Computational content of proofs involving
coinduction

Helmut Schwichtenberg
(j-w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, Miinchen

Kyoto University, 19. March 2014

1/29

Proof: 2 aspects
» provides insight (uniformity)
» may have computational content
Mathematics = logic + data + inductive definitions
» Logic: minimal, intro and elim for —, V
» Proof ~ lambda-term (Curry-Howard correspondence)

» Can embed classical and intuitionistic logic

2/29

Computable functionals

Arguments of any finite type, not only numbers and functions.

» Principle of finite support. If H(®) is defined with value n,
then there is a finite approximation ®q of ® such that H(®o)
is defined with value n.

» Monotonicity principle. If H(®) is defined with value n and ¢’
extends ®, then also H(®') is defined with value n.

» Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, ¥9-definable).

3/29

Tokens, consistency and entailment at base types
Types

» Base types ¢: free algebras, given by constructors (e.g. 0, S)
> Function types: p — o.

Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).
» Token aP: o, Cxo, Cox, C(Cxo)o.

» UP:={ay,...,a,} consistent if

» all a; start with the same constructor,

» (proper) tokens at j-th argument positions are consistent
(example: {Cxo, Cox}).

» UP I a (entails) if
» all a; € U and a start with the same constructor,

» (proper) tokens at j-th argument positions of a; entail j-th
argument of a (example: {Cxo, Cox} I Coo).

An ideal x” is a (possibly infinite) set of tokens which is
> consistent and

» closed under entailment.

4/29

Tokens and entailment for N

S(S(S0))
S(S0) S(S(S%))

S0

0 e S

{a} F b iff there is a path from a (up) to b (down).

5/29

Total and cototal ideals of base type

An ideal x* is cototal if every constructor tree P(x) € x has a
“-1-predecessor” P(Cx¥) € x; it is total if it is cototal and the
relation =1 on x is well-founded.

Examples. N:

> Every total ideal is the deductive closure of a token

S(S...(S0)...). The set of all tokens S(S...(S%)...)isa
cototal ideal.

D (derivations):
» Total ideal ~ finite derivation.

» Cototal ideal ~ finite or infinite “locally correct” derivation
[Mints 78].

> Arbitrary ideal ~ incomplete derivation, with “holes”.

6/29

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f#7% (Scott, Ershov).
» Tokens of type p — o are pairs (U, a) with U € Con,.

» {(Ui,aj) | iel} e Cony,y means
Vyci(Ujey Uj € Cony, — {a; | j € J} € Cony).

“Formal neighborhood".

» Wk, s (U,a) means WU +, a, where application WU of
W:{(U,-,a,-) ‘ i € /}tO Uis{a,- | Ul—p U,}
Application of f777 to x” is

f(x):={a% | Jucx(U,a) € f }.

Principles of finite support and monotonicity hold.

7/29

Computable functionals

A partial continuous functional f* is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules
Dﬁ/(}_;l):Ml (i:]-’""n)

with free variables of P;(y;) and M; among ¥;, where P;(;) are
“constructor patterns”.

Terms (a common extension of Godel's T and Plotkin's PCF)

M, N == xP | CP | D? | (Ao M)P7 | (MP7 NP

8/29

Examples

+: N — N — N defined by

n+0=n,
n+Sm = S(n+ m).

Y: (1t — 7) — 7 defined by
Yf = f(YF).
Ry:N—=7—= (N —7—7)— 7 defined by

RNOXF = x,
Rn(Sn)xf = fx(Rynxf).

Reduction (including 3, 1) is non-terminating, but confluent.

9/29

Denotational semantics

How to use computation rules to define a computable functional?
Inductively define (U, a) € [AxM] (FV(M) C {X}).
Case Az, zM with X free in M, but not y.

(Ua VT/7 a) < IIAS(‘,Z’M]]
(U7 V7 VT/v a) € H:AY,y,ZM]]

(K).

Case AyM with X the free variables in M.

