
Linear two-sorted higher type terms
Linear two-sorted arithmetic

Linear two-sorted arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Kyoto University, Japan, 8. May 2009

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Feasible computation with higher types

Gödel’s T (1958) “Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunkts”: finitely typed λ-terms with
structural recursion.

LT(;) (Bellantoni, Niggl, S. 2000, 2002): restriction such that the
definable functions are exactly the polynomial time computable
ones.

Here:
Heyting Arithmetic

Gödel’s T
=

LA(;)

LT(;)

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Related work

I Hofmann (1998): similar results with a very different proof
technique. Ramification concepts have been considered earlier
e.g. by Simmons (1988), Bellantoni & Cook (1992), Leivant
& Marion (1998, 2001), and Pfenning (2001).

I The “tiered” typed λ-calculi of Leivant & Marion (1993)
depend heavily on different representations of data (as words
and as Church-like abstraction terms), which is not necessary
in the LT(;)-approach.

I Algebraic context semantics (Dal Lago 2006).

I Arai & Moser (2005), Beckmann & Weiermann (1996):
Analysis (importance) of reduction strategies for R.

I Baillot & Terui (2004): DLAL. Similar results; they notice
that one can drop ! and have ↪→ and → instead.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Extending “Bellantoni/Cook” to higher types

I input (ρ ↪→ σ) n, x̄ , ȳ , . . . (BC: normal)
Recurse on.
Use many times

I output (ρ → σ) a, p, x , y , . . . (BC: safe)
Cannot recurse on.
Base type: use many times.
Higher type: use at most once.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Typing of recursion

I Recursion with value type τ has type

Rτ
N : N ↪→ τ → (N → τ → τ) ↪→ τ with τ safe.

I A type is safe if it does not contain the input arrow ↪→.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Terms

I built from (typed) input/output variables and constants by
introduction and elimination for ↪→ and →:

x̄ρ | xρ | C ρ (constant) |
(λx̄ρrσ)ρ↪→σ | (rρ↪→σsρ)σ (s input term: FV(s) input) |
(λxρrσ)ρ→σ | (rρ→σsρ)σ (higher type output vars in r , s distinct),

I The restriction on output variables in rρ→σs ensures that
every higher type output variable can occur at most once.

I A function f is definable in LT(;) if there is a closed term
tf : N � . . .N � N (�∈ {↪→,→}) denoting this function.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Numerals

Let W := L(B), and

1 := nilB, S0 := λv (ff :: vW), S1 := λv (tt :: vW).

Particular lists are Si1(. . . (Sin1) . . .), called binary numerals (or
words), denoted by v ,w

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Polynomials

I ⊕ : W ↪→ W → W concatenates ||v || bits onto w :

1⊕ w = S0w , (Siv)⊕ w = S0(v ⊕ w).

The representing term is

v̄ ⊕ w := RW→Wv̄S0λ , ,p,w (S0(p
W→Ww))w .

I � : W ↪→ W ↪→ W has output length ||v || · ||w ||:

v � 1 = v , v � (Siw) = v ⊕ (v � w).

The representing term is

v̄ � w̄ := RWw̄ v̄λ , ,p(v̄ ⊕ p).

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

A non-example: exponentiation

I Notice that ⊕ : W ↪→ W → W, and the value type for the
recursion was W → W, which is safe.

I If we try to go on and define exponentiation from
multiplication just as � was defined from ⊕, we find that we
cannot go ahead, because of the different typing
� : W ↪→ W ↪→ W.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Two recursions

Consider

D(1) := S0(1),

D(Si (w)) := S0(S0(D(w))),

E (1) := 1,

E (Si (w)) := D(E (w)).

The corresponding terms are

D := λw̄ (RWw̄(S01)λ , ,p(S0(S0p))), E := λw̄ (RWw̄1λ , ,p(Dp)).

Here D is legal, but E is not: the application Dp is not allowed.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Recursion with parameter substitution

Consider

E (1, v) := S0(v),

E (Si (w), v) := E (w ,E (w , v)),
or

E (1) := S0,

E (Si (w)) := E (w) ◦ E (w).

