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Preview: logic for inductive definitions LID

I Typed language, with the partial continuous functionals as
intended domains (cf. Peano arithmetic and N).

I Terms are those of T+.

I Natural deduction rules for → and ∀ (“minimal logic”).
I All predicates are defined inductively.

I (Leibniz) equality
I Totality
I ∃, ∧, ∨.
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Minlog

I Proof assistant for LID.

I Difference from Coq, Isabelle, Agda etc.: underlying theory of
partial continuous functionals.

I Program extraction from (constructive and classical) proofs.

I www.minlog-system.de
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Denotational semantics via continuous functionals

I Want: “meaning” of (typed) expressions or terms (in a
functional programming language).

I What are the semantical objects /functionals?

I Numbers 0, 1, 2, . . . .

I Functions, like n 7→ 2n.

I Functionals, like f 7→ f ◦ f or f 7→ f 0.

Computations are to be finite. Hence: function arguments can only
be called finitely many times (principle of finite support, PFS).
Therefore computable functionals are continuous (Brouwer).
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Denotational semantics via continuous functionals (ctd.)

I What are the domains of computable functionals?

I The full set theoretic hierarchy of functionals of finite types is
problematic from a constructive point of view.

I Kreisel (1959) (“formal neighborhoods”) and Kleene (1959)
(“countable functionals”) gave a more appropriate treatment.

I This was taken up and developed in a mathematically
satisfactory way by Dana Scott and Yuri Ershov (70s), using
partial functionals.

I Today usually in the framework of (classical) domain theory
(initiated by Scott).

Here: concrete representations of domains, via information systems
(Scott 1982).
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(Coherent) information systems

A = (A,`,`) such that

I A is a non-empty (countable) set (the “tokens”).

I ` is a reflexive and symmetric relation on A (“consistency”).

I ` is a relation between Con and A (“entailment”), where

Con := {U | U ⊆fin A ∧ ∀a,b∈U(a ` b) }

such that

a ∈ U → U ` a,

∀b∈V (U ` b) ∧ V ` a → U ` a,

a ∈ U ∧ U ` b → a ` b.
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Information systems (ctd.)

U,V ,W denote finite sets. U ` V means ∀a∈V (U ` a).

U ` V → U ∪ V ∈ Con,
U1 ⊇ U ` V ⊇ V1 → U1 ` V1,

U ` V ` W → U ` W .

The ideals or objects of an information system A = (A,`,`) are
subsets x of A which satisfy

U ⊆ x → U ∈ Con (x in consistent),

x ⊇ U ` a → a ∈ x (x is deductively closed).

We write |A| for the set of ideals of A.
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Examples

I Any (countable) set A can be turned into a flat information
system. Tokens: all a ∈ A.

a ` b :↔ a = b and U ` a :↔ a ∈ U,

Then Con = {∅} ∪ { {a} | a ∈ A }. Objects: elements of Con.

I Approximations of functions from A to B. Tokens: pairs (a, b)
with a ∈ A and b ∈ B.

(a1, b1) ` (a2, b2) :↔ (a1 = a2 → b1 = b2),

U ` (a, b) :↔ (a, b) ∈ U.

Objects: (the graphs of) all partial functions from A to B.
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Function spaces

Let A = (A,`A,`A) and B = (B,`B ,`B) be information systems.
Then A → B = (C ,`,`) defined by

C := ConA × B,

(U, b) ` (V , c) :↔ (U `A V → b `B c),

{ (Ui , ai ) | i ∈ I } ` (V , b) :↔ { ai | V `A Ui } `B b.

is an information system again.
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Approximable maps (Scott 1982)

Given A and B, call a relation r ⊆ ConA ×B an approximable map
from A to B (written r : A → B) iff

I if r(U, b1) and r(U, b2), then b1 `B b2, and

I if r(U, b), V `A U and b `B c , then r(V , c).

The ideals of A → B are the approximable maps from A to B.
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Scott topology

The set |A| of ideals for A carries a natural topology. Basis: cones
Ũ := { z | z ⊇ U } generated by the formal neighborhoods U. The
continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are in a
bijective correspondence:

|r |(x) := { b ∈ B | ∃U⊆x((U, b) ∈ r) },
(U, b) ∈ f̂ :↔ b ∈ f (U) with U := { a ∈ A | U `A a }.

