
Proof and computation

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

FMV: Foundations in Mathematics – Modern views,
LMU, April 2018

1 / 32

Proofs are what distinguishes mathematics from other sciences.

A proof has two aspects

I provides insight (uniformity)

I may have computational content

Mathematics = logic + data + (co)inductive definitions

I Logic: minimal, intro and elim for →, ∀
I Proof ∼ lambda-term (Curry-Howard correspondence)

I Can embed classical and intuitionistic logic

2 / 32

Constructive logic as an extension of classical logic

Observed by Gödel and Gentzen (1930s). Constructive logic:

I ∃xA — proof needs an instance.

I A ∨ B — proof must be for one of the two alternatives.

In addition we have the classical (weaker) versions

I ∃̃xA — assuming that there is no such x leads to a
contradiction.

I A ∨̃ B — assuming that none of the alternatives holds leads
to a contradiction.

3 / 32

Example of a non-constructive proof

Lemma
There are irrational numbers a, b such that ab is rational.

Proof.
Case

√
2
√
2

rational. Let a =
√

2 and b =
√

2. Then both a, b are
irrational, and by assumption ab is rational.

Case
√

2
√
2

irrational. Let a =
√

2
√
2

and b =
√

2. Then by
assumption a, b are irrational, and

ab =

(√
2

√
2
)√2

=
(√

2
)2

= 2

is rational.

4 / 32

Constructive analysis

I Errett Bishop, Foundations of Constructive Analysis.
McGraw-Hill, 1967.

I Needs appropriate definitions (example: compactness).

I To be done: constructive proofs with

constructions ∼ good (e.g., efficient) algorithms.

5 / 32

Type theory

I Per Martin-Löf, Intuitionistic Type Theory. Bibliopolis, 1984.

I Very popular: basis for (i) proof assistants Nuprl, Coq, Agda
(ii) homotopy type theory (Voevodsky).

For Bishop-style constructive mathematics

I simplify: finite types (ι | ρ→ σ) rather than dependent types

I extend: partial rather than total functionals

6 / 32

Finite rather than dependent types

I Aczel & Gambino (2006): Logic enriched type theory

I Formulas need not be types, they just behave similarly.

I ∀xA and A→ B primitive, ∃xA and A ∨ B defined inductively:

∃+ : ∀x(x ∈ P → ∃x(x ∈ P))

∃− : ∃x(x ∈ P)→ ∀x(x ∈ P → C)→ C (x /∈ FV(C))

∨+i : Ai → A0 ∨ A1

∨− : A ∨ B → (A→ C)→ (B → C)→ C

7 / 32

Partial rather than total functionals

General view: computations are finite.

Arguments not only numbers and functions, but also functionals of
any finite type.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

8 / 32

The Scott-Ershov model of partial continuous functionals

I C := (|Cρ|)ρ provides the domains of computable functionals.

I Satisfies the three principles above.

I “xρ computable” for xρ ∈ |Cρ| is defined by

the set of finite approximations U ⊆ x is recursively enumerable

I TCF (theory of partial computable functionals): variant of
both HAω and Martin-Löf type theory.

9 / 32

Principle of finite support

x f (x)

finite approx.

of argument x

finite approx.

of value f (x)

10 / 32

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms of T+ are built from (typed) variables and (typed)
constants (constructors C or defined constants D, see below) by
(type-correct) application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation
rules, consisting of finitely many equations

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where the arguments
on the left hand side must be “constructor patterns”, i.e., lists of
applicative terms built from constructors and distinct variables.

11 / 32

Examples

I +: N→ N→ N defined by

n + 0 = n

n + Sm = S(n + m)

I =N : N→ N→ B

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

12 / 32

Recursion operators

I Introduced by Hilbert (1925) and Gödel (1958).

I Used to construct maps from the algebra ι to τ , by recursion
on the structure of ι.

I Example: RτN of type N→ τ → (N→ τ → τ)→ τ .

I The first argument is the recursion argument, the second one
gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the
next value.

I For example, RN
Nnmλn,p(Sp) defines addition m + n by

recursion on n.

13 / 32

Corecursion operators

Streams:

S(α) by SConsα→S(α)→S(α).

The corecursion operator coRτS(ρ) of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf :=

{
SCons(y , z) if f (x) ≡ 〈y , InL(z)〉,
SCons(y , coRx ′f) if f (x) ≡ 〈y , InR(x ′)〉.

14 / 32

The Brouwer-Heyting-Kolmogorov interpretation

Also known as (modified) realizability.

