associated to } u^{A}), \\ \operatorname{et}((\lambda_{u^{A}}M^{B})^{A \to B}) &:= \begin{cases} \lambda_{z_{u}}^{\tau(A)}\operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((M^{A \to B}N^{A})^{B}) &:= \begin{cases} \operatorname{et}(M)\operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((\lambda_{x}M^{A})^{\forall_{x}A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_{x}A(x)}t)^{A(t)}) &:= \operatorname{et}(M). \end{aligned}$$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000		0000●0	00000	O

Consider a c.r. inductively defined predicate. The extracted terms for its axioms are:

- Clauses: constructors
- Induction axiom: recursion operator $\mathcal{R}^{ au}$
- Closure axiom: destructor ${\cal D}$
- Coinduction axiom: corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{ au}$

For the induction axiom $(I^{nc})^-$ of a "one-clause-nc" inductive predicate with a c.r. competitor predicate the extracted term is the identity.

Realizers

Example. I_0 .

- By another inductive predicate I^r₀ of arity (ℝ, L) we can express that a list u witnesses ("realizes") that the real x is in I₀.
- We write $u \mathbf{r} I_0 x$ (u is a realizer of $x \in I_0$) for $(x, u) \in I_0^r$.
- The predicate I_0^r is n.c. (since we already have a realizer u).
- I_0^{r} is inductively defined by the two clauses

$$(0,[]) \in I_0^{\mathbf{r}}, \quad \forall_{d \in \mathrm{Sd}} \forall_{(x,u) \in I_0^{\mathbf{r}}} \Big(\Big(\frac{x+d}{2}, s_d :: u\Big) \in I_0^{\mathbf{r}} \Big)$$

and the induction axiom

$$(0,[])\in Q \to \forall_{d\in \mathrm{Sd}}\forall_{(x,u)\in I_0^r\cap Q}\Big(\Big(\frac{x+d}{2},s_d::u\Big)\in Q\Big)\to I_0^r\subseteq Q.$$

 s_d is the signed digit corresponding to the formula $d \in \text{Sd.}$ • Similarly we coinductively define the n.c. predicate $({}^{\text{co}}l_0)^{\text{r}}$.

Application: division of reals in [-1, 1]

Idea⁸: three representations of $\frac{x}{y}$:

$$\frac{x}{y} = \frac{1 + \frac{x_1}{y}}{2} = \frac{0 + \frac{x_0}{y}}{2} = \frac{-1 + \frac{x_{-1}}{y}}{2}$$

where

$$x_1 = 4 \frac{x + \frac{-y}{2}}{2}, \quad x_0 = 2x, \quad x_{-1} = 4 \frac{x + \frac{y}{2}}{2}.$$

- Depending on x choose one of these representations.
- This gives the first digit.
- Result: corecursive definition of $\frac{x}{y}$.

 $^{8}\text{A.}$ Ciaffaglione and P.D. Gianantonio, A certified, corecursive implementation of exact real numbers. TCS 2006

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Define ${}^{\rm co}\!{\prime}$ coinductively by the closure axiom

$$\forall_{x\in {}^{\mathrm{col}}}\exists_{d\in \mathrm{Sd}}\exists_{x'\in {}^{\mathrm{col}}}\Big(x=\frac{x'+d}{2}\Big).$$

Theorem (ColDiv) For x, y in ^{co}l with $\frac{1}{4} \le y$ and $|x| \le y$ we have $\frac{x}{y}$ in ^{co}l. Proof by coinduction. Computational content:

$$\begin{split} &\mathrm{Div}(u,v) := \\ & \left\{ \begin{aligned} &\mathrm{SdR} :: \mathrm{Div}(\mathrm{AuxR}(u,v),v) & \text{if } u = 1\tilde{u} \lor u = 01\tilde{u} \lor u = 001\tilde{u}, \\ & \mathrm{SdM} :: \mathrm{Div}(\mathrm{Double}(u),v) & \text{if } u = 000\tilde{u}, \\ & \mathrm{SdL} :: \mathrm{Div}(\mathrm{AuxL}(u,v),v) & \text{if } u = \bar{1}\tilde{u} \lor u = 0\bar{1}\tilde{u} \lor u = 00\bar{1}\tilde{u}. \end{aligned} \right.$$

