
Intro Model TCF Realizability Verified programs Conclusion

A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

FP 2023, Nis, June 2023

1 / 18

Intro Model TCF Realizability Verified programs Conclusion

A theory of computable functionals (TCF)

TCF is similar to HAω, but we

• add inductively and coinductively defined predicates,

• distinguish computationally relevant (c.r.) and
non-computational (n.c.) predicates,

• add realizability predicates (internal “meta”-step),

• allow partial functionals, defined by equations (possibly
non-terminating, like corecursion),

• use minimal logic: only →, ∀ primitive. ∨, ∧, ∃ inductively
defined.

The proof assistant Minlog implements TCF.

2 / 18

Intro Model TCF Realizability Verified programs Conclusion

• TCF has an intended model: partial continuous functionals.

• Defined via information systems (Scott). Has function spaces.

• It consists of ideals (infinite) approximated by tokens (finite).

• Ideals are consistent and deductively closed sets of tokens.

• Tokens are constructor trees with possibly ∗ at some leaves.

• Examples: natural numbers N, binary trees Y.

3 / 18

Intro Model TCF Realizability Verified programs Conclusion

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

• {S0, S(S∗)} is inconsistent.

• {S∗, S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗, S(S∗),S(S(S∗)), . . . } is an infinite ideal (“cototal”).

4 / 18

Intro Model TCF Realizability Verified programs Conclusion

The base type Y (binary trees) is given by the constructors

− : Y (leaf),

C : Y→ Y→ Y (branch).

Example of a cototal ideal in Y: all tokens

−

−

−

− ∗

5 / 18

Intro Model TCF Realizability Verified programs Conclusion

Example of a total ideal in Y: deductive closure of

−
− −

HHH��
�
@@��

Example of a neither total nor cototal ideal: deductive closure of

−
∗ −

HHH��
�
@@��

6 / 18

Intro Model TCF Realizability Verified programs Conclusion

(Co)inductive predicates. Example. Let Sd := {−1, 0, 1}.

I+
0 : 0 ∈ I , I+

1 : ∀d∈Sd,x∈I
x + d

2
∈ I , clauses

I− : 0 ∈ X → ∀d∈Sd,x∈X∩I
x + d

2
∈ I → I ⊆ X lfp, ind.

coI− : x ∈ coI → x = 0 ∨ ∃d∈Sd,x ′∈I x =
x ′ + d

2
closure

coI+ : ∀x∈X
(
x = 0 ∨ ∃d∈Sd,x ′∈X∪coI x =

x ′ + d

2

)
→ X ⊆ coI gfp

Greatest-fixed-point (or coinduction) axiom coI+: every
“competitor” satisfying the same closure axiom is contained in coI .

7 / 18

Intro Model TCF Realizability Verified programs Conclusion

The n.c. Leibniz equality ≡ is defined by

≡+ : xτ ≡ xτ ≡− : x ≡ y → ∀xXxx → Xxy

We can deduce the property Leibniz used as a definition.

Lemma (Compatibility of EqD)

x ≡ y → A(x)→ A(y).

Proof: By the lfp-axiom with X := { x , y | A(x)→ A(y) }.

Using compatibility of ≡ one proves symmetry and transitivity.
Define falsity by F := (ff ≡ tt).

Theorem (Ex-falso-quodlibet)

We can derive F→ A from assumptions EfY : ∀~x(F→ Y ~x) for
predicate variables Y strictly positive in A.

8 / 18

Intro Model TCF Realizability Verified programs Conclusion

Need realizability extensions of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ~ρ an n.c. predicate variable X r of
arity (~ρ, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI :

0 ∈ Even n ∈ Even→ S(Sn) ∈ Even

Evenr00 Evenrnm→ Evenr(S(Sn))(Sm)

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

9 / 18

Intro Model TCF Realizability Verified programs Conclusion

Definition (C r for r-free c.r. formulas C)

Let z r C mean C rz .

z r P~t := P r~tz ,

z r (A→ B) :=

{
∀w (w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

10 / 18

Intro Model TCF Realizability Verified programs Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

11 / 18

Intro Model TCF Realizability Verified programs Conclusion

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate I .

• et(I+
i) := Ci and et(I−) := R, where the constructor Ci and

the recursion operator R refer to ιI associated with I .

• et(coI−) := D and et(coI+
i) := coR, where the destructor D

and the corecursion operator coR refer to ιI again.

12 / 18

Intro Model TCF Realizability Verified programs Conclusion

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui : Ci (i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

13 / 18

Intro Model TCF Realizability Verified programs Conclusion

We express

• Kolmogorov’s view of “formulas as problems”1

• Feferman’s dictum “to assert is to realize”2

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A→ A).

InvExA : A→ ∃z(z r A).

1Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
2Constructive theories of functions and classes, Logic Colloquium 78, p.208

14 / 18

Intro Model TCF Realizability Verified programs Conclusion

• Proofs: on constructive real arithmetic (Bishop).

• Algorithms: operate on reals represented by streams of digits.

• Algorithms via proofs: extract computational content. Needs
P(x) and P r(x , t) “t realizes P(x)” for predicates P.

• Verification: formal proof that the extracted term realizes A.

15 / 18

Intro Model TCF Realizability Verified programs Conclusion

Theorem

x , y ∈ coI → x + y

2
∈ coI .

Proof.
First show that3{x + y

2

∣∣∣ x , y ∈ coI
}
⊆
{x + y + i

2

∣∣∣ x , y ∈ coI , i ∈ Sd2

}
,

Sd2 := {−2,−1, 0, 1, 2}. Then prove that the second set also
satisfies the closure axiom for coI . Coinduction gives the claim.

The computational content of this proof is an algorithm
operating on stream representations of reals.

3Berger & Seisenberger, 2010

16 / 18

Intro Model TCF Realizability Verified programs Conclusion

• Strong language, but controlled existence axioms (Kreisel).

• Functions (other than constructors) can only be defined by
computation rules, e.g.,

n + 0 = n,

n + S(m) = S(n + m).

No termination proof is required, hence partial functions.

• Predicates can be defined inductively or coinductively.

17 / 18

Intro Model TCF Realizability Verified programs Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

• The Soundness theorem provides a formal verfication in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

18 / 18

	Intro
	Model
	TCF
	Realizability
	Verified programs
	Conclusion