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I Proposed to view a formula A as a computational problem, of
type τ(A), the type of a potential solution or “realizer” of A.

I Example: ∀n∈TN∃m∈TN(m > n∧m ∈ Prime) has type N→ N.

In TCF one can prove

Theorem (Soundness)

From a TCF-proof M of a (computationally relevant) formula A
we can extract a term et(M) realizing A.

15 / 32

Application: exact real numbers

can be given in different formats:

I Cauchy sequences (of rationals, with Cauchy modulus).

I Infinite sequences (streams) of signed digits {−1, 0, 1}, or

I {−1, 1,⊥} with at most one ⊥ (“undefined”): Gray code.

Want formally verified algorithms on reals given as streams.

I Consider formal proofs M and apply realizability to extract
their computational content.

I Switch between different formats of reals by relativising to
coinductive predicates. Example:

∀x(x ∈ coI → A) rather than ∀x(x ∈ Real→ A).

Computational content of x ∈ coI is a stream representing x .

16 / 32

A real number can be represented as a Cauchy sequence (an)n of
rationals together with a Cauchy modulus M satisfying

|an − am| ≤
1

2p
for n,m ≥ M(p).

Arithmetical operations on real numbers x , y are defined by

cn L(p)

x + y an + bn max
(
M(p + 1),N(p + 1)

)
−x −an M(p)
|x | |an| M(p)
x · y an · bn max

(
M(p + 1 + py),N(p + 1 + px)

)
1
x for |x | ∈q R+

{
1
an

if an 6= 0

0 if an = 0
M(2(q + 1) + p)

where 2px is the upper bound of x provided by the Archimedian
property.

17 / 32

Representation of real numbers x ∈ [−1, 1]
Dyadic rationals: ∑

i<k

ai
2i+1

with ai ∈ {−1, 1}

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

1̄ 1

1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1

with 1̄ := −1. Adjacent dyadics can differ in many digits:

7

16
∼ 11̄11,

9

16
∼ 111̄1̄.

18 / 32

Cure: flip after 1. Binary reflected (or Gray-) code.

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

L R

L R R L

L R R L L R R L

L R R L L R R L L R R L L R R L

7

16
∼ RRRL,

9

16
∼ RLRL.

19 / 32

Problem with productivity:

1̄111 + 11̄1̄1̄ · · · = ? (or LRLL . . . + RRRL · · · = ?)

What is the first digit? Cure: delay.

I For binary code: add 0. Signed digit code∑
i<k

di
2i+1

with di ∈ {−1, 0, 1}.

Widely used for real number computation. There is a lot of
redundancy: 1̄1 and 01̄ both denote −1

4 .

I For Gray-code: add U (undefined), D (delay), FinL/R (finally
left / right).

20 / 32

Gray code

0

1
2

1
4

3
4

3
8

5
8

7
16

9
16

U

D

R

R L
U

FinR

U
R

FinR
D

FinL

R
U

U
L

FinR FinL
D U

L

After computation in Gray code, one can remove Fina by

U ◦ Fina 7→ a ◦ R, D ◦ Fina 7→ Fina ◦ L.

21 / 32

Average for signed digit streams

Goal:

x , y ∈ coI︸ ︷︷ ︸
x ,y∈[−1,1]

→ x + y

2
∈ coI︸ ︷︷ ︸

x+y
2
∈[−1,1]

.

I Streams appear only implicit in our logical framework.

I Model streams as cototal objects in the (free) algebra S(D)
given by the constructor C : D→ S(D)→ S(D).

Intuitively, d0, d1, d2 . . . represents

∞∑
i=0

di
2i+1

with di ∈ D := {−1, 0, 1}.

22 / 32

Definition of coI

Φ(X) := { x | x ∈ [−1, 1] ∧ ∃d∈D∃x ′∈X (x =
x ′ + d

2
) }.

Then

I := µXΦ(X) least fixed point
coI := νXΦ(X) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩ X) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪ X)→ X ⊆ coI coinduction

(“strengthened” because their hypotheses are weaker than the
fixed point property Φ(X) = X).

23 / 32

Goal: compute the average of two stream-coded reals. Prove

x , y ∈ coI → x + y

2
∈ coI .

Computational content of this proof will be the desired algorithm.

Informal proof (from Ulrich Berger & Monika Seisenberger 2006).
Define sets P,Q of averages, Q with a “carry” i ∈ Z:

P := { x + y

2
| x , y ∈ coI },

Q := { x + y + i

4
| x , y ∈ coI , i ∈ D2 } (D2 := {−2,−1, 0, 1, 2}).