Look-ahead: 3 digits.

ntro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Lemma

^{col} is closed under shifting a real $x \le 0$ ($x \ge 0$) by +1 (-1). Computational content:

 $\begin{aligned} & \operatorname{add1}(\operatorname{SdR}::u) := [\operatorname{SdR}, \operatorname{SdR}, \dots], \\ & \operatorname{add1}(\operatorname{SdM}::u) := \operatorname{SdR}::\operatorname{add1}(u), \\ & \operatorname{add1}(\operatorname{SdL}::u) := \operatorname{SdR}::u \end{aligned}$

Extracted term of the +1 part:

```
[u](CoRec ai=>ai)u
([u0][case (DesYprod u0)
  (s pair u1 -> [case s
      (SdR -> SdR pair InL cCoIOne)
      (SdM -> SdR pair InR u1)
      (SdL -> SdR pair InL u1)])))
```

 $\begin{aligned} & \mathrm{sub1}(\mathrm{SdR}::u) := \mathrm{SdL}::u, \\ & \mathrm{sub1}(\mathrm{SdM}::u) := \mathrm{SdL}::\mathrm{sub1}(u), \\ & \mathrm{sub1}(\mathrm{SdL}::u) := [\mathrm{SdL}, \mathrm{SdL}, \dots]. \end{aligned}$

Intro	Model	(Co)inductive predicates	Realizers	Division	Conclusion
000	0000	00000	000000	00000	0

Translation into Haskell

Recall

$$\begin{split} &\mathrm{Div}(u,v) := \\ & \left\{ \begin{aligned} &\mathrm{SdR} :: \mathrm{Div}(\mathrm{AuxR}(u,v),v) & \text{if } u = 1\tilde{u} \lor u = 01\tilde{u} \lor u = 001\tilde{u}, \\ & \mathrm{SdM} :: \mathrm{Div}(\mathrm{Double}(u),v) & \text{if } u = 000\tilde{u}, \\ & \mathrm{SdL} :: \mathrm{Div}(\mathrm{AuxL}(u,v),v) & \text{if } u = \bar{1}\tilde{u} \lor u = 0\bar{1}\tilde{u} \lor u = 00\bar{1}\tilde{u}. \end{aligned} \right.$$

Tests (in ghci with time measuring by :set +s). Return the first n digits of the result of dividing $\frac{1001}{3001}$ by $\frac{10001}{20001}$

number of digits	runtime in seconds	
10	0.01	
25	0.05	
50	0.14	
75	0.26	
100	0.46	

Intro

Formal soundness proof

(add-sound "CoIDiv")

;; ok, CoIDivSound has been added as a new theorem:

```
;; allnc x,y,u^(
;; CoIMR x u<sup>^</sup> ->
;; allnc u<sup>0</sup>(
;; CoIMR y u<sup>0</sup> ->
;; (1#4)<<=y -> abs x<<=y ->
;; CoIMR(x*RealUDiv y 3)(cCoIDiv u<sup>^</sup> u<sup>0</sup>)))
```

- ;; with computation rule
- ;; cCoIDiv eqd([u,u0]cCoIDivAux u0 u)

The generated formal soundness proof can be machine checked.

- TCF as a variant of HA^{\u03c6}. Differences
 - based on a model (Shoenfield: "classical axiom system")
 - partial continuous functionals, contain corecursion operators
 - inductive and coinductive predicates.
- Realizability, invariance axioms, formal soundness proof.
- Application⁹: division algorithm for stream represented reals extracted from a formalized proof (in Minlog¹⁰) on ordinary reals.

⁹H.S. and F. Wiesnet, LMCS 17, April 2021

¹⁰http://minlog-system.de, file examples/analysis/sddiv.scm