Ura . (0.V,3) €Ml (U.V) C [A=N]

——(V), = A).
(U,a) € [[AXX]]() (U,a) € [Ax(MN)] A
For every constructor C and defined constant D:
Ut & V,a) € [A\xM] UF P(V
(. el _UEPY))

(U,Ca*) € [C] (U,a) € [D]

with one rule (D) for every defining equation DP(X) = M.
10 /29

Properties of the denotational semantics

» The value is preserved under standard 3, n-conversion and the
computation rules.

> An adequacy theorem holds: whenever a closed term M* has a

token a € P(V) in its denotation [M], then M head reduces
to a constructor term entailing a.

11/29

A theory of computable functionals (TCF)

A variant of HA“.
Formulas A and predicates P are defined simultaneously

A, B = PF|A— B| VA
Pu=X|{xX|A}|I (I inductively defined).

Vx A not allowed, since this would be impredicative: in the
predicate existence axiom P := {X| A} the formula A could
contain quantifiers with the newly created P in its range.

Vxr A is unproblematic: no such existence axioms.

12 /29

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

» p proves V,» A(x) iff p is a construction such that for all a?,
p(a) proves A(a).
Leaves open:
» What is a “construction”?
» What is a proof of a prime formula?
Proposal:
» Construction: computable functional.
» Proof of a prime formula /7: generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

13 /29

The type 7(A) of a formula A

Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

» r=sisn.c.
» Even(n) is c.r.

Extend the use of p — o to the “nulltype symbol” o:

(p—>0)i=0, (0—=0)=0, (0c—0):=o.

Define the type 7(A) of a formula A by

(IF) = {L/ if 'isc.r.,

o if lisn.c.,
7(A— B) :==1(A) — 7(B),
T(VxeA) := p — 7(A)

with ¢; associated naturally with /.

14 /29

Realizability

Introduce a special nullterm symbol € to be used as a “realizer” for
n.c. formulas. Extend term application to ¢ by

et:=¢, te:=t, cgc:=¢.
Definition (t r A, t realizes A)

Let A be a formula and t either a term of type 7(A) if the latter is
a type, or the nullterm symbol ¢ for n.c. A.

e lE I"ts if I'is c.r. (/" inductively defined),
rls:.=
Is iflisn.c.,

tr(A— B) =Vi(xrA — txrB),
tr Vi A =V (txr A).

15 /29

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A). For MA with A n.c. let et(MA) ;= ¢. Else

et(u™) A (XZ(A) uniquely associated to u?),
(A MBYA) = X net(M),
et((MAZBNYEY) = et(M)et(N),
et((Aee MA)Y=A) = Apet(M),
et(MPAF AN = et(M)r.
Extracted terms for the axioms: let / be c.r.
et(l;") := Cj, et(/7) =R,

where both the constructor C; and the recursion operator R refer
to the algebra ¢; associated with /.

Soundness. Let M be a derivation of A from assumptions u;: C;.
Then we can derive et(M) r A from assumptions x,, r C;.
16 /29

Relation of TCF' to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. x = y (Leibniz equality), 3, V, A
inductively defined (Martin-Lof).

1 := (False = True). Ex-falso-quodlibet: 1 — A provable.

v

v

“Decorations” —"¢, V"¢ (i) allow abstract theory (ii) remove
unused data.

17 /29

Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

> Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf = Vo3mVaT(Fllam] C Ipn) With lp = [b— %, b+ 2

Bmnf
Then
n—m modulus of (uniform) continuity (w)
n,ar— b approximating rational function (h)

18 /29

Readx and its witnesses

Inductively define a predicate Readx of arity (¢) by the clauses

ViVa(f[l] C Iy — X(Outy o f) — Readxf), (Readx)d
Vi‘(Readx(f oIn_1) — Readx(f o Ing) — Readx(f oIn;) —
Readxf).
(Readx)y

where Iy = [%, %] (d € {-1,0,1}) and

X+ d

(Outy o f)(x) := 2f(x) — d, (f oIng)(x) := f(5)-

Witnesses for Readxf: total ideals in
R, = ug(PutSD_mHg, Getf_*g_’é_%)

where SD := {—1,0,1}.

19/29

Write, ““Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in
W := f1¢(Stop®, ContRe %),
Define ““Write, a companion predicate of Write, by
V¢ (““Write f — f = Id V Readcowpitef). (“°“Write) ™

Witnesses for “®Write f: W-cototal Ry-total ideals t.