Suffices: Q satisfies the clause coinductively defining coI . Then by
the greatest-fixed-point axiom for coI we have Q ⊆ coI . Since also
P ⊆ Q we obtain P ⊆ coI , which is our claim.

24 / 32

Q satisfies the coI -clause:

i ∈ D2 → x , y ∈ coI → ∃j∈D2∃d∈D∃x ′,y ′∈coI (
x + y + i

4
=

x ′+y ′+j
4 + d

2
).

Proof. Write x = x ′+d
2 and y = y ′+e

2 (d , e ∈ D, x ′, y ′ ∈ coI).
Then

x + y + i

4
=

x ′ + y ′ + d + e + 2i

8
.

Since |d + e + 2i | ≤ 6 we can write d + e + 2i = j + 4k with
|j | ≤ 2 and |k| ≤ 1. Therefore

x + y + i

4
=

x ′ + y ′ + j + 4k

8
=

x ′+y ′+j
4 + k

2
.

25 / 32

Implicit algorithm.
q : D2 → S(D)→ S(D)→ D2 × D× S(D)× S(D) defined by

q(i ,Cd(u),Ce(v)) = (J(d + e + 2i),K (d + e + 2i), u, v)

with J,K : Z→ Z such that

i = J(i) + 4K (i), |J(i)| ≤ 2, |i | ≤ 6→ |K (i)| ≤ 1.

26 / 32

By coinduction we obtain Q ⊆ coI :

∃i∈D2∃x ,y∈coI (z =
x + y + i

4
)→ z ∈ coI .

This gives our claim

x , y ∈ coI → x + y

2
∈ coI .

Implicit algorithm. P ⊆ Q computes the first “carry” i ∈ D2 and
the tails of the inputs. Then f : D2 × S(D)× S(D)→ S(D) defined
corecursively by

f (i ,Cd(u),Ce(v)) = CK(k+l+2i)(f (J(k + l + 2i), u, v))

is called repeatedly and computes the average step by step.
(Here (d , k), (e, l) ∈ Dr).

27 / 32

[u,u0][let tuv

(IntToSdtwo(SdToInt clft(cCoIClosure u)+

SdToInt clft(cCoIClosure u0))pair

crht(cCoIClosure u)pair crht(cCoIClosure u0))

((CoRec sdtwo yprod str yprod str=>str)tuv

([tuv0][let tsuv

(IntToSdtwo

(J(SdToInt clft(cCoIClosure clft crht tuv0)+

SdToInt clft(cCoIClosure crht crht tuv0)+

SdtwoToInt clft tuv0*2))pair

IntToSd

(K(SdToInt clft(cCoIClosure clft crht tuv0)+

SdToInt clft(cCoIClosure crht crht tuv0)+

SdtwoToInt clft tuv0*2))pair

crht(cCoIClosure clft crht tuv0)pair

crht(cCoIClosure crht crht tuv0))

(clft crht tsuv pair

InR(clft tsuv pair crht crht tsuv))]))]

28 / 32

From the proof M of

x , y ∈ coI → x + y

2
∈ coI

extract a term et(M). The Soundness theorem gives a proof of

et(M) r ∀x ,y (x , y ∈ coI → x + y

2
∈ coI).

Brouwer-Heyting-Kolmogorov interpretation:

u r (x ∈ coI)→ v r (y ∈ coI)→ et(M)(u, v) r (
x + y

2
∈ coI)

This is a formal verification that et(M) computes the average
w.r.t. signed digit streams.

29 / 32

Average for Gray code

Method essentially the same as for signed digit streams.

I Only need to insert a different computational content to the
predicates expressing how a real x is given.

I Instead of coI for signed digit streams we now need two such
predicates coG and coH, corresponding to the two “modes” in
Gray code.

30 / 32

Method also works for multiplication and division:

x , y ∈ coI → x + y

2
∈ coI ,

x , y ∈ coI → x · y ∈ coI ,

x , y ∈ coI → 1

4
≤ y → x

y
∈ coI ,

both w.r.t. signed digit and Gray code.

31 / 32

References

E. Bishop, Foundations of Constructive Analysis. McGraw-Hill,
1967

H.S. and S.S. Wainer, Proofs and Computations,
Perspectives in Logic. Association for Symbolic Logic and
Cambridge University Press, 2012.

U. Berger, K. Miyamoto, H.S. and H. Tsuiki,
Logic for Gray-code computation.
In: Concepts of Proof in Mathematics, Philosophy, and Computer
Science (eds. Probst, Schuster). De Gruyter, 2016, pp. 69-110

32 / 32

