
Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Computable functionals over non-flat data types

Helmut Schwichtenberg
(j.w.w. Basil Karadais, Simon Huber)

Mathematisches Institut, LMU, München

Kyoto University, Japan, 24. April 2009

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Preview: logic for inductive definitions LID

I Typed language, with the partial continuous functionals as
intended domains (cf. Peano arithmetic and N).

I Terms are those of T+.

I Natural deduction rules for → and ∀ (“minimal logic”).
I All predicates are defined inductively.

I (Leibniz) equality
I Totality
I ∃, ∧, ∨.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Minlog

I Proof assistant for LID.

I Difference from Coq, Isabelle, Agda etc.: underlying theory of
partial continuous functionals.

I Program extraction from (constructive and classical) proofs.

I www.minlog-system.de

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

www.minlog-system.de

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Denotational semantics via continuous functionals

I Want: “meaning” of (typed) expressions or terms (in a
functional programming language).

I What are the semantical objects /functionals?

I Numbers 0, 1, 2,

I Functions, like n 7→ 2n.

I Functionals, like f 7→ f ◦ f or f 7→ f 0.

Computations are to be finite. Hence: function arguments can only
be called finitely many times (principle of finite support, PFS).
Therefore computable functionals are continuous (Brouwer).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Denotational semantics via continuous functionals (ctd.)

I What are the domains of computable functionals?

I The full set theoretic hierarchy of functionals of finite types is
problematic from a constructive point of view.

I Kreisel (1959) (“formal neighborhoods”) and Kleene (1959)
(“countable functionals”) gave a more appropriate treatment.

I This was taken up and developed in a mathematically
satisfactory way by Dana Scott and Yuri Ershov (70s), using
partial functionals.

I Today usually in the framework of (classical) domain theory
(initiated by Scott).

Here: concrete representations of domains, via information systems
(Scott 1982).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

(Coherent) information systems

A = (A,`,`) such that

I A is a non-empty (countable) set (the “tokens”).

I ` is a reflexive and symmetric relation on A (“consistency”).

I ` is a relation between Con and A (“entailment”), where

Con := {U | U ⊆fin A ∧ ∀a,b∈U(a ` b) }

such that

a ∈ U → U ` a,

∀b∈V (U ` b) ∧ V ` a → U ` a,

a ∈ U ∧ U ` b → a ` b.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Information systems (ctd.)

U,V ,W denote finite sets. U ` V means ∀a∈V (U ` a).

U ` V → U ∪ V ∈ Con,
U1 ⊇ U ` V ⊇ V1 → U1 ` V1,

U ` V ` W → U ` W .

The ideals or objects of an information system A = (A,`,`) are
subsets x of A which satisfy

U ⊆ x → U ∈ Con (x in consistent),

x ⊇ U ` a → a ∈ x (x is deductively closed).

We write |A| for the set of ideals of A.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Examples

I Any (countable) set A can be turned into a flat information
system. Tokens: all a ∈ A.

a ` b :↔ a = b and U ` a :↔ a ∈ U,

Then Con = {∅} ∪ { {a} | a ∈ A }. Objects: elements of Con.

I Approximations of functions from A to B. Tokens: pairs (a, b)
with a ∈ A and b ∈ B.

(a1, b1) ` (a2, b2) :↔ (a1 = a2 → b1 = b2),

U ` (a, b) :↔ (a, b) ∈ U.

Objects: (the graphs of) all partial functions from A to B.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Function spaces

Let A = (A,`A,`A) and B = (B,`B ,`B) be information systems.
Then A → B = (C ,`,`) defined by

C := ConA × B,

(U, b) ` (V , c) :↔ (U `A V → b `B c),

{ (Ui , ai) | i ∈ I } ` (V , b) :↔ { ai | V `A Ui } `B b.

is an information system again.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Approximable maps (Scott 1982)

Given A and B, call a relation r ⊆ ConA ×B an approximable map
from A to B (written r : A → B) iff

I if r(U, b1) and r(U, b2), then b1 `B b2, and

I if r(U, b), V `A U and b `B c , then r(V , c).

The ideals of A → B are the approximable maps from A to B.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Continuity
Information systems
Function spaces

Scott topology

The set |A| of ideals for A carries a natural topology. Basis: cones
Ũ := { z | z ⊇ U } generated by the formal neighborhoods U. The
continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are in a
bijective correspondence:

|r |(x) := { b ∈ B | ∃U⊆x((U, b) ∈ r) },
(U, b) ∈ f̂ :↔ b ∈ f (U) with U := { a ∈ A | U `A a }.

