

A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

FP 2023, Nis, June 2023

A theory of computable functionals (TCF)

 TCF is similar to $\mathrm{HA}^\omega,$ but we

Intro

- add inductively and coinductively defined predicates,
- distinguish computationally relevant (c.r.) and non-computational (n.c.) predicates,
- add realizability predicates (internal "meta"-step),
- allow partial functionals, defined by equations (possibly non-terminating, like corecursion),
- use minimal logic: only →, ∀ primitive. ∨, ∧, ∃ inductively defined.

The proof assistant Minlog implements $\operatorname{TCF}\nolimits.$

- TCF has an intended model: partial continuous functionals.
- Defined via information systems (Scott). Has function spaces.
- It consists of ideals (infinite) approximated by tokens (finite).
- Ideals are consistent and deductively closed sets of tokens.
- Tokens are constructor trees with possibly * at some leaves.
- Examples: natural numbers ℕ, binary trees 𝒱.

Intro	Model	TCF	Realizability	Verified programs	Conclusion
O	o●oo	oo	000000	00	00

- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").

Intro	Model	TCF	Realizability	Verified programs	Conclusio
0	0000	00	000000	00	00

The base type \mathbb{Y} (binary trees) is given by the constructors

$$\begin{array}{ll} -: \ensuremath{\,\mathbb{Y}} & (\mathsf{leaf}), \\ \mathrm{C}: \ensuremath{\,\mathbb{Y}} \to \ensuremath{\,\mathbb{Y}} \to \ensuremath{\,\mathbb{Y}} & (\mathsf{branch}). \end{array}$$

Example of a cototal ideal in \mathbb{Y} : all tokens

Example of a total ideal in \mathbb{Y} : deductive closure of

Example of a neither total nor cototal ideal: deductive closure of

Intro	Model	TCF	Realizability	Verified programs	Conclusion
0	0000	•0	000000	00	00

(Co)inductive predicates. Example. Let $Sd := \{-1, 0, 1\}$.

$$I_0^+: 0 \in I, \quad I_1^+: \forall_{d \in \mathrm{Sd}, x \in I} \ \frac{x+d}{2} \in I,$$
 clauses

$$I^-: 0 \in X \to \forall_{d \in \mathrm{Sd}, x \in X \cap I} \ \frac{x+d}{2} \in I \to I \subseteq X$$
 If p, ind.

$${}^{\mathrm{co}}l^-: x \in {}^{\mathrm{co}}l \to x = 0 \lor \exists_{d \in \mathrm{Sd}, x' \in I} x = \frac{x' + d}{2}$$
 closure

$$^{\mathrm{co}}l^+$$
: $\forall_{x\in X} \left(x = 0 \lor \exists_{d\in \mathrm{Sd}, x'\in X\cup^{\mathrm{co}}l} x = \frac{x'+d}{2} \right) \to X \subseteq {}^{\mathrm{co}}l \text{ gfp}$

Greatest-fixed-point (or coinduction) axiom ${}^{co}I^+$: every "competitor" satisfying the same closure axiom is contained in ${}^{co}I$.

Intro	Model	TCF	Realizability	Verified programs	Conclusion
0	0000	0.	000000	00	00

The n.c. Leibniz equality \equiv is defined by

$$\equiv^+ : x^{\tau} \equiv x^{\tau} \qquad \equiv^- : x \equiv y \to \forall_x X x x \to X x y$$

We can deduce the property Leibniz used as a definition. Lemma (Compatibility of ${\rm EqD})$

$$x \equiv y \to A(x) \to A(y).$$

Proof: By the lfp-axiom with $X := \{x, y \mid A(x) \rightarrow A(y)\}.$

Using compatibility of \equiv one proves symmetry and transitivity. Define falsity by $\mathbf{F} := (\text{ff} \equiv \text{tt})$.

Theorem (Ex-falso-quodlibet)

We can derive $\mathbf{F} \to A$ from assumptions $\operatorname{Ef}_{Y} : \forall_{\vec{x}} (\mathbf{F} \to Y \vec{x})$ for predicate variables Y strictly positive in A.

