
Proofs and computations

Helmut Schwichtenberg
(j.w.w. Kenji Miyamoto)

Mathematisches Institut, LMU, München

Leeds University, 7. March 2012

Helmut Schwichtenberg Proofs and computations

Formalization and extraction

One can extract from a (constructive) proof of a formula with
computational content a term that “realizes” (Kleene, Kreisel,
Troelstra) the formula. Why should one?

I It can be important to know for sure (and to be able to
machine check) that in a proof nothing has been overlooked.

I The same applies to the algorithm implicit in the proof: even
if the latter is correct, errors may occur in the implementation
of the algorithm.

I Even if the algorithm is correctly implemented, for sensitive
applications customers may (and do) require a formal proof
that the code implementing the algorithm is correct.

Helmut Schwichtenberg Proofs and computations

Consequences

I The computational content of a proof should be machine
extracted from a formalization of this proof.

I The extract should be a term in the underlying language of
the formal system (here: T+, a common extension of Gödel’s
T and Plotkin’s PCF).

I A soundness theorem should be formally proved: the extract
realizes the specification (:= the formula being proved).

Helmut Schwichtenberg Proofs and computations

Computable functionals

I Types: ι | ρ → σ. Ground types ι: free algebras (e.g., N).

I Functionals seen as limits of finite approximations: ideals
(Kreisel, Scott, Ershov).

I Computable functionals are r.e. sets of finite approximations
(example: fixed point functional).

I Functionals are partial. Total functionals are defined (by
induction over the types).

Helmut Schwichtenberg Proofs and computations

Information systems Cρ for partial continuous functionals

I Types ρ, σ, τ : from algebras ι by ρ → σ.

I Cρ := (Cρ,Conρ,`ρ).

I Tokens a ∈ Cρ (= atomic pieces of information): constructor
trees Ca∗1, . . . a

∗
n with a∗i a token or ∗. Example: S(S∗).

I Formal neighborhoods U ∈ Conρ: {a1, . . . , an}, consistent.

I Entailment U `ρ a.

Ideals x ∈ |Cρ| (“points”, here: partial continuous functionals):
consistent deductively closed sets of tokens.

Helmut Schwichtenberg Proofs and computations

Flat or non flat algebras?

I Flat:

∅
•

•
{0}

�
��
•
{1}

���
��•
{2}

. . .

I Non flat:

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Helmut Schwichtenberg Proofs and computations

Non flat!

I Every constructor C generates an ideal in the function space:
rC := { (U,Ca∗) | U ` a∗ }. Associated continuous map:

|rC|(x) = {Ca∗ | ∃U⊆x(U ` a∗) }.

I Constructors are injective and have disjoint ranges:

|rC|(~x) ⊆ |rC|(~y) ↔ ~x ⊆ ~y ,

|rC1 |(~x) ∩ |rC2 |(~y) = ∅.

I Both properties are false for flat information systems (for
them, by monotonicity, constructors need to be strict).

|rC|(∅, y) = ∅ = |rC|(x , ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅).

Helmut Schwichtenberg Proofs and computations

A theory of computable functionals, TCF

I A variant of HAω.

I Variables range over arbitrary partial continuous functionals.

I Constants for (partial) computable functionals, defined by
equations.

I Inductively and coinductively defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate.

I Coinduction := greatest-fixed-point for a coinductively defined
predicate.

I Minimal logic: →,∀ only. = (Leibniz), ∃, ∨, ∧ (Martin-Löf)
inductively defined.

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I Classical logic as a fragment: ∃̃xA defined by ¬∀x¬A.

Helmut Schwichtenberg Proofs and computations

Realizability interpretation

I Define a formula t r A, for A a formula and t a term in T+.

I Soundness theorem:
If M proves A, then et(M) r A can be proved.

I Decorations (→c,∀c and →nc,∀nc) for removal of abstract
data, and fine-tuning:

t r (A →c B) := ∀x(x r A → tx r B),

t r (A →nc B) := ∀x(x r A → t r B),

t r (∀c
xA) := ∀x(tx r A),

t r (∀nc
x A) := ∀x(t r A).

Helmut Schwichtenberg Proofs and computations

Example: decorating the existential quantifier

I ∃xA is inductively defined by the clause

∀x(A → ∃xA)

with least-fixed-point axiom

∃xA → ∀x(A → P) → P.

I Decoration leads to variants ∃d,∃l,∃r,∃u (d for “double”,
l for “left”, r for “right” and u for “uniform”).

∀c
x(A →c ∃d

xA),

∀c
x(A →nc ∃l

xA),

∀nc
x (A →c ∃r

xA),

∀nc
x (A →nc ∃u

xA),

∃d
xA →c ∀c

x(A →c P) →c P,

∃l
xA →c ∀c

x(A →nc P) →c P,

∃r
xA →c ∀nc

x (A →c P) →c P,

∃u
xA →nc ∀nc

x (A →nc P) →c P.

Helmut Schwichtenberg Proofs and computations

Practical aspects

I We need formalized proofs, to allow machine extraction.

