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Introduction

Proofs have two aspects:
(1) they guarantee correctness, and
(2) they may have computational content.

We address (2), and use a BHK-interpretation to extract programs
from proofs. Features:

® The extract is a term in the underlying theory, hence we have
a framework to formally prove its properties.

e Computational content in (co)inductive predicates only.

® From proofs in constructive analysis’ we can extract programs
operating on stream-represented real numbers.

1E. Bishop, Foundations of Constructive Analysis, 1967
2/23



Division Conclusion

Introduction Model (Co)inductive predicates Realizers

Infinite data of base type

Consider the base type L of lists of signed digits 1,0, 1.
L-objects can be total, cototal or partial (strict inclusions).

® A total object: 1::0::1::0:: ]
® A cototal object: 1::0::1::0::1::0::...
A partial object is the “deductive closure” of a finite “consistent”

set of “tokens”. For example, 1 :: % :: 1:: [] is a token, asserting
that the Oth and 2nd element is 1.
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Corecursion

©ORY of type 7 — (1 = U+ (N+ 7)) — N is defined by

0 if ix= DummyLU+(N+T)
COR{XF =4 Sn if fix = Inr(InLN=N+7p)
S(ORYX'F) if i = Inr(InR7TNT7x").

As a rule this is non-terminating, but still the constant ““RJ
denotes a (partial) object in our model.
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Formal neighborhoods

We use information systems? to represent the objects of our model.
Types are built from base types ¢ (free algebras) by 7 — o.

® Formal neighborhoods U are finite “consistent” sets of tokens.

® (U,a) is a token of type 7 — 0.

e {(U1,a1),...,(Un,an)}: formal neighborhood of type 7 — o.
Application of {(U1,a1),...,(Un,an)} to U:

{ai|UF U;} whereF means “entails".

2Larsen and Winskel, Using information systems to solve recursive domain
equations effectively, 1984
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Computability and continuity

Partial continuous functional3: consistent “deductively closed”
(possibly infinite) set of tokens. f is computable if this set is
recursively enumerable. Continuity:

® |et f, x be infinite objects of types 7 — o, T
® Let V be an approximation of f(x).
Then we can find approximations W of f and U of x such that
® W(U) approximates f(x), and
e W(U)F V.

3Dana Scott, Outline of a mathematical theory of computation, 1970, and

Yuri Ershov, Model C of partial continuous functionals, 1984
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We inductively define a predicate ly on reals by the clauses

x' +d

VX(X =0—->x¢€ /0), vdedexvx’elo <X = — X € /0).

Then the induction (or least-fixed-point) axiom is

x' +d

Vi(x=0 — x € P) — VaesdVxVxrchnp (X: — X € P) —Ilh C P.
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Then “°ly is given by the closure axiom

Vxeeoly <X =0V JgesaFreco <x _x ;r d>>

and the coinduction (or greatest-fixed-point) axiom is

x' +d

VxeP<X = 0V dyesadxrecoup (X = )) — P C “h.
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® Both ly and “°ly are declared as “computationally relevant”.
® The associated algebra is L (lists of signed digits).

® The first constructor [|: L is a witness for the first clause, and
the second :: of type sd — L — L a witness for the second.

Computational content of the axioms:
® Clauses: constructors
® Induction axiom: recursion operator R|
® Closure axiom: destructor D

® Coinduction axiom: corecursion operator “R[
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Since 0 as real number is represented by the stream of 0's, we can

simplify Iy by removing the nullary clause, and obtain / and ©9/.
We only need “°/, coinductively defined by the closure axiom

x' +d
VxecordesdIxecer (X = )
Therefore, the coinduction axiom is
x' +d
VxepIdesdIx ecorup (X = ) — P C L

The associated data type is the algebra S (of streams of signed

digits) given by a single binary constructor of type sd -+ S — S.
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Computational content of the axioms:

® (Closure axiom: destructor Ds of type S — sd x S, defined by
Ds(d :: u) = (d, u).

® Coinduction axiom: corecursion operator “Rg of type
T—=(r—=sdx(S+71))—=S:

d:u if fx = (d, InLS75+7y)

CORTXf —
S {d 1 ORIXFif i = (d,InR7T ST X)),
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Soundness theorem

Let M be an r-free derivation of a formula A from assumptions
ui: G (i < n). Then we can derive

et((M)rA if Aiscr.
A if Ais n.c.

from assumptions

z,vr G ifGiscur.
G if C;is n.c.
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The proof needs invariance axioms:

e Constructively to state A means the same as to say that A
has a realizer.

® This statement A <> 3,(x r A) was called “to assert is to

realize” by Feferman®.

® For r-free c.r. formulas A we require the invariance axioms

V.(zr A— A).
A= 3,(zr A).

