
Logic
Decoration algorithm

Decorating proofs

Helmut Schwichtenberg

joint work with Luca Chiarabini and Diana Ratiu
Mathematisches Institut, LMU, München

Leeds Symposium on Proof Theory and Constructivism,
3 - 16 July 2009

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Logic

I Typed language, with free algebras as base types.

I Intended domains: partial continuous functionals.

I Terms are those of T+, a common extension of Gödel’s T and
Plotkin’s PCF.

I Natural deduction rules for → and ∀ (“minimal logic”).

I All predicates are defined inductively. Examples:
(Leibniz) equality Eq, totality, ∃, ∧, ∨.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Computational content

I Proofs have two aspects:
(i) They guarantee correctness.
(ii) They may have computational content.

I Computational content only enters a proof via inductively (or
coinductively) defined predicates.

I To fine tune the computational content of a proof, distinguish
→c, ∀c (computational) and →, ∀ (non-computational).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Natural deduction: assumption variables uA. Rules for →c:

derivation proof term

[u : A]

| M
B (→c)+ u

A →c B

(λuAMB)A→
cB

| M
A →c B

| N
A (→c)−

B

(MA→cBNA)B

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Natural deduction: rules for ∀c

derivation proof term

| M
A (∀c)+ x (var. cond.)
∀c

xA

(λxM
A)∀

c
xA (var. cond.)

| M
∀c

xA(x) r
(∀c)−

A(r)

(M∀c
xA(x)r)A(r)

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Restrictions to →+ and ∀+ (non-computational)

CV(M) := the set of “computational variables” of a derivation M,

relative to a fixed assigment uA 7→ x
τ(A)
u . Consider

[u : A]

| M
B →+ uA → B

or as proof term (λuAMB)A→B .

(λuAMB)A→B is correct if MB is and xu /∈ CV(MB). Consider

| M
A ∀+ x∀xA

or as proof term (λxM
A)∀xA (with var. condition).

(λxM
A)∀xA is correct if MA is and x /∈ CV(MA).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Formulas as computational problems

I Kolmogorov (1925) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I Example: ∀c
n∃m>nPrime(m) has type N → N.

I A 7→ τ(A), a type or the “nulltype” symbol o.

I In case τ(A) = o proofs of A have no computational content;
such formulas A are called computationally irrelevant (c.i.) or
Harrop formulas; the others computationally relevant (c.r.).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Realizability

Let t be either a term of type τ(A) if this is a type, or the
“nullterm” symbol ε if τ(A) = o. Extend term application to ε:

εt := ε, tε := t, εε := ε.

We define the formula t r A, read t realizes A.

ε r I~r := I~r for I not requiring witnesses (e.g., Eq),

t r (A →c B) := ∀x(x r A → tx r B),

t r (A → B) := ∀x(x r A → t r B),

t r ∀c
xA := ∀x(tx r A), t r ∀xA := ∀x(t r A)

and similarly for ∃, ∧, ∨ and other inductively defined I ’s.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Derivations and extracted terms

For MA with A c.i. let [[M]] := ε. Assume A is c.r. Then

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[(λuAMB)A→
cB]] := λ

x
τ(A)
u

[[M]],

[[(MA→cBNA)B]] := [[M]][[N]],

[[(λxρMA)∀
c
xA]] := λxρ [[M]],

[[(M∀c
xA(x)r)A(r)]] := [[M]]r ,

[[(λuAMB)A→B]] := [[(MA→BNA)B]] := [[(λxρMA)∀xA]]

:= [[(M∀xA(x)r)A(r)]] := [[M]].

Define CV(M) := FV([[M]]).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Natural deduction with non-computational connectives
Computational content of proofs
Realizability

Soundness

Let xuA denote the nullterm symbol ε in case A is c.i.

Theorem (Soundness)

Let M be a derivation of A from assumptions ui : Ci (i < n). Then
we can derive [[M]] r A from assumptions xui r Ci .

Proof.
Case u : A. Then [[u]] = xu.
Case (λuAMB)A→B . We must find a derivation of

[[M]] r (A → B), which is ∀x(x r A → [[M]] r B),

Use the IH.
Case MA→BNA. We must find a derivation [[M]] r B. By IH we
have ∀x(x r A → [[M]] r B) and [[N]] r A. Hence the claim.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract [[M]] will contain the extract [[Ld]].

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened lemma L : A ∨ B.

I Since [[L]] is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract [[Ld]] has disappeared.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Decoration algorithm

Goal: Insert as few as possible decorations into a proof.

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern U(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a c.i. formula)
all →c, ∀c into →, ∀ (some restrictions on axioms, theorems).

I A formula D extends C if D is obtained from C by changing
some →, ∀ into →c, ∀c.

I A proof N extends M if (i) N and M are the same up to
variants of →, ∀ in their formulas, and (ii) every c.r. formula
of M is extended by the corresponding one in N.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Decoration algorithm

Assumption: For every axiom or theorem A and every decoration
variant C of A we have another axiom or theorem whose formula
D extends C , and D is the least among those extensions.

Theorem (Ratiu, S.)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Case →−. Consider a uniform proof pattern

Φ, Γ

| U
A → B

Γ,Ψ

| V
A →−

B

Given: extension Π,∆,Σ ⇒ D of Φ, Γ,Ψ ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆ ⇒ A→D 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 →̆ D1 extends Π,∆ ⇒ A→D.
Suffices if A is c.i.: extension ∆1,Σ ⇒ C1 of V is a proof (in
c.i. parts of a proof →, ∀ and →c, ∀c are identified). For A c.r:

I IHa(V) for the extension ∆1,Σ ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 →̆ D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→̆D3 extends Π1,∆2 ⇒ C2→̆D1.