These assignments are inverse to each other:

f = |f̂ | and r = |̂r |.
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Examples of data types

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

E := µξ(ξ, ξ → ξ → ξ) (expressions, i.e., binary trees),

O := µξ(ξ, ξ → ξ, (N → ξ) → ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ) → ξ) (trees).

Data types with type parameters

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).
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Information system Aι for a data type ι

I An extended token is a token or the symbol ∗ (notation a∗).

I a∗ ` b∗ :↔ (a = ∗) ∨ (b = ∗) ∨ (a = b).

I U ∪ {∗} ` a :↔ U ` a, and U ` ∗ is true.

Aι = (A,`,`) is defined by A := {C~a∗ | C constructor of ι },

~a∗ ` ~b∗

C~a∗ ` C ~b∗
,

{a∗11, . . . , a∗1n} ` b∗1 . . . {a∗n1, . . . , a
∗
nn} ` b∗n

{C~a∗1, . . . ,C~a∗n} ` C ~b∗
.
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Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Another example: E with constructors 0 and C . Then

C0∗ ` C∗0, {C0∗,C∗0} ` C00.
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Constructors as continuous functions

I Every constructor C generates an ideal in the function space:

rC := { (~U,C~a∗) | ~U ` ~a∗ }.

I By definition of the continuous function associated to an ideal
in a function space, the continuous map |rC| satisfies

|rC|(~x ) = {C~a∗ | ∃~U⊆~x
(~U ` ~a∗) }.

I Every non-empty ideal in Aι has the from |rC|(~x ) with a
constructor C and ideals ~x .
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Constructors are injective and have disjoint ranges

I Let C be a constructor of ι. Then

|rC|(~x ) = |rC|(~y ) → ~x = ~y .

I If C1,C2 are distinct constructors of ι then

|rC1 |(~x ) ∩ |rC2 |(~y ) = ∅.

These properties are mandatory for a smooth equational reasoning
(cf. the Peano axioms Sn 6= 0 and Sn = Sm → n = m). — Notice
that they would not hold for flat Aι’s:

|rC|(⊥, y) = ⊥ = |rC|(x ,⊥),

|rC1 |(⊥) = ⊥ = |rC2 |(⊥)

(with ⊥ := ∅), since for flat Aι’s constructors need to be strict.
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Partial continuous functionals

For types ρ over base types ι, define the information system Cρ

inductively by

Cι := Aι defined as above, Cρ→σ := Cρ → Cσ.

The ideals in Cρ are called partial continuous functionals of type ρ
(Dana Scott, Yuri Ershov).
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Computable functionals

I Recall that computable functionals need to be continuous
(PFS), and are viewed as limits of finite approximations.

I Hence there is an easy way to define computability: F is
computable iff the set of its finite approximations is
recursively enumerable.

I However, in practice this would be inconvenient. We want to
present computable functionals by expressions (or terms) of a
functional programming language.
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The typed λ-calculus T+

Common extension of Gödel’s T and Plotkin’s PCF.

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant Dρ comes with a system of computation
rules, consisting of equations

D~Pi (~yi ) = Mi (~yi )

with constructor patterns ~Pi .
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Examples of constants D with their computation rules

I

{
D(0) := 0,

D(S(n)) := S(S(n)).

I Addition, multiplication.

I Gödel’s higher type primitive recursion operators R:{
R(0, r , s) = r ,

R(Sn, r , s) = s(n,R(n, r , s)).

I The fixed point operators Y :

Yw = w(Yw).
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Inductive definition of (~U , a) ∈ [[λ~xM]]

Ui ` a

(~U, a) ∈ [[λ~xxi ]]
(V ),

(~U,V ) ⊆ [[λ~xN]] (~U,V , a) ∈ [[λ~xM]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D

~V ` ~a
(~U, ~V ,C~a) ∈ [[λ~xC]]

(C ),
(~U, ~V , a) ∈ [[λ~x ,~yM]] ~W ` ~P(~V )

(~U, ~W , a) ∈ [[λ~xD]]
(D)

with one such rule (D) for every computation rule D~P(~y ) = M.
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Properties of [[M]]

I [[M]] is an ideal, i.e., consistent and deductively closed.

I [[MN]] = [[M]][[N]].

I [[M]] is preserved under reduction, generated from

(λxM(x))N 7→ M(N) β-conversion,

λx(Mx) 7→ M (x /∈ FV(M)) η-conversion,

D~P(~N) 7→ M(~N) for D~P(~y ) = M(~y ) a computation rule.
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Questions

I Can all computable functionals be represented?

