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Computable functionals of finite types

I Gödel 1958: “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunkts”, namely computable
finite type functions.

I Need partial continuous functionals as their intendend domain
(Scott 1969). The total ones then appear as a dense subset
(Kreisel 1959, Ershov 1972).

I Type theory of Martin-Löf 1983 deals with total (structural
recursive) functionals only. Fresh start, based on (a simplified
form of) information systems (Scott 1982).

Helmut Schwichtenberg Computational content of proofs



Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality

Atomic coherent information systems (acis’s)

I Acis: (A,`,≥) such that ` (consistent) is reflexive and
symmetric, ≥ (entails) is reflexive and transitive and
a ` b → b ≥ c → a ` c .

I Formal neighborhood: U ⊆ A finite and consistent. We write
U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a.

I Function space: Let A = (A,`A,≥A) and B = (B,`B ,≥B)
be acis’s. Define A → B = (C ,`,≥) by

C := ConA × B,

(U, b) ` (V , c) := U `A V → b `B c ,

(U, b) ≥ (V , c) := V ≥A U ∧ b ≥B c .

A → B is an acis again.
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Ideals, Scott topology

I Ideal: x ⊆ A consistent and deductively closed. |A| is the set
of ideals (points, objects) of A.

I |A| carries a natural topology, with cones Ũ := { z | z ⊇ U }
generated by the formal neighborhoods U as basis.

Theorem (Scott 1982)

The continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are
in a bijective correspondence.
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Free algebras

are given by their constructors. Examples

I Natural numbers: 0, S.

I Binary trees: nil, C .

I Unit U: u.

I Booleans B: tt, ff.

I Signed digits SD: −1, 0, +1.

I Lists of signed digits L(SD): nil, d :: l .

We always require a nullary constructor.
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Turning free algebras into information systems

I Commonly done by adding ⊥: “flat cpo”.

I Problem 1: Constructors are not injective:
C (⊥, b) = ⊥ = C (a,⊥).

I Problem2 : Constructors do not have disjoint ranges:
C1(⊥) = ⊥ = C2(⊥).

I Solution: Use as atoms constructor expressions involving a
symbol ∗, meaning “no information”.
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Example: atoms and entailment for N

•∗@
@@
•0

�
��
• S∗@

@@
•S0
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• S(S∗)@
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•S(S0)
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• S(S(S∗))@
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�
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..
.
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Example: ideals for N
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Total and cototal ideals

For a base type ι, the total ideals are defined inductively:

I 0 is total (0 being the nullary constructor), and

I If ~z are total, then so is C~z .

The cototal ideals x are those of the form C~z with C a constructor
of ι and ~z cototal. – For example, in L(SD),

I the total ideals are the finite and

I the cototal ideals are the finite or infinite

lists of signed digits (∼ an interval with rational end points or a
stream real, both in [−1, 1]).

Helmut Schwichtenberg Computational content of proofs



Partial continuous functionals
Terms denoting computable functionals

Logic of inductive definitions
Computational content

Information systems
Ideals
Free algebras
Totality

Totality in higher types, density

I An ideal r of type ρ → σ is total iff for all total z of type ρ,
the result |r |(z) of applying r to z is total.

I Density theorem (Kreisel 1959, Ershov 1972, U. Berger 1993):
Assume that all base types are finitary. Then for every
U ∈ Conρ we can find a total x such that U ⊆ x .
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A common extension of Gödel’s T and Plotkin’s PCF

I Terms M,N ::= xρ | C | D | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

I Constants D defined by computation rules. Examples:
Recursion Rτ

N : N → (U× τ ×N → τ) → τ .

R0xy = x , R(Sn)xy = yn(Rnxy).

Corecursion Cτ
N : τ → (τ → U + τ + N) → N.

Cxy = [case yx of 0 | λz(S[case zτ+N of λu(Cuy) | λnn])].

Case of type ρ + σ → (ρ → τ) → (σ → τ) → τ :

[case (inl(M))ρ+σ of λxN(x) | λyK (y)] = N(M),

[case (inr(M))ρ+σ of λxN(x) | λyK (y)] = K (M).
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Denotational semantics

I Define (~U, b) ∈ [[λ~x M]]:

Ui ≥ b

(~U, b) ∈ [[λ~x xi ]]
(V ),

(~U,V ) ⊆ [[λ~x N]] (~U,V , c) ∈ [[λ~x M]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D

~V ≥ ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~x C ]]
(C ),

(~U, ~V , b) ∈ [[λ~x ,~y M]]

(~U, ~P(~V ), b) ∈ [[λ~x D]]
(D),

with one rule (D) for every computation rule D~P(~y) = M.