I IHa(V) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Decorating axioms and theorems

I The “uninstantiated” formula of the axiom or theorem may
contain the same predicate variable Q many times. The
decoration algorithm needs to pick the “least upper bound”
(w.r.t. extension) of the formula substituted for Q.

I The data base of theorems is checked whether there is one
that fits as well, has its assumptions in the present context,
and is minimal (w.r.t. extension) among all those. This
alternative then is preferred.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Example: Maximal Scoring Segment (MSS)
I Let X be linearly ordered by ≤. Given seg : N → N → X .

Want: maximal segment

∀c
n∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)).

I Example: Regions with high G ,C content in DNA.

X := {G ,C ,A,T},
g : N → X (gene),

f : N → Z, f (i) :=

{
1 if g(i) ∈ {G ,C},
−1 if g(i) ∈ {A,T},

seg(i , k) = f (i) + · · ·+ f (k).

I Special case: maximal end segment

∀c
n∃j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n + 1:
∀c

n∃j≤n+1∀j ′≤n+1(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀c
n∀c

m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n + 1) ≤ seg(j , n + 1)).

I Use ESn : ∃j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)) and the additional
assumption of monotonicity

∀i ,j ,n(seg(i , n) ≤ seg(j , n) → seg(i , n + 1) ≤ seg(j , n + 1)).

Proceed by cases on seg(j , n + 1) ≤ seg(n + 1, n + 1).
If ≤, take n + 1, else the previous j .

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀c
n(∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) ≤ seg(i , k)) ∧
∃j≤n∀j ′≤n(seg(j ′, n) ≤ seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If ≤, take the new i , k to be j , n + 1. Else take the old i , k.

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Example: MSS (ctd.)

Could the better proof be found automatically? Have L1 and L2:

∀c
n∀c

m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) ≤ seg(j , n+1)),

Mon→ ∀c
n(ESn →c ∀m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) ≤ seg(j , n+1))).

I The decoration algorithm arrives at L1 with

∀m≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) ≤ seg(j , n+1)).

I L2 fits as well, its assumptions Mon and ESn are in the
context, and it is the less extended (∀m≤n+1 rather than
∀c

m≤n+1), hence is preferred.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Induction vs. cases

I Recall the induction axiom

∀c
n(Q0 →c ∀c

n(Qn →c Q(Sn)) →c Qn).

I The cases axiom can only non-computationally use the step
hypothesis (but it is available for c.i. parts of the proof)

∀c
n(Q0 →c ∀c

n(Qn → Q(Sn)) →c Qn).

I Extracts:

Rτ
N : N → τ → (N → τ → τ) → τ,

Cτ
N : N → τ → (N → τ) → τ.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Eager vs. lazy evaluation

I When normalizing terms, one may replace recursion operators
by cases operators, where possible.

I Transfer this to the proof level: decoration replaces induction
by cases axioms, where possible.

I Extraction at cases axioms returns “if-terms” (evaluated
lazily). The soundness theorem continues to hold.

I Why transfer program optimization to the proof level?
Correctness of proofs is machine checkable.

Code Carrying Proofs

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Passing continuations

Double induction

∀c
n(Qn →c Q(Sn) →c Q(S(Sn))) →c ∀c

n(Q0 →c Q1 →c Qn)

is proved in continuation passing style, i.e., not directly, but using
as an intermediate assertion (proved by induction)

∀c
n,m((Qn →c Q(Sn) →c Q(n + m)) →c Q0 →c Q1 →c Q(n + m))

After decoration, the formula proved by induction becomes

∀c
n∀m((Qn →c Q(Sn) →c Q(n + m)) →c Q0 →c Q1 →c Q(n + m)).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Example: Fibonacci numbers

Goal: continuation based tail recursive definition of the Fibonacci
function, from a proof of its totality.

I Let G be the graph of the Fibonacci function:

G (0, 0), G (1, 1),

∀n,v ,w (G (n, v) → G (Sn,w) → G (S(Sn), v + w)).

I From these assumptions one can derive

∀c
n∃vG (n, v),

using double induction (proved in continuation passing style).

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Result of demo

I Extracted term

[n0]
(Rec nat=>nat=>(nat=>nat=>nat)=>nat=>nat=>nat)
n0([n1,k2]k2)
([n1,p2,n3,k4]p2(Succ n3)([n7,n8]k4 n8(n7+n8)))

applied to 0, ([n1,n2]n1), 0 and 1.

I Unclean aspect of this term: recursion operator has value type
nat=>(nat=>nat=>nat)=>nat=>nat=>nat rather than
(nat=>nat=>nat)=>nat=>nat=>nat, which would
correspond to an iteration.

I We repair this by decoration.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

Result of demo (continued)

I Extracted term, after decoration

[n0]
(Rec nat=>(nat=>nat=>nat)=>nat=>nat=>nat)
n0([k1]k1)
([n1,p2,k3]p2([n6,n7]k3 n7(n6+n7)))

applied to ([n1,n2]n1), 0 and 1.

I This is iteration in continuation passing style.

Helmut Schwichtenberg Decorating proofs

Logic
Decoration algorithm

Example: Maximal Scoring Segment (MSS)
Example: induction vs. cases
Example: passing continuations

References

I U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).

I D. Ratiu and H.S., Decorating proofs. To appear, Mints
volume (S. Feferman and W. Sieg, eds.), 2009.

Helmut Schwichtenberg Decorating proofs

	Logic
	Natural deduction with non-computational connectives
	Computational content of proofs
	Realizability

	Decoration algorithm
	Example: Maximal Scoring Segment (MSS)
	Example: induction vs. cases
	Example: passing continuations

