Linear two-sorted arithmetic

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

Kyoto University, Japan, 8. May 2009

Helmut Schwichtenberg Linear two-sorted arithmetic

Feasible computation with higher types

Godel's T (1958) “Uber eine bisher noch nicht beniitzte
Erweiterung des finiten Standpunkts”: finitely typed A-terms with
structural recursion.

LT(;) (Bellantoni, Niggl, S. 2000, 2002): restriction such that the
definable functions are exactly the polynomial time computable
ones.

Here:
Heyting Arithmetic ~ LA(;

)
Godel's T ~ LT(;)

Helmut Schwichtenberg Linear two-sorted arithmetic

Related work

» Hofmann (1998): similar results with a very different proof
technique. Ramification concepts have been considered earlier
e.g. by Simmons (1988), Bellantoni & Cook (1992), Leivant
& Marion (1998, 2001), and Pfenning (2001).

> The “tiered” typed A-calculi of Leivant & Marion (1993)
depend heavily on different representations of data (as words
and as Church-like abstraction terms), which is not necessary
in the LT(;)-approach.

» Algebraic context semantics (Dal Lago 2006).

> Arai & Moser (2005), Beckmann & Weiermann (1996):
Analysis (importance) of reduction strategies for R.

> Baillot & Terui (2004): DLAL. Similar results; they notice
that one can drop ! and have — and — instead.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Extending “Bellantoni/Cook” to higher types

> input (p— o) nx,y,... (BC: normal)
Recurse on.
Use many times

» output (p— o) a,p, X, Y. (BC: safe)
Cannot recurse on.
Base type: use many times.
Higher type: use at most once.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Typing of recursion

» Recursion with value type 7 has type
Ry:N—7—(N—7—7)—7 with 7 safe.

» A type is safe if it does not contain the input arrow —.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Terms

> built from (typed) input/output variables and constants by
introduction and elimination for < and —:

xP | xP| CP (constant) |
(Azer?)P77 | (rP—7sP)7 (s input term: FV(s) input) |
(Axer?)P77 | (rP79s”)? (higher type output vars in r, s distinct),

» The restriction on output variables in r°~%s ensures that
every higher type output variable can occur at most once.

» A function f is definable in LT(;) if there is a closed term
tr: N — ...N — N (—€ {<,—}) denoting this function.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Numerals

Let W :=L(B), and
1 :=nilg, So = A (ff 2 vWY), Spo= A (1t vW).

Particular lists are Sj,(...(S;,1)...), called binary numerals (or
words), denoted by v, w....

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Polynomials
» &: W — W — W concatenates |v| bits onto w:
1®&w= 5w, (Siv)®w = So(v & w).
The representing term is
VO w = Rwﬂva())\fmp,W(So(pwﬂwW))W.
> ©: W — W — W has output length |v| - |w|:
vol=yv, vo (Siw)=vae(vow).
The representing term is

VO w:=RwwvA__,(V&p).

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

A non-example: exponentiation

» Notice that &: W — W — W, and the value type for the
recursion was W — W, which is safe.

» If we try to go on and define exponentiation from
multiplication just as ® was defined from @, we find that we
cannot go ahead, because of the different typing
O:W—W—W.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Two recursions

Consider

D(1) := So(1), E(1) =1,
D(Si(w)) := So(S0(D(w))), E(Si(w)) := D(E(w)).

The corresponding terms are
D := Az (Rww(So1)A__p(So(S0p))), E = Aa(RwwlA__p(Dp)).

Here D is legal, but E is not: the application Dp is not allowed.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Recursion with parameter substitution

Consider

E(1,v) = So(v), or E(1) := So,
E(Si(w),v) := E(w, E(w,Vv)), E(Si(w)) := E(w) o E(w).