I Suppose [[M]] is a “numeral”. Does M reduce to it?
(Operational semantics “adequate” for the denotational one).

I How can totality be defined?
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Plotkin’s definability theorem

Plotkin (1977) proved that a continuous functional is computable
iff it can be defined by a PCF term involving additional constants
for “parallel” computable functionals:

I the parallel conditional pcond, and

I a continuous approximation ∃ to the existential quantifier.

His proof makes essential use of the fact that his base type N is
flat. Goal: extend the proof to the non-flat setting (j.w.w. Basil
Karadais).
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Properties of pcond, ∃ and valmax

[[pcond(tt, x , y)]]u,v
x ,y = u, [[pcond(ff, x , y)]]u,v

x ,y = v ,

[[pcond(p, x , x)]]z,u
p,x = u,

[[∃f ]]wf = {ff} if (∅, ff) ∈ w ,

[[∃f ]]wf = {tt} if ({S∗}, tt) ∈ w or ({0}, tt) ∈ u,

[[valmax(x , y)]]u,v
x ,y = u if Sn0 ∈ v and an ∈ u,

[[valmax(x , y)]]u,v
x ,y = {an} if Sn0 ∈ v and an /∈ u.

Notice that an n with Sn0 ∈ v is uniquely determined if it exists.
(an) is a fixed enumeration of the tokens in AN.
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Point-free definition of pcond, ∃ and valmax
For readability the leading ~U and λ~x are omitted. pcond:

U ` tt V ` a

(U,V ,W , a) ∈ [[pcond]]
(P1)

U ` ff W ` a

(U,V ,W , a) ∈ [[pcond]]
(P2)

V ` a W ` a

(U,V ,W , a) ∈ [[pcond]]
(P3).

∃:

U ` (∅, ff)
(U, ff) ∈ [[∃]]

(E1)
U ` ({S∗}, tt)
(U, tt) ∈ [[∃]]

(E2)
U ` ({0}, tt)
(U, tt) ∈ [[∃]]

(E3).

valmax:

U ` an U ` a

(U, {Sn0}, a) ∈ [[valmax]]
(M1)

{an} ` a

(U, {Sn0}, a) ∈ [[valmax]]
(M2).

Helmut Schwichtenberg (j.w.w. Basil Karadais, Simon Huber) Computable functionals over non-flat data types



Partial continuous functionals
Non-flat data types

Computable functionals
Definability

Plotkin’s definability theorem
pcond, ∃ and valmax
Definability theorem

Definability theorem

A partial continuous functional Φ of type ρ1 → · · · → ρp → N is
said to be recursive in pcond and ∃ if it can be defined explicitly
by a term involving the constructors 0,S and the constants
predecessor, the fixed point operators Yρ, pcond, ∃ and valmax.

Theorem
A partial continuous functional is computable if and only if it is
recursive in pcond and ∃.
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Proof of the definability theorem

I Since the constants are defined by rules: the ideals they
denote are recursively enumerable. Hence every functional
recursive in pcond and ∃ is computable.

I Conversely, let Φ be computable of type ρ1 → · · · → ρp → N.
Then Φ is a primitive recursively enumerable set of tokens

Φ = { (U1
f1n, . . . ,U

p
fpn
, agn) | n ∈ N }

where for each type ρj , (U j
i )i∈N is an enumeration of Conρj ,

and f1, . . . , fp and g are fixed primitive recursive functions.
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Proof of the definability theorem (ctd.)
Let ~ϕ = ϕ1, . . . , ϕp be arbitrary continuous functionals of types
ρ1, . . . , ρp respectively. One shows that Φ is definable by

Φ~ϕ = Yw~ϕ0

with w~ϕ of type (N → N) → N → N given by

w~ϕψn := pcond(inconsρ1(ϕ1, f1n) ∨ · · · ∨ inconsρp(ϕp, fpn),

ψ(n + 1), valmax(ψ(n + 1), gn)).

inconsρi of type ρi → N → B is continuous with

incons(ϕ, n) =


tt if ϕ ∪ Un is inconsistent

ff if ϕ ⊇ Un

⊥ otherwise.

One can prove that there are such functionals recursive in pcond
and ∃; their definition involves ∃.
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