Intro	Model	TCF	Realizability	Verified programs	Conclusion
O	0000	oo	•00000	00	00

Need realizability extensions of c.r. predicates and formulas:

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity ρ an n.c. predicate variable X^r of arity (ρ, ξ) where ξ is the type variable associated with X.
- We introduce $I^{\mathbf{r}}/^{\mathrm{co}}I^{\mathbf{r}}$ for c.r. (co)inductive predicates $I/^{\mathrm{co}}I$:

 $\begin{array}{ll} 0 \in \operatorname{Even} & n \in \operatorname{Even} \to S(Sn) \in \operatorname{Even} \\ \operatorname{Even}^r 00 & \operatorname{Even}^r nm \to \operatorname{Even}^r (S(Sn))(Sm) \end{array}$

- A predicate or formula *C* is **r**-free if it does not contain any of these *X*^{**r**}, *I*^{**r**} or ^{co}*I*^{**r**}.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

Definition (C^{r} for **r**-free c.r. formulas C) Let $z \mathbf{r} C$ mean $C^{r}z$.

$$z \mathbf{r} P \vec{t} := P^{\mathbf{r}} \vec{t} z,$$

$$z \mathbf{r} (A \to B) := \begin{cases} \forall_w (w \mathbf{r} A \to zw \mathbf{r} B) & \text{if } A \text{ is c.r.} \\ A \to z \mathbf{r} B & \text{if } A \text{ is n.c.} \end{cases}$$

$$z \mathbf{r} \forall_x A := \forall_x (z \mathbf{r} A).$$

Intro	Model	TCF	Realizability	Verified programs	Conclusion
0	0000	00	00000	00	00

Definition (Extracted term for an \mathbf{r} -free proof M of a c.r. A)

$$\begin{aligned} \operatorname{et}(u^{A}) &:= z_{u}^{\tau(A)} \quad (z_{u}^{\tau(A)} \text{ uniquely associated to } u^{A}), \\ \operatorname{et}((\lambda_{u^{A}}M^{B})^{A \to B}) &:= \begin{cases} \lambda_{z_{u}}\operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((M^{A \to B}N^{A})^{B}) &:= \begin{cases} \operatorname{et}(M)\operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}(\lambda_{x}M^{A})^{\forall_{x}A}) &:= \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_{x}A(x)}t)^{A(t)}) &:= \operatorname{et}(M). \end{aligned}$$

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate *I*.

- et(I_i⁺) := C_i and et(I⁻) := R, where the constructor C_i and the recursion operator R refer to ι_I associated with I.
- et(^{co}*l*⁻) := D and et(^{co}*l*⁺_i) := ^{co}*R*, where the destructor D and the corecursion operator ^{co}*R* refer to *ι*_{*l*} again.

Theorem (Soundness)

Let *M* be an **r**-free derivation of a formula *A* from assumptions $u_i : C_i$ (i < n). Then we can derive

$$\begin{cases} et(M) \mathbf{r} A & if A is c.r. \\ A & if A is n.c. \end{cases}$$

from assumptions

$$\begin{cases} z_{u_i} \mathbf{r} C_i & \text{if } C_i \text{ is } c.r. \\ C_i & \text{if } C_i \text{ is } n.c. \end{cases}$$

We express

- Kolmogorov's view of "formulas as problems"¹
- Feferman's dictum "to assert is to realize"²

by invariance axioms:

For \mathbf{r} -free c.r. formulas A we require as axioms

InvAll_A: $\forall_z (z \mathbf{r} A \rightarrow A)$. InvEx_A: $A \rightarrow \exists_z (z \mathbf{r} A)$.

¹Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932 ²Constructive theories of functions and classes, Logic Colloquium 78, p.208

- Proofs: on constructive real arithmetic (Bishop).
- Algorithms: operate on reals represented by streams of digits.
- Algorithms via proofs: extract computational content. Needs P(x) and $P^{r}(x,t)$ "t realizes P(x)" for predicates P.
- Verification: formal proof that the extracted term realizes A.

Intro	Model	TCF	Realizability	Verified programs	Conclusion
O	0000	oo	000000	○●	00

Theorem

$$x, y \in {}^{\mathrm{co}}l \to \frac{x+y}{2} \in {}^{\mathrm{co}}l.$$

Proof.

First show that³

$$\Big\{\frac{x+y}{2}\,\Big|\,x,y\in{}^{\mathrm{co}}\!l\Big\}\subseteq\Big\{\frac{x+y+i}{2}\,\Big|\,x,y\in{}^{\mathrm{co}}\!l,i\in\mathrm{Sd}_2\Big\},$$

 $Sd_2 := \{-2, -1, 0, 1, 2\}$. Then prove that the second set also satisfies the closure axiom for ^{co}*I*. Coinduction gives the claim.

The computational content of this proof is an algorithm operating on stream representations of reals.

³Berger & Seisenberger, 2010

- Strong language, but controlled existence axioms (Kreisel).
- Functions (other than constructors) can only be defined by computation rules, e.g.,

$$n + 0 = n,$$

$$n + S(m) = S(n + m).$$

No termination proof is required, hence partial functions.

• Predicates can be defined inductively or coinductively.

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.
- The Soundness theorem provides a formal verfication in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.