I Can’t take a proof assistant from the shelf: none fits TCF.

Minlog (http://www.minlog-system.de)

I Natural deduction for →,∀, plus inductively and coinductively
defined predicates.

I Partial functionals are first class citizens.

I Allows type and predicate parameters (for abstract
developments: groups, fields, reals, . . .).

Helmut Schwichtenberg Proofs and computations

Example: average of two reals

Berger and Seisenberger (2009, 2010).

I Extraction from a proof dealing with abstract reals.

I Proof involving coinduction of the proposition that any two
reals in [−1, 1] have their average in the same interval.

I B & S informally extract a Haskell program from this proof,
which works with stream representations of reals.

Aim here: discuss formalization of the proof, and machine
extraction of its computational content.

Helmut Schwichtenberg Proofs and computations

Free algebra J of intervals

I SD := {−1, 0, 1} signed digits (or {L,M,R}).
I J free algebra of intervals. Constructors

I the interval [−1, 1],

C : SD → J → J left, middle, right half.

I C1I denotes [0, 1].

I C0I denotes [−1
2 , 1

2].

I C0(C−1I) denotes [−1
2 , 0].

Cd0(Cd1 . . . (Cdk−1
I) . . .) denotes the interval in [−1, 1] whose reals

have a signed digit representation starting with d0d1 . . . dk−1.

I We consider ideals x ∈ |CJ|.

Helmut Schwichtenberg Proofs and computations

Total and cototal ideals of base type

Generally:

I Cototal ideals x : every token (i.e., constructor tree) P(∗) ∈ x
has a “�1-successor” P(C~∗) ∈ x .

I Total ideals: the cototal ones with �1 well-founded.

Examples:

I Total ideals of J:

I i

2k ,k := [
i

2k
− 1

2k
,

i

2k
+

1

2k
] for −2k < i < 2k .

I Cototal ideals of J: reals in [−1, 1], in (non-unique) stream
representation using signed digits −1, 0, 1.

Helmut Schwichtenberg Proofs and computations

Inductive and coinductive definitions

I Inductively define a set I of (abstract) reals, by the clauses

I0, ∀nc
x ∀d

(
Ix → I

x + d

2

)
.

Witnesses are intervals (total ideals in J).

I Coinductively define coI , by the (single) clause

∀nc
x

(
coIx → x = 0 ∨ ∃r

y∃d(x =
y + d

2
∧ coIy)

)
.

Witnesses are streams of signed digits (cototal ideals in J).

I From a formalized proof of ∀nc
x ,y (coIx → coIy → coI x+y

2) extract
a stream transformer, of type J → J → J.

Helmut Schwichtenberg Proofs and computations

Proof of ∀nc
x ,y(

coIx → coIy → coI x+y
2)

X := { x + y

2
| x , y ∈ coI }, Y := { x + y + i

4
| x , y ∈ coI , i ∈ SD2 }.

with SD2 := {−2,−1, 0, 1, 2}. Show (i) X ⊆ Y and (ii) that Y
satisfies the clause coinductively defining coI . Hence Y ⊆ coI (by
the greatest-fixed-point for coI). Hence X ⊆ coI , which is our claim.

XSubY

∀nc
x ,y∈coI∀nc

z

(
z =

x + y

2
→ ∃i∃r

x ′,y ′∈coI z =
x ′ + y ′ + i

4

)
.

YSatCl

∀i∀nc
x ,y∈coI∀nc

z

(
z =

x + y + i

4
→ z = 0 ∨

∃j ,d∃r
x ′,y ′∈coI∃r

z ′
(
z ′ =

x ′ + y ′ + j

4
∧ z =

z ′ + d

2

))
.

Helmut Schwichtenberg Proofs and computations

Formalization

I Use a type variable ρ to denote an abstract type of reals.

I Need functions P (plus) of type ρ → ρ → ρ for addition, and H
(half) of type ρ → ρ for division by 2, with properties

(x + k)/2 + l = (x + (k +Z 2l))/2,

(x + k)/4 + l = (x + (k +Z 4l))/4,

(x + k)/2 + (y + l)/2 = ((x + y) + (k +Z l))/2,

x + 0 = x , 0 + y = y ,

0/2 = 0, 2k/2 = k, k + l = k +Z l .

I In the proof of lemma YSatClause we have to solve
d ′ + e ′ + 2i = j + 4d for given d ′, e ′ ∈ SD and i ∈ SD2. This
is a finite problem and hence can be solved by defining
J : SD → SD → SD2 → SD2 and
D : SD → SD → SD2 → SD explicitly. The validity of
d ′ + e ′ + 2i = J(d ′, e ′, i) + 4D(d ′, e ′, i) is proved by cases.

Helmut Schwichtenberg Proofs and computations

Extraction from lemma XSubY

cXSubY :=

[v0,v1]
[if (des v0)
[if (des v1)
(MT@v0@v1)
([dv2]JOne M left dv2@v0@right dv2)]

([dv2]
[if (des v1)
(JOne left dv2 M@right dv2@v1)
([dv3]JOne left dv2 left dv3@right dv2@right dv3)])]

Here v is a name for variables ranging over J, and dv for variables
ranging over SD× J. The constant des denotes the destructor for
J of type J → U + SD× J, and JOne : SD → SD → SD2 adds the
two integers.

