A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

MCMP, 8. Dezember 2022

A theory of computable functionals (TCF)

Similar to HA^{ω} . but

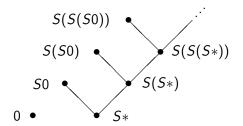
Intro

- add inductively and coinductively defined predicates,
- distinguish computationally relevant (c.r.) and non-computational (n.c.) predicates,
- add realizability predicates (internal "meta"-step),
- allow partial functionals, defined by equations (possibly non-terminating, like corecursion),
- minimal logic: only \rightarrow , \forall primitive. \vee , \exists , \wedge inductively defined.

Minlog implements TCF.

Model

- TCF has an intended model: partial continuous functionals.
- Defined via information systems (Scott). Has function spaces.
- It consists of ideals (infinite) approximated by tokens (finite).
- Ideals are consistent and deductively closed sets of tokens.
- Tokens are constructor trees with possibly * at some leaves.
- Examples: natural numbers \mathbb{N} , binary trees \mathbb{Y} .



- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}\$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").

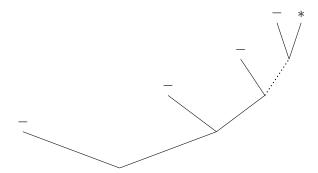
An ideal x in a closed base type

- is cototal if for each of its tokens t(*) with a distinguished occurrence of * there is another token of the form $t(C^{\vec{*}})$ in x,
- total if it is cototal and finite.

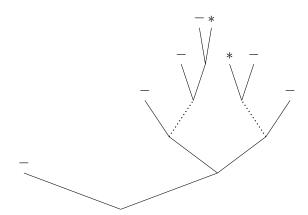
The base type Y (binary trees) is given by the constructors

$$\begin{array}{ll} -\colon \mathbb{Y} & \text{ (leaf)}, \\ \mathrm{C}\colon \mathbb{Y} \to \mathbb{Y} \to \mathbb{Y} & \text{ (branch)}. \end{array}$$

Example of a cototal ideal in Y: all tokens



Another example of a cototal ideal in Y: all tokens



Example of a neither total nor cototal ideal: deductive closure of

Totality $T_{\mathbb{N}}$ is inductively defined as the least fixed point (Ifp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality $^{\rm co}T_{\mathbb N}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{\mathrm{co}}T_{\mathbb{N}} \to n \equiv 0 \vee \exists_{n'} (n' \in {}^{\mathrm{co}}T_{\mathbb{N}} \wedge n \equiv Sn').$$

Similarity $\sim_{\mathbb{Y}}$ is a binary variant of totality. It is inductively defined as the least fixed point (lfp) of the clauses

$$-\sim_{\mathbb{Y}}-,$$

$$t_1\sim_{\mathbb{Y}}t_1'\to t_2\sim_{\mathbb{Y}}t_2'\to \mathrm{C}t_1t_2\sim_{\mathbb{Y}}\mathrm{C}t_1't_2'.$$

Bisimilarity $\approx_{\mathbb{Y}}$ is a binary variant of cototality. It is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$t \approx_{\mathbb{Y}} t' \to ((t \equiv -) \land (t' \equiv -)) \lor$$
$$\exists_{t_1, t_2, t'_1, t'_2} (t_1 \approx_{\mathbb{Y}} t'_1 \land t_2 \approx_{\mathbb{Y}} t'_2 \land t \equiv Ct_1t_2 \land t' \equiv Ct'_1t'_2)$$

For every closed base type bisimilarity implies Leibniz equality.

- Example: \(\mathbb{Y} \). Let a range over tokens, t over ideals.
- By induction on the height of extended tokens a^* we prove

$$\forall_{a^*,t,t'}(t \approx_{\mathbb{Y}} t' \to a^* \in t \to a^* \in t').$$

- It suffices to consider the case $Ca_1^*a_2^*$.
- From $t \approx t'$ by closure we have ideals t_1, t_2, t_1', t_2' with

$$t_1 \approx t_1' \wedge t_2 \approx t_2' \wedge t \equiv \mathrm{C} t_1 t_2 \wedge t' \equiv \mathrm{C} t_1' t_2'.$$

• Then $a_i^* \in t_i$, and by IH $a_i^* \in t_i'$. Thus $Ca_1^*a_2^* \in t'$.

Axioms for (co)inductive predicates: I^{\pm} , ${}^{co}I^{\pm}$. Examples:

• Even. The introduction axioms (or clauses) are $\mathrm{Even}_{0.1}^+$:

$$0 \in \text{Even}, \quad n \in \text{Even} \to S(Sn) \in \text{Even}$$

and the elimination axiom is Even-:

$$0{\in}X\to\forall_n(n\in{\rm Even}\to n{\in}X\to S(Sn){\in}X)\to{\rm Even}\subseteq X.$$

"Every competitor X satisfying the clauses is above Even."