The corresponding term

λw̄ (RW→Ww̄S0λ , ,p,v (pW→W(pv)))

does not satisfy the linearity condition: the higher type variable p
occurs twice, and the typing of R requires p to be an output
variable.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Higher argument types
I Consider iteration I (n, f) = f n:

I (0, f ,w) := w ,

I (n + 1, f ,w) := I (n, f , f (w)),
or

I (0, f) := id,

I (n + 1, f) := I (n, f) ◦ f .

It is definable by a term with f a parameter of type W → W:

If := λn(RW→Wn(λww)λ ,p,w (pW→W(fw))).

I f must be an input variable, because the step argument of a
recursion is by definition an input argument. Thus λf If may
only be applied to input terms of type W → W.

I We cannot define the exponential function by

λn(RW→WnSλ ,p(Ip2)).

The step type requires p to be an output variable, but Ip is
only correctly formed if p is an input variable.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Higher type input and output variables
Examples
Polynomial time

Normalization

Let t be a closed LT(;)-term of type W � . . .W � W
(�∈ {↪→,→}). Then t denotes a polytime function.

I Let ~z be new variables. Compute the normal form of t~z
(needs constant time w.r.t. ~n).

I nf(t~z) is “simple” (i.e., no free or bound higher type input
variables).

I Reduce to an R-free simple term rf(nf(t~z);~z ;~n) in time
Pt(||~n||), w.r.t. to a dag model of computation.

I Since the running time bounds the size of the produced term,
||rf(nf(t~z);~z ;~n)|| ≤ Pt(||~n||).

I By Sharing Normalization one computes
nf(t~n) = nf(rf(nf(t~z);~z ;~n)) in time O(Pt(||~n||)2).

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic LA(;)

Using the Curry-Howard correspondence, we transfer the term
system LT(;) to a logical system LA(;) of arithmetic, with

I two arrow types, ρ ↪→ σ (input) and ρ → σ (output),

I two sorts of variables, input ones x̄ and output ones x , and

I two implications, A ↪→ B (input) and A → B (output).

Restrictions:

I Proofs of the premise of A ↪→ B are only allowed to use input
assumptions or input variables.

I Proofs of the premise of A → B can only have at most one
use of the hypothesis, in case its type is not a base type.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Double use of assumptions

I Consider

E (1, y) := S0(y),

E (Si (x), y) := E (x ,E (x , y)),
or

E (1) := S0,

E (Si (x)) := E (x) ◦ E (x).

Then E (x) = S
(2||x||−1)
0 , i.e., E grows exponentially.

I Corresponding existence proof. Show by induction on x

∀x ,y∃v (||v || = 2||x ||−1 + ||y ||).

I Double use of the (“functional”) induction hypothesis is
responsible for exponential growth. The linearity restriction on
output implications will exclude such proofs.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Substitution in function parameters

I Consider the iteration functional I (x , f) = f (||x ||−1); it is
considered feasible. However, substituting doubling D with
||D(x)|| = 2||x || yields I (x ,D) = D(||x ||−1).

I The corresponding proofs of

∀x(∀y∃z(||z || = 2||y ||) → ∀y∃v (||v || = 2||x ||−1 + ||y ||)), (1)

∀y∃z(||z || = 2||y ||) (2)

are unproblematic, but we need to forbid a cut here.

I Solution: ramification concept. (2) is proved by induction on
y , hence needs: ∀ȳ∃z(||z || = 2||ȳ ||). Cut excluded by
ramification condition: the “kernel” of (1) – to be proved by
induction on x – is safe and hence does not contain such
universal subformulas proved by induction.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Iterated induction

I It might seem that our restrictions are so tight that they rule
out any form of nested induction.

I However, this is not true. One can define, e.g., (a form of)
multiplication on top of addition: First one proves

∀x̄∀y∃z(||z || = ||x̄ ||+ ||y ||)

by induction on x̄ , and then

∀ȳ∃z(||z || = ||x̄ || · ||ȳ ||)

by induction on ȳ with a parameter x̄ .

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic LA(;)

I LA(;)-formulas are

I (~r) | A ↪→ B | A → B | ∀x̄ρA | ∀xρA (~r terms from T).

I Define falsity F by Eq(ff, tt) and ¬A by A → F.

