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Proofs have two aspects:

(1) they guarantee correctness, and

(2) they may have computational content.

We address (2), and use a BHK-interpretation to extract programs
from proofs. Features:

• The extract is a term in the underlying theory, hence we have
a framework to formally prove its properties.

• Computational content in (co)inductive predicates only.

• From proofs in constructive analysis1 we can extract programs
operating on stream-represented real numbers.

1E. Bishop, Foundations of Constructive Analysis, 1967
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Infinite data of base type

Consider the base type L of lists of signed digits 1̄, 0, 1.
L-objects can be total, cototal or partial (strict inclusions).

• A total object: 1 :: 0 :: 1 :: 0 :: []

• A cototal object: 1 :: 0 :: 1 :: 0 :: 1 :: 0 :: . . .

A partial object is the “deductive closure” of a finite “consistent”
set of “tokens”. For example, 1 :: ∗ :: 1 :: [] is a token, asserting
that the 0th and 2nd element is 1.
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Corecursion

coRτN of type τ → (τ → U + (N + τ))→ N is defined by

coRτNxf =


0 if fx ≡ DummyLU+(N+τ)

Sn if fx ≡ Inr(InLN→N+τn)

S(coRτNx ′f ) if fx ≡ Inr(InRτ→N+τx ′).

As a rule this is non-terminating, but still the constant coRτN
denotes a (partial) object in our model.
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Formal neighborhoods

We use information systems2 to represent the objects of our model.
Types are built from base types ι (free algebras) by τ → σ.

• Formal neighborhoods U are finite “consistent” sets of tokens.

• (U, a) is a token of type τ → σ.

• {(U1, a1), . . . , (Un, an)}: formal neighborhood of type τ → σ.

Application of {(U1, a1), . . . , (Un, an)} to U:

{ ai | U ` Ui } where ` means “entails”.

2Larsen and Winskel, Using information systems to solve recursive domain
equations effectively, 1984
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Computability and continuity

Partial continuous functional3: consistent “deductively closed”
(possibly infinite) set of tokens. f is computable if this set is
recursively enumerable. Continuity:

• Let f , x be infinite objects of types τ → σ, τ

• Let V be an approximation of f (x).

Then we can find approximations W of f and U of x such that

• W (U) approximates f (x), and

• W (U) ` V .

3Dana Scott, Outline of a mathematical theory of computation, 1970, and
Yuri Ershov, Model C of partial continuous functionals, 1984
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We inductively define a predicate I0 on reals by the clauses

∀x(x = 0→ x ∈ I0), ∀d∈Sd∀x∀x ′∈I0
(
x =

x ′ + d

2
→ x ∈ I0

)
.

Then the induction (or least-fixed-point) axiom is

∀x(x=0→ x ∈ P)→ ∀d∈Sd∀x∀x ′∈I0∩P
(
x=

x ′ + d

2
→ x ∈ P

)
→ I0 ⊆ P.
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Then coI0 is given by the closure axiom

∀x∈coI0
(
x = 0 ∨ ∃d∈Sd∃x ′∈coI0

(
x =

x ′ + d

2

))
and the coinduction (or greatest-fixed-point) axiom is

∀x∈P
(
x = 0 ∨ ∃d∈Sd∃x ′∈coI0∪P

(
x =

x ′ + d

2

))
→ P ⊆ coI0.
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• Both I0 and coI0 are declared as “computationally relevant”.

• The associated algebra is L (lists of signed digits).

• The first constructor [] : L is a witness for the first clause, and
the second :: of type sd→ L→ L a witness for the second.

Computational content of the axioms:

• Clauses: constructors

• Induction axiom: recursion operator RτL
• Closure axiom: destructor DL

• Coinduction axiom: corecursion operator coRτL
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Since 0 as real number is represented by the stream of 0’s, we can
simplify I0 by removing the nullary clause, and obtain I and coI .
We only need coI , coinductively defined by the closure axiom

∀x∈coI∃d∈Sd∃x ′∈coI
(
x =

x ′ + d

2

)
.

Therefore, the coinduction axiom is

∀x∈P∃d∈Sd∃x ′∈coI∪P
(
x =

x ′ + d

2

)
→ P ⊆ coI .

The associated data type is the algebra S (of streams of signed
digits) given by a single binary constructor of type sd→ S→ S.
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Computational content of the axioms:

• Closure axiom: destructor DS of type S→ sd× S, defined by

DS(d :: u) = 〈d , u〉.

• Coinduction axiom: corecursion operator coRτS of type
τ → (τ → sd× (S + τ))→ S:

coRτSxf =

{
d :: u if fx = 〈d , InLS→S+τu〉
d :: coRτSx ′f if fx = 〈d , InRτ→S+τx ′〉.
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Soundness theorem

Let M be an r-free derivation of a formula A from assumptions
ui : Ci ( i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.
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The proof needs invariance axioms:

• Constructively to state A means the same as to say that A
has a realizer.

• This statement A↔ ∃x(x r A) was called “to assert is to
realize” by Feferman4.

• For r-free c.r. formulas A we require the invariance axioms

∀z(z r A→ A).

A→ ∃z(z r A).