- Similar: T_{ι}^{\pm} , ${}^{\mathrm{co}}T_{\iota}^{\pm}$, ${}^{\mathrm{c}}_{\iota}$ and ${}^{\mathrm{d}}_{\iota}$
- The n.c. Leibniz equality

 is defined by

$$\equiv^+ : x^{\tau} \equiv x^{\tau} \qquad \equiv^- : x \equiv y \to \forall_x Xxx \to Xxy$$

TCF 00000000

Lemma (Compatibility of EqD)

$$x \equiv y \rightarrow A(x) \rightarrow A(y)$$
.

Proof: By the elimination axiom with

$$X := \{ x, y \mid A(x) \to A(y) \}.$$

Using compatibility of \equiv one proves symmetry and transitivity. Define falsity by $\mathbf{F} := (ff \equiv tt)$.

Theorem (Ex-falso-quodlibet)

We can derive $\mathbf{F} \to A$ from assumptions $\mathrm{Ef}_{\mathbf{Y}} \colon \forall_{\vec{x}} (\mathbf{F} \to Y \vec{x})$ for predicate variables Y strictly positive in A, and Ef_I: $\forall_{\vec{x}}(\mathbf{F} \to I\vec{x})$ for inductive predicates I without a nullary clause.

For every closed base type bisimilarity implies Leibniz equality.

Justification: holds in the intended model.

For closed base types ι it follows that

$$t \sim_{\iota} t' \leftrightarrow t, t' \in T_{\iota} \wedge t \equiv t',$$

$$t \approx_{\iota} t' \leftrightarrow t, t' \in {}^{co}T_{\iota} \wedge t \equiv t'.$$

This is helpful because it gives us a tool (induction, coinduction) to prove equalities $t \equiv t'$, which otherwise would be difficult.

$$t \sim_{\iota} t \leftrightarrow t \in T_{\iota},$$

$$t \approx_{\iota} t \leftrightarrow t \in {}^{co}T_{\iota},$$

 \sim_{ι} is an equivalence relation on T_{ι} , \approx_{ι} is an equivalence relation on ${}^{co}T_{\iota}$.

Definition (Pointwise equality¹)

$$(x \doteq_{\iota} y) := \begin{cases} x \approx_{\iota} y & \text{if } \iota \text{ is a "cotype"} \\ x \sim_{\iota} y & \text{else} \end{cases}$$

 $(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$

Definition (Extensionality)

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x).$$

¹Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

- Define f, g of type $\mathbb{N} \to \mathbb{N}$ by the computation rules fn = 0and g0 = 0, g(Sn) = gn.
- Then $f \perp_{\mathbb{N}} = 0$ by the computation rules for f.
- For $g \perp_{\mathbb{N}}$ no computation rule fits, but by the definition of $[\![\lambda_{\vec{x}}M]\!]$ we have that $[\![g\bot_{\mathbb{N}}]\!]$ is the empty ideal $[\![\bot_{\mathbb{N}}]\!]$.
- Hence $f \doteq g$, i.e., $\forall_{n,m} (n \doteq_{\mathbb{N}} m \rightarrow fn \doteq_{\mathbb{N}} gm)$, since $n \doteq_{\mathbb{N}} m$ implies $n \in T_{\mathbb{N}}$ and $n \equiv m$.
- Therefore the functional F defined by $Fh = h \perp_{\mathbb{N}}$ maps the pointwise equal f, g to different values.

 $\operatorname{Ext}_{\tau}$ and $\operatorname{co} T_{\tau}$ are equivalent for closed types of level ≤ 1 .

Proof.

For closed base types this has been proved above. In case of level 1 we use induction on the height of the type. Let $au o\sigma$ be a closed type of level 1. The following are equivalent.

$$\begin{split} & f \in \operatorname{Ext}_{\tau \to \sigma} \\ & f \doteq_{\tau \to \sigma} f \\ & \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} fy) \\ & \forall_{x \in {}^{\operatorname{co}} T_{\tau}} (fx \doteq_{\sigma} fx) & \operatorname{since lev}(\tau) = 0 \\ & \forall_{x \in {}^{\operatorname{co}} T_{\tau}} (fx \in \operatorname{Ext}_{\sigma}). \end{split}$$

By IH the final formula is equivalent to $f \in {}^{\operatorname{co}}T_{\tau \to \sigma}$.

For arbitrary closed types the relation \doteq_{τ} is a "partial equivalence relation", which means the following.

Lemma

For every closed type τ the relation \doteq_{τ} is an equivalence relation on $\operatorname{Ext}_{\tau}$.

Lemma (Compatibility of terms)

For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$\vec{x} \doteq_{\vec{\rho}} \vec{y} \rightarrow t(\vec{x}) \doteq_{\tau} t(\vec{y}).$$

Lemma (Extensionality of terms)

For every term $t(\vec{x})$ with extensional constants and free variables among \vec{x} we have

$$\vec{x} \in \operatorname{Ext}_{\vec{o}} \to t(\vec{x}) \in \operatorname{Ext}_{\tau}$$
.

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity $\vec{\rho}$ an n.c. predicate variable X^r of arity $(\vec{\rho}, \xi)$ where ξ is the type variable associated with X.
- We introduce I^r/^{co}I^r for c.r. (co)inductive predicates I/^{co}I, e.g.,

Even
$$r \to \text{Even}^r(S(Sn))(Sm)$$
.

