Metric spaces

Completion O Completeness of the completion

Completion of metric spaces

Seminar Konstruktive Analysis, Mathematisches Institut, LMU

Wintersemester 2024/25

- We generalize our treatment of the reals to metric spaces.
- We consider metric spaces (X, d) with a distance function d: X → X → ℝ satisfying reflexivity, symmetry and the triangle inequality.

- A Cauchy sequence with modulus need not converge to a point in the space.
- Therefore we define the completion of the given space, whose elements are all pairs ((u_n)_n, M) of a Cauchy sequence in X and a modulus M: Z⁺ → N.

- We extend the given distance function *d* to the completion and show that we obtain a metric space again.
- We show that this completion is complete, in the sense that now every Cauchy sequence with modulus has a limit.

ntroduction	Metric spaces •0	Completion O	Completeness of the completion

Definition

A metric on a set X is a map $d: X \to X \to \mathbb{R}$ such that for all $u, u', u'' \in X$

(a)
$$d(u, u) = 0$$
 (reflexivity),

(b)
$$d(u, u') = d(u', u)$$
 (symmetry), and

(c) $d(u, u'') \leq d(u, u') + d(u', u'')$ (triangle inequality).

A metric space is a pair (X, d) consisting of a set X and a metric d on X. The real d(u, u') is called distance of u and u' w.r.t. d.

Metric spaces

Completion

Completeness of the completion

Lemma (MetrUB, MetrLB) Let (X, d) be a metric space. Then

$$|d(u, u'') - d(u', u'')| \le d(u, u') \le d(u, u'') + d(u', u'').$$

Proof.

From the triangle inequality and symmetry we obtain both

$$d(u, u'') - d(u', u'') \le d(u, u'), d(u', u'') - d(u, u'') \le d(u, u')$$

and hence the first inequality. The second one follows immediately from the triangle inequality and symmetry. $\hfill\square$

Metric space

Completion

Completeness of the completion

The completion of a metric space (X, d) consists of all pairs ((u_n)_n, M) such that (u_n)_n is a Cauchy sequence with modulus M, that is,

$$d(u_n, u_m) \leq rac{1}{2^p}$$
 for $n, m \geq M(p)$.

Let X be the set of all such pairs, called points. We extend d to points w = ((u_n)_n, M) and w' = ((u'_n)_n, M') of X by

$$\tilde{d}(w,w') := ((d(u_n,u'_n))_n,L).$$

with $L(p) := \max(M(p+1), M'(p+1)).$

The completion (X̃, d̃) of a metric space (X, d) is a metric space again.

- Goal: the completion (\tilde{X}, \tilde{d}) of a metric space (X, d) is complete.
- We explicitly define the limit of a modulated Cauchy sequence of points w_n = ((u_{n,l})_l, N_n) in the completion.
- Assume that (w_n)_n is a Cauchy sequence with monotone modulus M. Then

$$\operatorname{Lim}((w_n)_n, M) := ((u_{n,N_n(n)})_n, K)$$

with $K(p) := \max(M(p+1), p+2)$.

Metric space

Completion

Completeness of the completion 0 = 000000

Lemma (L1, MCauchyConvMod) Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Assume that $w = ((u_n)_n, M)$ is a point in \tilde{X} . Then

$$ilde{d}(\iota_X(u_n),w) \leq rac{1}{2^p} \quad \textit{for } n \geq M(p).$$

Proof.

Fix n, p with $n \ge M(p)$. Let $x_m := d(u_n, u_m)$ and $x := \lim_m x_m$ with modulus $(M(q+1))_q$. By definition x is $\tilde{d}(\iota_X(u_n), w)$. The goal $x \le \frac{1}{2^p}$ follows from the completeness of the real numbers.

Lemma (L2, MCplSeqApprox)

Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Assume that $w_n = ((u_{n,l})_l, N_n)$ is a point in \tilde{X} for all n. Let $u_n := u_{n,N_n(n)}$. Then

$$\widetilde{d}(\iota_X(u_n),w_n) \leq rac{1}{2^n}$$
 for all $n.$

Proof.

This follows from L1.

Lemma (L3, MCplCauchyApprox)

Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Let again $w_n := ((u_{n,l})_l, N_n)$ be points in \tilde{X} for all n. Assume that $(w_n)_n$ is a Cauchy sequence in (\tilde{X}, \tilde{d}) with monotone modulus M. Let $u_n := u_{n,N_n(n)}$. Then

$$d(u_n, u_m) \leq \frac{1}{2^p}$$

for $n, m \ge \max(M(p+1), p+2)$.

Metric spaces

Completion

Completeness of the completion

Proof. Recall that $d(u_n, u_m) = \tilde{d}(\iota_X(u_n), \iota_X(u_m))$ by Definition.

$$\begin{split} \tilde{d}(\iota_X(u_n), \iota_X(u_m)) \\ &\leq \tilde{d}(\iota_X(u_n), w_n) + \tilde{d}(w_n, w_m) + \tilde{d}(w_m, \iota_X(u_m)) \\ &= \frac{1}{2^n} + \frac{1}{2^{p+1}} + \frac{1}{2^m} \quad \text{by L2} \\ &\leq \frac{1}{2^p} \quad \text{since } n, m \geq \max(M(p+1), p+2). \end{split}$$

Metric spaces

Completion O Completeness of the completion 00000000

Lemma (L4, MCplLimMCpl)

Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Let $(w_n)_n$ be a Cauchy sequence in \tilde{X} with monotone modulus M. Then its limit $\operatorname{Lim}((w_n)_n, M)$ is a point in \tilde{X} .

Proof.

It suffices to show that the explicitly defined limit is a modulated Cauchy sequence. But this has been done in L3.

Lemma (L5, MCplCauchyConvMod)

Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Let $(w_n)_n$ be a Cauchy sequence in \tilde{X} with monotone modulus M. Then $(w_n)_n$ converges to its limit $\operatorname{Lim}((w_n)_n, M)$.

Theorem (L6, MCplCompleteLim)

Let (X, d) be a metric space and (\tilde{X}, \tilde{d}) its completion. Let $(w_n)_n$ be a Cauchy sequence in \tilde{X} with monotone modulus M. Then $(w_n)_n$ converges with the same modulus M to its limit $\operatorname{Lim}((w_n)_n, M)$ in \tilde{X} .

Proof.

This follows from L4 and L5.