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Intro

A theory of computable functionals (TCF)

TCF is similar to HAY, but we
® add inductively and coinductively defined predicates,

e distinguish computationally relevant (c.r.) and
non-computational (n.c.) predicates,

® add realizability predicates (internal “meta”-step),

¢ allow partial functionals, defined by equations (possibly
non-terminating, like corecursion),

® use minimal logic: only —, V primitive. V, A, 3 inductively
defined.

The proof assistant Minlog implements TCEF.
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TCF has an intended model: partial continuous functionals.

Defined via information systems (Scott). Has function spaces.

® |t consists of ideals (infinite) approximated by tokens (finite).

Ideals are consistent and deductively closed sets of tokens.
® Tokens are constructor trees with possibly * at some leaves.

® Examples: natural numbers N, binary trees Y.
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e {50,5(5%)} is inconsistent.

e {Sx,5(5%)} is an ideal.

e {S5%,5(5%),5(50)} is an ideal (“total”).

e {Sx,5(5%),5(5(5%)),...} is an infinite ideal (“cototal”).

4/18



Intro
[e]

Model TCF Realizability Verified programs Conclusion
[e]e] o] [e]e) 000000 [e]e) [e]e]

The base type Y (binary trees) is given by the constructors

—:Y (leaf),
C:Y—=Y—=Y (branch).

Example of a cototal ideal in Y: all tokens

- *

-V
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Example of a total ideal in Y: deductive closure of

Example of a neither total nor cototal ideal: deductive closure of

* J—

~
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(Co)inductive predicates. Example. Let Sd := {-1,0,1}.

d

I 0€el, I Vaesdxer % el, clauses
_ x+d .
I7:0 € X — Vgesd xexni el—>1CX Ifp, ind.

/

d

Ol x € = x=0V3gegaxel X = X —; closure

"+ d
ort: Vxex (X = 0V Jgesdxexuc X = X —; ) — X C gfp

Greatest-fixed-point (or coinduction) axiom ¢/ every
“competitor” satisfying the same closure axiom is contained in /.
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The n.c. Leibniz equality = is defined by
=T x"=x = x=y — Ve Xxx = Xxy

We can deduce the property Leibniz used as a definition.

Lemma (Compatibility of EqD)

x =y — A(x) = A(y).

Proof: By the Ifp-axiom with X := {x,y | A(x) = A(y) }.

Using compatibility of = one proves symmetry and transitivity.
Define falsity by F := (ff = tt).
Theorem (Ex-falso-quodlibet)

We can derive F — A from assumptions Efy : Vg(F — YX) for
predicate variables Y strictly positive in A.

Conclusion
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Need realizability extensions of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (p, &) where £ is the type variable associated with X.

e We introduce /" /<°l" for c.r. (co)inductive predicates //:

0 € Even n € Even — 5(Sn) € Even
Even'00 Even"nm — Even'(5(5n))(Sm)

® A predicate or formula C is r-free if it does not contain any of
these X", I' or <9/I".

® A derivation M is r-free if it contains r-free formulas only.
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Definition (C" for r-free c.r. formulas C)
Let zr C mean C'z.

zr Pt:= P'tz,

¢ (A= B) Vw(wrA—zwr B) if Aisc.r.
z =
A—zrB if Aisn.c.

zr YV A =Vy(zr A).
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Definition (Extracted term for an r-free proof M of a c.r. A)

et(u?) = 77 (zZ(A) uniquely associated to u*),
et((/\uA MB)A%B) - Azuet(M) If A !S C.r.

et(M) if Aisn.c.
ct((MAENA)BEY = et(M)et(N) !f A !s c.r.

et(M) if Aisn.c.
et((MMA)>A) = et(M),
et((MPARHAWD)Y = ot(M).
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It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.
® et(/) := C; and et(/7) := R, where the constructor C; and
the recursion operator R refer to ¢; associated with /.
® et(°/~) :=D and et(“/") := ©°R, where the destructor D
and the corecursion operator “°R refer to ¢; again.
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Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui: C; (i < n). Then we can derive

et((M)rA ifAiscr.
A if Ais n.c.

from assumptions

z,v G ifCiscr.
G if C; is n.c.
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We express

e Kolmogorov's view of “formulas as problems”?!

e Feferman’s dictum “to assert is to realize” 2

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAlla: Vo(zr A — A).
InvExa: A — 3,(z r A).

1Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

2Constructive theories of functions and classes, Logic Colloquium 78, p.208
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Proofs: on constructive real arithmetic (Bishop).
Algorithms: operate on reals represented by streams of digits.

Algorithms via proofs: extract computational content. Needs
P(x) and P"(x,t) “t realizes P(x)" for predicates P.

Verification: formal proof that the extracted term realizes A.
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Theorem
x,yecol—>¥ € “I.

Proof.
First show that3

{x—;y x,yecol} C {%‘X,yeco/,iGSdz},

Sdp :={—2,—1,0,1,2}. Then prove that the second set also

satisfies the closure axiom for /. Coinduction gives the claim.

The computational content of this proof is an algorithm
operating on stream representations of reals.

3Berger & Seisenberger, 2010
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® Strong language, but controlled existence axioms (Kreisel).
g languag

® Functions (other than constructors) can only be defined by
computation rules, e.g.,

n+0=n,
n+S(m)=S(n+m).

No termination proof is required, hence partial functions.

® Predicates can be defined inductively or coinductively.
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In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.
For efficiency, in a second step one can translate the extracted

term to a functional programming language. Minlog does this
for Scheme and Haskell.

The Soundness theorem provides a formal verfication in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.
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