The corresponding term
Aa(Rw—w#SoA__pu (P (pv)))

does not satisfy the linearity condition: the higher type variable p
occurs twice, and the typing of R requires p to be an output
variable.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Linear two-sorted higher type terms

Higher argument types
» Consider iteration /(n,f) = "™
1(0,f,w) :=w, 1(0,f) :=id,
I(n+1,F,w) = I(n,f,f(w)), © I(n+1,6):=I(nf)of.
It is definable by a term with f a parameter of type W — W:
It == An(Rw_wn(Aww)A_pw(pV W (fw))).

» f must be an input variable, because the step argument of a
recursion is by definition an input argument. Thus Aflf may
only be applied to input terms of type W — W.

» We cannot define the exponential function by

)\,,(RW_,W I‘IS)\ﬂp(/p2)).

The step type requires p to be an output variable, but /, is
only correctly formed if p is an input variable.

Helmut Schwichtenberg Linear two-sorted arithmetic

Higher type input and output variables

Linear two-sorted higher type terms Examples

Polynomial time

Normalization

Let t be a closed LT(;)-term of type W — ... W — W
(—€ {<—,—1}). Then t denotes a polytime function.

» Let Z be new variables. Compute the normal form of tZ
(needs constant time w.r.t.).

» nf(tZ) is “simple” (i.e., no free or bound higher type input
variables).

» Reduce to an R-free simple term rf(nf(tZ); Z; i) in time
P:(|7]), w.r.t. to a dag model of computation.

» Since the running time bounds the size of the produced term,
[rf(nf(t2); Z; A)| < Pe(|])-

» By Sharing Normalization one computes
nf(ti) = nf(rf(nf(t2); Z; 7)) in time O(P:(|7])?).

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

Linear two-sorted arithmetic LA(;)

Using the Curry-Howard correspondence, we transfer the term
system LT(;) to a logical system LA(;) of arithmetic, with

> two arrow types, p — o (input) and p — o (output),

> two sorts of variables, input ones x and output ones x, and

» two implications, A < B (input) and A — B (output).
Restrictions:

» Proofs of the premise of A < B are only allowed to use input
assumptions or input variables.

» Proofs of the premise of A — B can only have at most one
use of the hypothesis, in case its type is not a base type.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms

Linear two-sorted arithmetic

Example: Insertion sort

Double use of assumptions

» Consider
E(1,y) = So(y), or E(1) :== S,
E(Si(x),y) == E(x, E(xy), " E(Si(x)) == E(x) o E(x).

Then E(x) = Sézuxuil), i.e., E grows exponentially.

» Corresponding existence proof. Show by induction on x
ey (vl = 26171 4y).

» Double use of the (“functional”) induction hypothesis is
responsible for exponential growth. The linearity restriction on
output implications will exclude such proofs.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

Substitution in function parameters

» Consider the iteration functional /(x, f) = fUXI=1); it is
considered feasible. However, substituting doubling D with
IDG)] = 21| vields I(x, D) = DUxI-1).

» The corresponding proofs of

(7312l = 2ly]) = ¥, 3, (vl = 2X" + yl)), (1)
Vy3:(l2] = 2[y) ()

are unproblematic, but we need to forbid a cut here.

> Solution: ramification concept. (2) is proved by induction on
y, hence needs: Vy3,(|z| = 2|y|). Cut excluded by
ramification condition: the “kernel” of (1) — to be proved by
induction on x — is safe and hence does not contain such
universal subformulas proved by induction.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

[terated induction

» It might seem that our restrictions are so tight that they rule
out any form of nested induction.

» However, this is not true. One can define, e.g., (a form of)
multiplication on top of addition: First one proves

Vx¥y3:(l2] = X1 + 1)

by induction on X, and then

Vy3:(lz] = Ix1 - 171)

by induction on y with a parameter x.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms

Linear two-sorted arithmetic

Example: Insertion sort

Linear two-sorted arithmetic LA(;)

» LA(;)-formulas are
I(FY|A— B|A— B|VzA| VA (7 terms from T).