*S. Feferman, Constructive theories of functions and classes, 1979
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Proof of the soundness theorem
We only consider the cases using invariance axioms.
Case (A ,aMB)A=B with B n.c. and A c.r. We need a derivation of
A — B. By IH we have a derivation of B from z r A. Required
derivation of B from A:

[z r A
A 3(zrA) A | IH
3(zr A B
1 A) _

B
Case (MA~BNA)B with B n.c. and A c.r. We need a derivation of
B. By IH we have derivations of A — B and of et(N) r A. We
obtain the required derivation from
Vi (zr A— A) et(N) | IH
et(N) rA— A et(N)r A
A

and the derivation of A — B.
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Extracted term et(M) of a derivation MA with A c.r

et(uA) R T(A)

(zo™ uniquely associated to u?),

B\A—BY . AE(A)et(M) if Ais c.r.
eHAaM) ) = { ( ) if Aisn.c.
AB nANBY et(M)et(N) if Aisc.r.
(M VR { t(M) if Ais n.c.
et(MMA)™A) = et(M),
et((MVxA(X) ) A(t )) o et(M).
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Consider a c.r. inductively defined predicate. The extracted terms
for its axioms are:

® Clauses: constructors

® |nduction axiom: recursion operator R”

® Closure axiom: destructor D

e Coinduction axiom: corecursion operator ““R”

For invariance axioms and also for the induction axiom (/™¢)~ of a
“one-clause-nc” inductive predicate with a c.r. competitor
predicate the extracted term is the identity.
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Example. .

By another inductive predicate /j of arity (R, L) we can express
that a list u witnesses (“realizes”) that the real x is in o.

We write u r lpx (u is a realizer of x € ) for (x, u) € If.
The predicate [§ is n.c. (since we already have a realizer u).
Ig is inductively defined by the two clauses

(0, []) c /6, VdeSdV(X’U)G%((X—;d,Sd o u) c /6)

and the induction axiom

x+d

0,)eQ— vdeSdeelng<<T

S4 is the signed digit corresponding to the formula d € Sd.

,sd::u)eQ)—HggQ.

Similarly we coinductively define the n.c. predicate (“°lp)".
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Application: division of reals in [—1, 1]

Idea®: three representations of o

x1 X0 _ X-1
§:1+y :O—i-y B 1+ Y
1% 2 2 2
where ,
X+ -
x1 =4 2

x+%
> Xo=2x, x_1=4 22

® Depending on x choose one of these representations.
® This gives the first digit.

® Result: corecursive definition of §

5A. Ciaffaglione and P.D. Gianantonio, A certified, corecursive
implementation of exact real numbers. TCS 2006
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Define “I coinductively by the closure axiom

X’~|—d)‘

VxecoiddesdIxrecor (X =

Theorem (ColDiv)
For x,y in “°l with % <y and |x| <y we have f in l.
Proof by coinduction. Computational content:
Div(u,v) =
SdR :: Div(AuxR(u,v),v) ifu=1dVu=01dV u=0014,
SdM :: Div(Double(u),v) if u = 0004,
SdL :: Div(AuxL(u, v),v) if u=1dV u=01dV u= 001.

Look-ahead: 3 digits.
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Lemma
ol is closed under shifting a real x < 0 (x > 0) by +1 (—1).

Computational content:

add1(SdR::u) := [SdR,SdR,...], subl(SdR::u) := SdL::u,
add1(SdM::u) := SdR::add1(u),  subl(SdM::u) := SdL::subl(u),
add1(SdL::v) := SdR::u sub1(SdL::u) := [SdL, SdL, .. .].

Extracted term of the +1 part:

[u] (CoRec ai=>ai)u
([u0] [case (DesYprod u0)
(s pair ul -> [case s
(SdR -> SdR pair InL cCoIOne)
(SdM -> SdR pair InR ul)
(SdL -> SdR pair InL u1)]1)1)
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Translation into Haskell
Recall

Div(u,v) :=
SdR :: Div(AuxR(u, v),v) if u=1dVu=01dV u=0014,
SdM :: Div(Double(u),v) if u = 0004,
SdL :: Div(AuxL(u,v),v) if u=1dV u =014V u= 001d.

Tests (in ghci with time measuring by :set +s). Return the first

n digits of the result of dividing 3881 by 5888}

’ number of digits ‘ runtime in seconds ‘

10 0.01
25 0.05
50 0.14
75 0.26
100 0.46
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Formal soundness proof

(add-sound "CoIDiv")

;; ok, CoIDivSound has been added as a new theorem:

;3 allnec x,y,u”(

;5 CoIMR x u”™ ->

;3 allnc u~0(

HH CoIMR y u”0 —>

;5 (1#4)<<=y -> abs x<<=y ->

53 CoIMR(x*RealUDiv y 3) (cCoIDiv u~ u~0)))

;3 with computation rule

;3 cCoIDiv eqd([u,u0]cCoIDivAux u0 u)

The generated formal soundness proof can be machine checked.
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Conclusion

TCF as a variant of HA“. Differences

® based on a model (Shoenfield: “classical axiom system”)
® partial continuous functionals, contain corecursion operators
® inductive and coinductive predicates

realizability, invariance axioms, formal soundness proof

application: division algorithm for stream represented reals
extracted from a proof on ordinary reals

http://arxiv.org/abs/1904.12763

Conclusion
°

23/23



	Introduction
	Model
	(Co)inductive predicates
	Realizers
	Division
	Conclusion