I [[M]]
~U
~x := { b | (~U, b) ∈ [[λ~x M]] } and [[M]]~u~x :=

⋃
~U⊆~u

[[M]]
~U
~x .
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Properties

I [[λ~x M]] is an ideal, i.e., consistent and deductively closed.

I (Monotonicity) If ~v ⊇ ~u, b ≥ c and b ∈ [[M]]~u~x , then c ∈ [[M]]~v~x .

I (Substitution) [[M(z)]]
~u,[[N]]~u~x
~x ,z = [[M(N)]]~u~x .

I (Beta) [[(λyM(y))N]]~u~x = [[M(N)]]~u~x .

I (Eta) [[λy (My)]]~u~x = [[M]]~u~x if y /∈ FV(M).
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Preservation of values

Theorem (Substitution of constructor terms)

(~U, ~V , b) ∈ [[λ~x ,~y M(C~y )]] ↔ (~U,C~V , b) ∈ [[λ~x ,zM(z)]], with the
same height and D-height.

Corollary (Preservation of values under computation rules)

For every computation rule D~P(~y ) = M of a defined constant D,
[[λ~y (D~P(~y ))]] = [[λ~y M]].
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Head reduction

Define M �1 N, M head-reduces to N:

(λx M(x))N �1 M(N),

M �1 M ′

MN �1 M ′N
,

D~P(~N ) �1 M(~N) for D~P(~y ) = M(~y) a computation rule,

N �1 N ′

MN �1 MN ′ for M in head normal form.
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Operational semantics

Define M ∈ [a], for M closed:

I For a of base type ι, M ∈ [a] iff ∃N≥a M � N.

I M ∈ [(U, b)] iff M � λx M ′ or M in head normal form, and
∀N∈[U] MN ∈ [b].

Write M ∈ [U] for ∀a∈U M ∈ [a] (operational interpretation of
formal neighborhoods, Martin-Löf 1983). – Plotkin (1977) proved:
Whenever an atom b belongs to the value of a closed term M,
then M head-reduces to an atom entailing b. Here we have more
generally:

Theorem (Adequacy)

(~U, b) ∈ [[λ~x M]] → λ~x M ∈ [(~U, b)].
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Formulas, predicates, clauses: general definition

Let X be a fixed predicate variable. Formulas A,B,C ,D ∈ F,
predicates P,Q, I ∈ Preds and constructor formulas (or clauses)
K ∈ KFX are generated inductively:

~A, ~B0, . . . , ~Bn−1 ∈ F

∀~x

(
~A →

(
∀~yν

(~Bν → X (~sν))
)
ν<n

→ X (~t )
)
∈ KFX

(n ≥ 0)

K0, . . . ,Kk−1 ∈ KFX (k ≥ 1)

µX (K0, . . . ,Kk−1) ∈ Preds
P ∈ Preds
P(~r ) ∈ F

C ∈ F
{~x | C } ∈ Preds

A,B ∈ F
A → B ∈ F

A ∈ F
∀xρA ∈ F

.

We always require a nullary clause.
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Logic of inductive definitions LID

LID is the (extensional) system in minimal logic for → and ∀,
whose formulas are those in F above, and whose axioms are, for
each inductively defined predicate, introduction or closure axioms,
together with an elimination or least fixed point axiom.

Example

Totality TN is inductively defined by

TN(0),

∀n(TN(n) → TN(Sn)),

∀n∈T

(
A(0) → ∀n∈T (A(n) → A(Sn)) → A(nN)

)
.
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Further examples of inductively defined predicates

I Leibniz equality. Eq+ : ∀xEq(x , x),
Eq− : ∀x ,y (Eq(x , y) → ∀xC (x , x) → C (x , y)).

I Existence. ∃+ : ∀x(A → ∃xA).
∃− : ∃xA → ∀x(A → C ) → C with x /∈ FV(C ).

I Conjunction. ∧+ : A → B → A ∧ B.
∧− : A ∧ B → (A → B → C ) → C .
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Properties of Leibniz equality

Recall Eq+ : ∀xEq(x , x),
Eq− : ∀x ,y (Eq(x , y) → ∀xC (x , x) → C (x , y)).

Lemma (Compatibility of Eq)

∀x ,y

(
Eq(x , y) → A(x) → A(y)

)
.

Proof.
Use Eq− with C (x , y) := A(x) → A(y).