These assignments are inverse to each other:

f = |f̂ | and r = |̂r |.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Examples of data types

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

E := µξ(ξ, ξ → ξ → ξ) (expressions, i.e., binary trees),

O := µξ(ξ, ξ → ξ, (N → ξ) → ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ) → ξ) (trees).

Data types with type parameters

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Information system Aι for a data type ι

I An extended token is a token or the symbol ∗ (notation a∗).

I a∗ ` b∗ :↔ (a = ∗) ∨ (b = ∗) ∨ (a = b).

I U ∪ {∗} ` a :↔ U ` a, and U ` ∗ is true.

Aι = (A,`,`) is defined by A := {C~a∗ | C constructor of ι },

~a∗ ` ~b∗

C~a∗ ` C ~b∗
,

{a∗11, . . . , a∗1n} ` b∗1 . . . {a∗n1, . . . , a
∗
nn} ` b∗n

{C~a∗1, . . . ,C~a∗n} ` C ~b∗
.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Another example: E with constructors 0 and C . Then

C0∗ ` C∗0, {C0∗,C∗0} ` C00.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Constructors as continuous functions

I Every constructor C generates an ideal in the function space:

rC := { (~U,C~a∗) | ~U ` ~a∗ }.

I By definition of the continuous function associated to an ideal
in a function space, the continuous map |rC| satisfies

|rC|(~x) = {C~a∗ | ∃~U⊆~x
(~U ` ~a∗) }.

I Every non-empty ideal in Aι has the from |rC|(~x) with a
constructor C and ideals ~x .

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Constructors are injective and have disjoint ranges

I Let C be a constructor of ι. Then

|rC|(~x) = |rC|(~y) → ~x = ~y .

I If C1,C2 are distinct constructors of ι then

|rC1 |(~x) ∩ |rC2 |(~y) = ∅.

These properties are mandatory for a smooth equational reasoning
(cf. the Peano axioms Sn 6= 0 and Sn = Sm → n = m). — Notice
that they would not hold for flat Aι’s:

|rC|(⊥, y) = ⊥ = |rC|(x ,⊥),

|rC1 |(⊥) = ⊥ = |rC2 |(⊥)

(with ⊥ := ∅), since for flat Aι’s constructors need to be strict.
Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Examples of data types
The information system Aι
Constructors as continuous functions
Partial continuous functionals

Partial continuous functionals

For types ρ over base types ι, define the information system Cρ

inductively by

Cι := Aι defined as above, Cρ→σ := Cρ → Cσ.

The ideals in Cρ are called partial continuous functionals of type ρ
(Dana Scott, Yuri Ershov).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

T+, computation rules
Denotational semantics

Computable functionals

I Recall that computable functionals need to be continuous
(PFS), and are viewed as limits of finite approximations.

I Hence there is an easy way to define computability: F is
computable iff the set of its finite approximations is
recursively enumerable.

I However, in practice this would be inconvenient. We want to
present computable functionals by expressions (or terms) of a
functional programming language.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

T+, computation rules
Denotational semantics

The typed λ-calculus T+

Common extension of Gödel’s T and Plotkin’s PCF.

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant Dρ comes with a system of computation
rules, consisting of equations

D~Pi (~yi) = Mi (~yi)

with constructor patterns ~Pi .

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

T+, computation rules
Denotational semantics

Examples of constants D with their computation rules

I

{
D(0) := 0,

D(S(n)) := S(S(n)).

I Addition, multiplication.

I Gödel’s higher type primitive recursion operators R:{
R(0, r , s) = r ,

R(Sn, r , s) = s(n,R(n, r , s)).

I The fixed point operators Y :

Yw = w(Yw).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

T+, computation rules
Denotational semantics

Inductive definition of (~U , a) ∈ [[λ~xM]]

Ui ` a

(~U, a) ∈ [[λ~xxi]]
(V),

(~U,V) ⊆ [[λ~xN]] (~U,V , a) ∈ [[λ~xM]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D

~V ` ~a
(~U, ~V ,C~a) ∈ [[λ~xC]]

(C),
(~U, ~V , a) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , a) ∈ [[λ~xD]]
(D)

with one such rule (D) for every computation rule D~P(~y) = M.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

T+, computation rules
Denotational semantics

Properties of [[M]]

I [[M]] is an ideal, i.e., consistent and deductively closed.

I [[MN]] = [[M]][[N]].