I Define τ(A) by

τ(A ↪→ B) := (τ(A) ↪→ τ(B)), τ(∀x̄ρA) := (ρ ↪→ τ(A)),

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)).

I A is safe if τ(A) is safe, i.e., ↪→-free.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Linear two-sorted arithmetic LA(;) (ctd.)

I The induction axiom for N is

Indn,A : ∀n(A(0) → ∀a(A(a) → A(Sa)) ↪→ A(nN))

with n an input and a an output variable, and A safe.

I It has the type of the recursion operator which will realize it:

N ↪→ τ → (N → τ → τ) ↪→ τ where τ = τ(A) is safe.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Ordinary proof terms

are built from axioms, assumption and object terms by the usual
rules for both implications (↪→ and →) and both universal
quantifiers (over input and output variables):

cA (axiom) |
ūA, uA (input and output assumption variables) |
(λūAMB)A↪→B | (MA↪→BNA)B |
(λuAMB)A→B | (MA→BNA)B |
(λx̄ρMA)∀x̄A | (M∀x̄ρA(x̄)rρ)A(r) |
(λxρMA)∀xA | (M∀xρA(x)rρ)A(r)

with r a term in T, not necessarily in LT(;).

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

LA(;)-proof terms M and CV(M)

are defined simultaneously:

I If τ(A) = ε, then every ordinary proof term MA is an
LA(;)-proof term; CV(M) := ∅.

I (MA↪→BNA)B , if all variables in CV(N) are input.

I (MA→BNA)B , if the higher type output variables in CV(M)
and CV(N) are disjoint.

I (M∀x̄A(x̄)r)A(r) if r is an input LT(;)-term.

I If (M∀xA(x)r) if r is an LT(;)-term, and the higher type output
variables in CV(M) are not free in r .

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

LA(;) and its provably recursive functions

I A k-ary numerical function f is provably recursive in LA(;) if
there is a Σ1-formula Gf (n1, . . . , nk , a) denoting the graph of
f , and a derivation Mf in LA(;) of

∀n1,...,nk
∃aGf (n1, . . . , nk , a).

(ni input and a output variables of type W).

I The functions provably recursive in LA(;) are exactly the
definable functions of LT(;) of type Wk ↪→ W (i.e., the ones
computable in polynomial time).

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Example: Insertion sort in LA(;)

I Goal: the insertion sort algorithm is the computational
content of an appropriate proof.

I Let I insert a into a list l , in the first place where it finds an
element bigger:

I(a,nil) := a :: nil, I(a, b :: l) :=

{
a :: b :: l if a ≤ b,

b :: I(a, l) otherwise

I Using I, define a function S sorting a list l :

S(nil) := nil, S(a :: l) := I(a,S(l)).

I Represent I,S by inductive definitions of their graphs.

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

Example: Insertion sort in LA(;) (ctd.)

Want to derive ∃l ′S(l , l ′) in LA(;). However, we cannot do this.
All we can achieve is

lh(l) ≤ n → ∃l ′S(l , l ′) for any input parameter n.

In more detail, prove

I ∀a,l ,n∀i≤n∃l ′I(a, tlmin(i ,lh(l))(l), l
′), by induction on n.

I ∀l ,n,m(m ≤ n → ∃l ′S(tlmin(m,lh(l))(l), l
′)), by induction on m.

I Specializing this to l , n, n we obtain lh(l) ≤ n → ∃l ′S(l , l ′).

Helmut Schwichtenberg Linear two-sorted arithmetic

Linear two-sorted higher type terms
Linear two-sorted arithmetic

Motivation
Proof terms
Example: Insertion sort

References

I S. Bellantoni, K.-H. Niggl and H.S., Higher type recursion,
ramification and polynomial time. APAL 104 (2000) 17–30.

I H.S. and S. Bellantoni, Feasible computation with higher
types. In: Proc. MOD 2002 (Kluwer) 399–415.

I H.S., An arithmetic for polynomial-time computation. TCS
357 (2006) 202–214.

Helmut Schwichtenberg Linear two-sorted arithmetic

	Linear two-sorted higher type terms
	Higher type input and output variables
	Examples
	Polynomial time

	Linear two-sorted arithmetic
	Motivation
	Proof terms
	Example: Insertion sort