Helmut Schwichtenberg Proofs and computations

Extraction from lemma XSubY (continued)

The constant cXSubY of type J → J → SD2 × J× J is defined to
be the term above. It satisfies the equations

cXSubY(I, I) = 〈0, I, I〉,
cXSubY(I,Cew) = 〈e, I,w〉,
cXSubY(Cdv , I) = 〈d , v , I〉,
cXSubY(Cdv ,Cew) = 〈d + e, v ,w〉.

For the given two streams, cXSubY computes the sum of the two
head digits (regarding I as CMI), and its tails. This sum of digits
of type SD2 is a “carry” which contains intermediate information
to compute the average.

Helmut Schwichtenberg Proofs and computations

Extraction from lemma YSatClause

cYSatClause :=

[i0,v1,v2]
[if (des v1)
[if (des v2)
(J M M i0@D M M i0@v1@v2)
([dv3]J M left dv3 i0@D M left dv3 i0@v1@right dv3)]
([dv3]
[if (des v2)
(J left dv3 M i0@D left dv3 M i0@right dv3@v2)
([dv4]J left dv3 left dv4 i0@

D left dv3 left dv4 i0@
right dv3@right dv4)])]

Helmut Schwichtenberg Proofs and computations

Extraction from lemma YSatClause (continued)

The constant cYSatClause of type
SD2 → J → J → SD2 × SD× J× J is defined to be the term
above. It satisfies the equations

cYSatClause(i , I, I) = 〈J(0, 0, i),D(0, 0, i), I, I〉,
cYSatClause(i , I,Cew) = 〈J(0, e, i),D(0, e, i), I,w〉,
cYSatClause(i ,Cdv , I) = 〈J(d , 0, i),D(d , 0, i), v , I〉,
cYSatClause(i ,Cdv ,Cew) = 〈J(d , e, i),D(d , e, i), v ,w〉.

For the given carry and two signed digit streams, cYSatClause
computes the carry for the next step, the first signed digit of the
average of the streams, and the tails of the streams.

Helmut Schwichtenberg Proofs and computations

Extraction from theorem Average

The term eterm extracted from the proof is

[v0,v1]
(CoRec sdtwo@@iv@@iv=>iv)(cXSubY v0 v1)
([ivw2]
Inr
[let jdvw3
(cYSatClause left ivw2

left right ivw2
right right ivw2)

(left right jdvw3@
(InR sdtwo@@iv@@iv iv)
(left jdvw3@right right jdvw3))])

of type J → J → J. It calls cXSubY to compute the first carry and
the tails of the inputs. Then CoRec repeatedly calls cYSatClause,
to compute the average step by step.

Helmut Schwichtenberg Proofs and computations

Corecursion

I The conversion rules for R with total ideals as recursion
arguments work from the leaves towards the root, and
terminate because total ideals are well-founded.

I For cototal ideals (streams) a similar operator is available to
define functions with cototal ideals as values: corecursion.

I coRτ
J : τ → (τ → U + SD× (J + τ)) → J (U unit type).

I Conversion rule

coRτ
JNM 7→ [case (MN)U+SD×(J+τ) of

inl 7→ I |
inr〈d , z〉 7→ Cd [case zJ+τ of

inl 7→ I |
inr uτ 7→ coRτ

JuM]].

Helmut Schwichtenberg Proofs and computations

An experiment

I Apply eterm to 1/2 + 1/8 = 5/8 and 1/2 + 1/4 = 3/4.

I Type the commands

(define test (nt (mk-term-in-app-form
eterm (pt "C R(C M(C R II))") (pt "C R(C R II)"))))

(define neterm10 (nt (undelay-delayed-corec test 10)))
(pp neterm10)

I The result is

C R (C R (C M (C L (C M (C M (C M (C M (C M (C M
((CoRec sdtwo@@iv@@iv=>iv) ...))))))))))

I The result is correct, as
(5/8 + 3/4)/2 = 11/16 = 1/2 + 1/4− 1/16.

Helmut Schwichtenberg Proofs and computations

Conclusion

I Both ∀c and ∀nc. Similarly: both →c and →nc.

I Inductively defined predicates, in particular =, ∃, ∨.

I Computational variants ∃d,∃l,∃r,∃u,

I Coinductively defined predicates.

I Recursion and corecursion operators Rτ
ι ,

coRτ
ι .

By the soundness theorem one can

Extract stream transformers from proofs on abstract reals.

Helmut Schwichtenberg Proofs and computations

References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I U. Berger, K. Miyamoto, H.S. and M. Seisenberger, The
interactive proof system Minlog. Calco-Tools 2011.

I U. Berger and M. Seisenberger, Proofs, programs, processes.
CiE 2010.

I H.S., Realizability interpretation of proofs in constructive
analysis. Theory of Computing Systems, 2008.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

Helmut Schwichtenberg Proofs and computations