4S. Feferman, Constructive theories of functions and classes, 1979
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Proof of the soundness theorem
We only consider the cases using invariance axioms.
Case (λuAM

B)A→B with B n.c. and A c.r. We need a derivation of
A→ B. By IH we have a derivation of B from z r A. Required
derivation of B from A:

A→ ∃z(z r A) A

∃z(z r A)

[z r A]

| IH

B
∃−B

Case (MA→BNA)B with B n.c. and A c.r. We need a derivation of
B. By IH we have derivations of A→ B and of et(N) r A. We
obtain the required derivation from

∀z(z r A→ A) et(N)

et(N) r A→ A

| IH

et(N) r A

A
and the derivation of A→ B.
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Extracted term et(M) of a derivation MA with A c.r.

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).
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Consider a c.r. inductively defined predicate. The extracted terms
for its axioms are:

• Clauses: constructors

• Induction axiom: recursion operator Rτ

• Closure axiom: destructor D

• Coinduction axiom: corecursion operator coRτ

For invariance axioms and also for the induction axiom (I nc)− of a
“one-clause-nc” inductive predicate with a c.r. competitor
predicate the extracted term is the identity.
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Realizers
Example. I0.

• By another inductive predicate I r0 of arity (R,L) we can express
that a list u witnesses (“realizes”) that the real x is in I0.

• We write u r I0x (u is a realizer of x ∈ I0) for (x , u) ∈ I r0.

• The predicate I r0 is n.c. (since we already have a realizer u).

• I r0 is inductively defined by the two clauses

(0, []) ∈ I r0, ∀d∈Sd∀(x ,u)∈I r0
((x + d

2
, sd :: u

)
∈ I r0

)
and the induction axiom

(0, []) ∈ Q → ∀d∈Sd∀x∈I r0∩Q
((x + d

2
, sd :: u

)
∈ Q

)
→ I r0 ⊆ Q.

sd is the signed digit corresponding to the formula d ∈ Sd.

• Similarly we coinductively define the n.c. predicate (coI0)r.
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Application: division of reals in [−1, 1]

Idea5: three representations of x
y :

x

y
=

1 + x1
y

2
=

0 + x0
y

2
=
−1 + x−1

y

2

where

x1 = 4
x + −y

2

2
, x0 = 2x , x−1 = 4

x + y
2

2
.

• Depending on x choose one of these representations.

• This gives the first digit.

• Result: corecursive definition of x
y .

5A. Ciaffaglione and P.D. Gianantonio, A certified, corecursive
implementation of exact real numbers. TCS 2006
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Define coI coinductively by the closure axiom

∀x∈coI∃d∈Sd∃x ′∈coI
(
x =

x ′ + d

2

)
.

Theorem (CoIDiv)

For x , y in coI with 1
4 ≤ y and |x | ≤ y we have x

y in coI .

Proof by coinduction. Computational content:

Div(u, v) :=
SdR :: Div(AuxR(u, v), v) if u = 1ũ ∨ u = 01ũ ∨ u = 001ũ,

SdM :: Div(Double(u), v) if u = 000ũ,

SdL :: Div(AuxL(u, v), v) if u = 1̄ũ ∨ u = 01̄ũ ∨ u = 001̄ũ.

Look-ahead: 3 digits.
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Lemma
coI is closed under shifting a real x ≤ 0 (x ≥ 0) by +1 (−1).

Computational content:

add1(SdR::u) := [SdR, SdR, . . . ],

add1(SdM::u) := SdR::add1(u),

add1(SdL::u) := SdR::u

sub1(SdR::u) := SdL::u,

sub1(SdM::u) := SdL::sub1(u),

sub1(SdL::u) := [SdL, SdL, . . . ].

Extracted term of the +1 part:

[u](CoRec ai=>ai)u

([u0][case (DesYprod u0)

(s pair u1 -> [case s

(SdR -> SdR pair InL cCoIOne)

(SdM -> SdR pair InR u1)

(SdL -> SdR pair InL u1)])])
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Translation into Haskell
Recall

Div(u, v) :=
SdR :: Div(AuxR(u, v), v) if u = 1ũ ∨ u = 01ũ ∨ u = 001ũ,

SdM :: Div(Double(u), v) if u = 000ũ,

SdL :: Div(AuxL(u, v), v) if u = 1̄ũ ∨ u = 01̄ũ ∨ u = 001̄ũ.

Tests (in ghci with time measuring by :set +s). Return the first
n digits of the result of dividing 1001

3001 by 10001
20001

number of digits runtime in seconds

10 0.01

25 0.05

50 0.14

75 0.26

100 0.46
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Formal soundness proof

(add-sound "CoIDiv")

;; ok, CoIDivSound has been added as a new theorem:

;; allnc x,y,u^(

;; CoIMR x u^ ->

;; allnc u^0(

;; CoIMR y u^0 ->

;; (1#4)<<=y -> abs x<<=y ->

;; CoIMR(x*RealUDiv y 3)(cCoIDiv u^ u^0)))

;; with computation rule

;; cCoIDiv eqd([u,u0]cCoIDivAux u0 u)

The generated formal soundness proof can be machine checked.
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Conclusion

• TCF as a variant of HAω. Differences
• based on a model (Shoenfield: “classical axiom system”)
• partial continuous functionals, contain corecursion operators
• inductive and coinductive predicates

• realizability, invariance axioms, formal soundness proof

• application: division algorithm for stream represented reals
extracted from a proof on ordinary reals

• http://arxiv.org/abs/1904.12763
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