» Define falsity F by Eq(ff, %) and -A by A — F.
» Define 7(A) by

7(A— B) := (7(A) — 7(B)), 7(VzeA) :=(p — 1(A)),
7(A— B) == (7(A) = 7(B)), 7(VxeA):=(p— 7(A)).

» Ais safe if 7(A) is safe, i.e., —-free.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

Linear two-sorted arithmetic LA(;) (ctd.)

» The induction axiom for N is
Ind, a: Va(A(0) — V.(A(a) — A(Sa)) — A(nV))

with n an input and a an output variable, and A safe.

» It has the type of the recursion operator which will realize it:

N—7—(N—7—7)—7 where 7 =7(A) is safe.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

Ordinary proof terms

are built from axioms, assumption and object terms by the usual
rules for both implications (< and —) and both universal
quantifiers (over input and output variables):

c? (axiom) |

u”,u” (input and output assumption variables) |

AzaMB)

AMB)A—>B ’ (MA—>BNA)B ‘

p MA)V;A ’ (MV;pA(F()rp)A(r) ‘
)

A—B | (MA<—>BNA)B |

with r a term in T, not necessarily in LT(;).

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

LA(;)-proof terms M and CV (M)

Linear two-sorted arithmetic

are defined simultaneously:

> If 7(A) = &, then every ordinary proof term MA is an
LA(;)-proof term; CV(M) := 0.
» (MA—BNA)E if all variables in CV(N) are input.

> (MA—BNA)B if the higher type output variables in CV(M)
and CV(N) are disjoint.

> (M=AR A if £ is an input LT(;)-term.
> If (M"AX)r) if r is an LT(;)-term, and the higher type output
variables in CV(M) are not free in r.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

LA(;) and its provably recursive functions

» A k-ary numerical function f is provably recursive in LA(;) if
there is a Xi-formula G¢(ny,. .., nk, a) denoting the graph of
f, and a derivation M¢ in LA(;) of

vnl,...,nkHaGf(nlv A nk7 a)'

(n; input and a output variables of type W).

» The functions provably recursive in LA(;) are exactly the
definable functions of LT(;) of type WX < W (i.e., the ones
computable in polynomial time).

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

Example: Insertion sort in LA(;)

» Goal: the insertion sort algorithm is the computational
content of an appropriate proof.

» Let I insert a into a list /, in the first place where it finds an
element bigger:

azb:l ifa<hb,

I(a,nil) ;= a:: nil, I(a,b:: 1) := {b 1(a,]) otherwise

» Using I, define a function S sorting a list /:
S(nil) := nil, S(a: 1) :=1(a, S(1)).

» Represent I, S by inductive definitions of their graphs.

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms

Linear two-sorted arithmetic

Example: Insertion sort

Example: Insertion sort in LA(;) (ctd.)

Want to derive 3,5(/,/") in LA(;). However, we cannot do this.
All we can achieve is

Ih(/) < n— 35(/,I') for any input parameter n.

In more detail, prove
> Vat,n¥i<nIr1(a; tlmingi) (), 1), by induction on n.
> Vinm(m < n— 3pS(thninmm(y) (1), I')), by induction on m.
» Specializing this to /, n, n we obtain 1h(/) < n — 3, 5(/,1').

Helmut Schwichtenberg Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic

References

» S. Bellantoni, K.-H. Niggl and H.S., Higher type recursion,
ramification and polynomial time. APAL 104 (2000) 17-30.

» H.S. and S. Bellantoni, Feasible computation with higher
types. In: Proc. MOD 2002 (Kluwer) 399-415.

» H.S., An arithmetic for polynomial-time computation. TCS
357 (2006) 202-214.

Helmut Schwichtenberg Linear two-sorted arithmetic

	Linear two-sorted higher type terms
	Higher type input and output variables
	Examples
	Polynomial time

	Linear two-sorted arithmetic
	Motivation
	Proof terms
	Example: Insertion sort