I [[M]] is preserved under reduction, generated from

(λxM(x))N 7→ M(N) β-conversion,

λx(Mx) 7→ M (x /∈ FV(M)) η-conversion,

D~P(~N) 7→ M(~N) for D~P(~y) = M(~y) a computation rule.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Questions

I Can all computable functionals be represented?

I Suppose [[M]] is a “numeral”. Does M reduce to it?
(Operational semantics “adequate” for the denotational one).

I How can totality be defined?

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Plotkin’s definability theorem

Plotkin (1977) proved that a continuous functional is computable
iff it can be defined by a PCF term involving additional constants
for “parallel” computable functionals:

I the parallel conditional pcond, and

I a continuous approximation ∃ to the existential quantifier.

His proof makes essential use of the fact that his base type N is
flat. Goal: extend the proof to the non-flat setting (j.w.w. Basil
Karadais).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Properties of pcond, ∃ and valmax

[[pcond(tt, x , y)]]u,v
x ,y = u, [[pcond(ff, x , y)]]u,v

x ,y = v ,

[[pcond(p, x , x)]]z,u
p,x = u,

[[∃f]]wf = {ff} if (∅, ff) ∈ w ,

[[∃f]]wf = {tt} if ({S∗}, tt) ∈ w or ({0}, tt) ∈ u,

[[valmax(x , y)]]u,v
x ,y = u if Sn0 ∈ v and an ∈ u,

[[valmax(x , y)]]u,v
x ,y = {an} if Sn0 ∈ v and an /∈ u.

Notice that an n with Sn0 ∈ v is uniquely determined if it exists.
(an) is a fixed enumeration of the tokens in AN.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Point-free definition of pcond, ∃ and valmax
For readability the leading ~U and λ~x are omitted. pcond:

U ` tt V ` a

(U,V ,W , a) ∈ [[pcond]]
(P1)

U ` ff W ` a

(U,V ,W , a) ∈ [[pcond]]
(P2)

V ` a W ` a

(U,V ,W , a) ∈ [[pcond]]
(P3).

∃:

U ` (∅, ff)
(U, ff) ∈ [[∃]]

(E1)
U ` ({S∗}, tt)
(U, tt) ∈ [[∃]]

(E2)
U ` ({0}, tt)
(U, tt) ∈ [[∃]]

(E3).

valmax:

U ` an U ` a

(U, {Sn0}, a) ∈ [[valmax]]
(M1)

{an} ` a

(U, {Sn0}, a) ∈ [[valmax]]
(M2).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Definability theorem

A partial continuous functional Φ of type ρ1 → · · · → ρp → N is
said to be recursive in pcond and ∃ if it can be defined explicitly
by a term involving the constructors 0,S and the constants
predecessor, the fixed point operators Yρ, pcond, ∃ and valmax.

Theorem
A partial continuous functional is computable if and only if it is
recursive in pcond and ∃.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Proof of the definability theorem

I Since the constants are defined by rules: the ideals they
denote are recursively enumerable. Hence every functional
recursive in pcond and ∃ is computable.

I Conversely, let Φ be computable of type ρ1 → · · · → ρp → N.
Then Φ is a primitive recursively enumerable set of tokens

Φ = { (U1
f1n, . . . ,U

p
fpn
, agn) | n ∈ N }

where for each type ρj , (U j
i)i∈N is an enumeration of Conρj ,

and f1, . . . , fp and g are fixed primitive recursive functions.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Proof of the definability theorem (ctd.)
Let ~ϕ = ϕ1, . . . , ϕp be arbitrary continuous functionals of types
ρ1, . . . , ρp respectively. One shows that Φ is definable by

Φ~ϕ = Yw~ϕ0

with w~ϕ of type (N → N) → N → N given by

w~ϕψn := pcond(inconsρ1(ϕ1, f1n) ∨ · · · ∨ inconsρp(ϕp, fpn),

ψ(n + 1), valmax(ψ(n + 1), gn)).

inconsρi of type ρi → N → B is continuous with

incons(ϕ, n) =


tt if ϕ ∪ Un is inconsistent

ff if ϕ ⊇ Un

⊥ otherwise.

One can prove that there are such functionals recursive in pcond
and ∃; their definition involves ∃.

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types

	Partial continuous functionals
	Continuity
	Information systems
	Function spaces

	Non-flat data types
	Examples of data types
	The information system bold0mu mumu AAAAAA
	Constructors as continuous functions
	Partial continuous functionals

	Computable functionals
	T+, computation rules
	Denotational semantics

	Definability
	Plotkin's definability theorem
	pcond, and valmax
	Definability theorem