- A predicate or formula C is r-free if it does not contain any of these X^r, I^r or coI^r.
- A derivation M is r-free if it contains r-free formulas only.

Let z r C mean $C^r z$.

$$z \mathbf{r} P \vec{t} := P^{\mathbf{r}} \vec{t} z,$$

$$z \mathbf{r} (A \to B) := \begin{cases} \forall_w (w \mathbf{r} A \to zw \mathbf{r} B) & \text{if } A \text{ is c.r.} \\ A \to z \mathbf{r} B & \text{if } A \text{ is n.c.} \end{cases}$$

$$z \mathbf{r} \forall_x A := \forall_x (z \mathbf{r} A).$$

$$\begin{array}{ll} \operatorname{et}(u^A) & := z_u^{\tau(A)} \quad (z_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \begin{cases} \lambda_{z_u} \operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \begin{cases} \operatorname{et}(M) \operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((\lambda_x M^A)^{\forall_x A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} t)^{A(t)}) & := \operatorname{et}(M). \end{array}$$

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate I.

- $\operatorname{et}(I_i^+) := \operatorname{C}_i$ and $\operatorname{et}(I^-) := \mathcal{R}$, where the constructor C_i and the recursion operator \mathcal{R} refer to ι_I associated with I.
- $\operatorname{et}({}^{\operatorname{co}}I^{-}) := D$ and $\operatorname{et}({}^{\operatorname{co}}I_{i}^{+}) := {}^{\operatorname{co}}\mathcal{R}$, where the destructor D and the corecursion operator ${}^{\operatorname{co}}\mathcal{R}$ refer to ι_{I} again.

Let I be an inductive predicate and ι_I its associated algebra. One can show that

- every constructor of ι_I is extensional w.r.t. its clause I_i^+ ,
- $\mathcal{R}^{\alpha}_{\iota_I}$ is extensional w.r.t. the least-fixed-point axiom I^- ,
- the destructor of ι_I is extensional w.r.t. the closure axiom ${}^{\rm co}I^-$, and
- ${}^{\rm co}\mathcal{R}^{lpha}_{\iota_I}$ is extensional w.r.t. the greatest-fixed-point axiom ${}^{\rm co}l^+$.

Since the term $\operatorname{et}(M)$ extracted from a closed proof M of a c.r. formula A is built from these constants by abstraction and application, by the lemma on extensionality of terms we can conclude that $\operatorname{et}(M)$ is extensional w.r.t. A.

Let M be an **r**-free derivation of a formula A from assumptions u_i : C_i (i < n). Then we can derive

$$\begin{cases} et(M) \ r \ A & if \ A \ is \ c.r. \\ A & if \ A \ is \ n.c. \end{cases}$$

from assumptions

$$\begin{cases} z_{u_i} \mathbf{r} C_i & \text{if } C_i \text{ is c.r.} \\ C_i & \text{if } C_i \text{ is n.c.} \end{cases}$$

- Kolmogorov's view of "formulas as problems" ²
- Feferman's dictum "to assert is to realize" ³

by invariance axioms:

For \mathbf{r} -free c.r. formulas A we require as axioms

 $InvAll_A: \forall_z (z \mathbf{r} A \to A).$

 $\operatorname{InvEx}_A : A \to \exists_z (z \mathbf{r} A).$

²Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

³Constructive theories of functions and classes, Logic Colloquium 78, p.208

Case $(\lambda_{u^A}M^B)^{A\to B}$ with B n.c. We need a derivation of $A\to B$. Subcase A c.r. By IH we have a derivation of B from z \mathbf{r} A. Using the invariance axiom $A\to \exists_z(z\mathbf{r} A)$ we get the required derivation of B from A:

$$\frac{A \to \exists_z (z r A) \qquad A}{\exists_z (z r A)} \qquad \begin{vmatrix} [z r A] \\ & | \text{IH} \\ & B \end{vmatrix} = \exists^{-1}$$

Invariance axioms used in the proof of soundness (2):

Case $(M^{A \to B} N^A)^B$ with B n.c. Goal: find a derivation of B. Subcase A c.r. By IH we have derivations of $A \to B$ and of $\operatorname{et}(N)$ \mathbf{r} A. From the invariance axiom $\forall_z (z \mathbf{r} A \to A)$ we obtain the required derivation of B by \to^- from the derivation of $A \to B$ and

$$\frac{\forall_z(z \ \mathsf{r} \ A \to A) \qquad \text{et}(N)}{\underbrace{\text{et}(N) \ \mathsf{r} \ A \to A} \qquad \underbrace{\text{et}(N) \ \mathsf{r} \ A}_{A}}$$

Issues

- Strong language, but controlled existence axioms (Kreisel).
- Functions (other than constructors) can only be defined by computation rules, e.g.,

$$n + 0 = n,$$

$$n + S(m) = S(n + m).$$

No termination proof is required, hence partial functions.

- Predicates can only be defined inductively or coinductively.
- Bisimilarity and invariance axioms justified: hold in a model.

Conclusion

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The Soundness theorem provides a formal vertication in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.