Using compatibility of Eq one easily proves symmetry and
transitivity.
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Decidable prime formulas, falsity

Using Leibniz equality, we can lift a boolean term r to a prime
formula Eq(r , tt). Define falsity by F := Eq(ff, tt).

Theorem (Ex Falso Quodlibet)

F → A.

Proof.
We first show F → Eq(xρ, yρ). Notice: from Eq(ff, tt) we obtain
Eq[if tt then x else y ][if ff then x else y ] by compatibility. Hence
Eq(xρ, yρ).
Now use induction on A ∈ F. Case I (~s ). Let Ki be the nullary
clause, with final conclusion I (~t ). By IH from F we can derive all
parameter premises. Hence I (~t ). From F we also obtain Eq(si , ti ).
Hence I (~s ) by compatibility. Cases A → B and ∀xA: obvious.
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Embedding PAω

I Define ¬A := A → F, ∃̃xA := ¬∀x¬A weak (or “classical”)
existence.

I Decidable equality for finitary base types: =ι : ι → ι → B.

I A is stable if ¬¬A → A.

I ∀p∈T (¬¬Eq(p, tt) → Eq(p, tt)) by boolean induction.

Lemma (Stability)

If A has a stable end conclusion, then ¬¬A → A.
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Cototality

Cototality T∞
N is coinductively defined by the clause

∀U
n (T∞

N (n) → n=0 ∨ ∃m(n=Sm ∧ T∞
N (m)))

and the greatest fixed point axiom

∀U
n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃m[n=Sm ∧ (A(m) ∨ T∞
N (m))]) →

T∞
N (n)).

The greatest fixed point axiom is called coinduction.
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Decorating proofs

Why extract computational content from proofs?

I Proofs are machine checkable ⇒ no logical errors.

I Program on the proof level ⇒ maintenance becomes easier.
Possibility of program development by proof transformation
(Goad 1980).

I Discover unexpected content:
I U. Berger 1993: Tait’s proof of the existence of normal forms

for the typed λ-calculus ⇒ “normalization by evaluation”.
I Content in weak (or “classical”) existence proofs, of

∃̃xA := ¬∀x¬A,

via proof interpretations: (refined) A-translation or Gödel’s
Dialectica interpretation.
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Decorating proofs

Soundness

For every proof M in LID we can define its extracted term [[M]]
(modified realizability interpretation: Kreisel 1959, Seisenberger
2003). In particular this needs to be done for the axioms.

Theorem
Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can find a derivation of [[M]] r A from assumptions ūi : xui r Ci .

Proof.
Induction on A.
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Decorating proofs

Recursion operator = [[T fp
N ]]

Fixed point axiom for totality

T fp
N : ∀n

(
TN(n) → A(0) → ∀n(TN(n) → A(n) → A(Sn)) → A(nN)

)
.

Its extracted term is the structural recursion operator

Rτ
N : N → τ → (N → τ → τ) → τ,

since τ(TN(n)) := ε.
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Decorating proofs

Corecursion operator = [[(T∞
N )fp]]

Fixed point axiom for cototality

(T∞
N )fp : ∀U

n (A(n) →
∀U

n (A(n) → n=0 ∨ ∃m[n=Sm ∧ (A(m) ∨ T∞
N (m))]) →

T∞
N (n)).

Its extracted term is the corecursion operator

Cτ
N : τ → (τ → U + τ + N) → N,

since τ(T∞
N (n)) := N and τ(∀U

x B) := τ(B).
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Decorating proofs
Goal: Insertion of uniformity marks (Berger 2005) into a proof.

I The sequent Seq(M) of a proof M consists of its context and
its end formula.

I The uniform proof pattern UP(M) of a proof M is the result
of changing in M all occurrences of →,∀,∃,∧ in its formulas
into their uniform counterparts →U,∀U,∃U,∧U, except the
uninstantiated formulas of axioms and theorems.

I A formula D extends C if D is obtained from C by changing
some connectives into one of their more informative versions,
according to the following ordering: →U≤→, ∀U ≤ ∀,
∃U ≤ ∃L,∃R ≤ ∃ and ∧U ≤ ∧L,∧R ≤ ∧.

I A proof N extends M if (1) UP(M) = UP(N), and (2) each
formula in N extends the corresponding one in M. In this case
FV([[N]]) is essentially (i.e., up to extensions of assumption
formulas) a superset of FV([[M]]).
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Decorating proofs

Decoration algorithm

Theorem (Ratiu, S)

For every uniform proof pattern U and every extension of its
sequent Seq(U) we can find a decoration M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.
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