20/29

W-cototal Ry-total ideals

are possibly non well-founded trees t:

Get
Cont
Stop
Stop Puty
Get

» Get-Put-part: well-founded,

» Stop-Cont-part: not necessarily well-founded.

21 /29

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t,.

» At node Stop, return the rest of the input unprocessed as
output.

» At node Cont t, continue with the tree t.

Output might be infinite, but Ryy-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

22 /29

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
V?C(Q f— V?C(Q f—->f=Idv R@adcowrite\/Qf) — ““Write f)

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V}(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V¢(Cf — f =1d V Readeowritevcf). Assume Cf, in particular
Bmaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. VpVi¢(Bmof — Cf — Readecowritevcf).
Proof. Induction on m, using Lemma 2 in the base case.
Lemma 2 [FindSD]. V}(Boof — 34(f[/] C 1g)).

Proof. Assume Bgf. Then f[lpg] C Ip2 for some b, by definition
of Bpm. Have b < —%, —% < ph< % or % < b. Can determine
either of /b,2 C 4, Ib,2 Clyor Ib,2 C I1, hence Ed(f[l] - Id)

23 /29

[oh] (CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([ohO]Inr((Rec nat=>..[type]..)
left (ohO(Succ(Succ Zero)))
([g,oh1] [let sd (cFindSd(g 0))
(Put sd
(InR([n]left(ohl(Succ n))a@
([al2#right (ohl(Succ n))a-SDToInt sd))))]1)
([n,st,g,oh1]
Get
(st([alg((a+IntN 1)/2))
([n0]left(ohl no)@
([alright (ohl n0) ((a+IntN 1)/2))))
(st ([alg(a/2)) ([n0]left (ohl no)e
([alright (ohl n0) (a/2))))
(st(lalg((a+1)/2)) ([n0]1left(ohl nl)@
([alright (ohl n0) ((a+1)/2)))))
right (ohO(Succ(Succ Zero)))
oh0))

24 /29

Corecursion

The rules for R work from the leaves towards the root, and
terminate because total ideals are well-founded.

For cototal ideals a similar operator defines functions with cototal

ideals as values: corecursion. Consider ¢ = pig(ko, - - -, Kk—1)-

constructor type: destructor type:

> I eiw) = = 10

i<k v<nj i<k v<nj

type of recursion operator: type of corecursion operator:

L—>(ZH,0,-V(L><T)—>T)—>T T—)(T—)ZHin(L+T))—>L
i<k v<nj i<k v<n;

25 /29

Examples

ORNy:T = (T—=U+(N+7)) = N,
o [(p):T—>(T—>U—|—p><(L(p)+T))—>L(p).

For f:p— 7, g: 0 — 7 define [f,g]"*777 := A\(R] ,xfg). Let
x1, xo denote the two projections of x of type p x o.

CRINM = [0, A (S([AN N, Ay (RRyM)]x))I(MN),
Ry NM = [ANIL A (x1 32 [id, Ay (R, yM)]x2)|(MN).

26 /29

Corecursion for W
The corecursion operator “Ry,, has type

7= (T —= U+ Rwy,) = W.

Conversion rule
ORI NM — [case (MN)VTRWT) of
DummyL ~— Stop |
Inr x — Cont(Mpiw, - (Aplcase pV*7 of
L yW — y |
InR z7 — Ry zM)|)
KROW7)]

with M a “map"”-operator.
» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).
» No termination; translate into Haskell for evaluation.
27 /29

Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

» Simply typed theory, with “lazy” free algebras as base types
(= constructors are injective and have disjoint ranges).

v

Variables range over partial continuous functionals.

v

Constants denote computable functionals (:= r.e. ideals).

v

Minimal logic (—,), plus inductive & coinductive definitions.

v

Computational content in abstract theories.

v

Decorations (—,V and —"¢, V") for fine-tuning.

28 /29

References

v

U. Berger, From coinductive proofs to exact real arithmetic.
CSL 20009.

K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear, MSCS.

v

v

K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013.

v

H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

29 /29

