Computational content of proofs involving coinduction

Helmut Schwichtenberg (j.w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, München

Kyoto University, 19. March 2014

Proof: 2 aspects

- provides insight (uniformity)
- may have computational content

Mathematics = logic + data + inductive definitions

- ▶ Logic: minimal, intro and elim for \rightarrow , \forall
- ▶ Proof ~ lambda-term (Curry-Howard correspondence)
- Can embed classical and intuitionistic logic

Computable functionals

Arguments of any finite type, not only numbers and functions.

- ▶ Principle of finite support. If $\mathcal{H}(\Phi)$ is defined with value n, then there is a finite approximation Φ_0 of Φ such that $\mathcal{H}(\Phi_0)$ is defined with value n.
- ▶ Monotonicity principle. If $\mathcal{H}(\Phi)$ is defined with value n and Φ' extends Φ , then also $\mathcal{H}(\Phi')$ is defined with value n.
- ▶ Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ_1^0 -definable).

Tokens, consistency and entailment at base types

Types

- ▶ Base types ι : free algebras, given by constructors (e.g. 0, S).
- ▶ Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ▶ Token $a^{\mathbf{D}}$: \circ , $C*\circ$, $C\circ*$, $C(C*\circ)\circ$.
- $ullet U^{\mathbf{D}} := \{a_1, \dots, a_n\} \text{ consistent if }$
 - ▶ all *a_i* start with the same constructor,
 - (proper) tokens at j-th argument positions are consistent (example: $\{C*\circ, C\circ*\}$).
- ▶ $U^{\mathbf{D}} \vdash a$ (entails) if
 - ▶ all $a_i \in U$ and a start with the same constructor,
 - ▶ (proper) tokens at j-th argument positions of a_i entail j-th argument of a (example: $\{C*\circ, C\circ*\} \vdash C\circ\circ$).

An ideal x^{ρ} is a (possibly infinite) set of tokens which is

- consistent and
- closed under entailment.

Tokens and entailment for N

 $\{a\} \vdash b$ iff there is a path from a (up) to b (down).

Total and cototal ideals of base type

An ideal x^{ι} is cototal if every constructor tree $P(*) \in x$ has a " \succ_1 -predecessor" $P(\vec{C} \times) \in x$; it is total if it is cototal and the relation \succ_1 on x is well-founded.

Examples. N:

Every total ideal is the deductive closure of a token S(S...(S0)...). The set of all tokens S(S...(S*)...) is a cototal ideal.

D (derivations):

- ► Total ideal ~ finite derivation.
- ightharpoonup Cototal ideal \sim finite or infinite "locally correct" derivation [Mints 78].
- ▶ Arbitrary ideal ~ incomplete derivation, with "holes".

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- ▶ Tokens of type $\rho \to \sigma$ are pairs (U, a) with $U \in Con_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

$$\forall_{J\subseteq I}(\bigcup_{j\in J}U_j\in\operatorname{Con}_{\rho}\to\{a_j\mid j\in J\}\in\operatorname{Con}_{\sigma}).$$

"Formal neighborhood".

▶ $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subset x} (U, a) \in f \}.$$

Principles of finite support and monotonicity hold.

Computable functionals

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i \qquad (i = 1, \dots, n)$$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's T and Plotkin's PCF)

$$M, N ::= x^{\rho} \mid C^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$$

Examples

 $+\colon \mathbf{N} \to \mathbf{N} \to \mathbf{N}$ defined by

$$n + 0 = n,$$

$$n + Sm = S(n + m).$$

 $Y \colon (\tau \to \tau) \to \tau$ defined by

$$Yf = f(Yf).$$

 $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ defined by

$$\mathcal{R}_{\mathbf{N}}^{\tau} 0 x f = x,$$

 $\mathcal{R}_{\mathbf{N}}^{\tau} (\mathbf{S} n) x f = f x (\mathcal{R}_{\mathbf{N}}^{\tau} n x f).$

Reduction (including β , η) is non-terminating, but confluent.

Denotational semantics

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). Case $\lambda_{\vec{x}, v, \vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U},\vec{W},a) \in [\![\lambda_{\vec{X},\vec{Z}}M]\!]}{(\vec{U},V,\vec{W},a) \in [\![\lambda_{\vec{X},y,\vec{Z}}M]\!]}(K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{\textit{U} \vdash \textit{a}}{(\textit{U},\textit{a}) \in [\![\lambda_{\textit{X}}\textit{X}]\!]}(\textit{V}), \quad \frac{(\vec{\textit{U}},\textit{V},\textit{a}) \in [\![\lambda_{\vec{\textit{X}}}\textit{M}]\!] \quad (\vec{\textit{U}},\textit{V}) \subseteq [\![\lambda_{\vec{\textit{X}}}\textit{N}]\!]}{(\vec{\textit{U}},\textit{a}) \in [\![\lambda_{\vec{\textit{X}}}(\textit{MN})]\!]}(\textit{A}).$$

For every constructor C and defined constant D:

$$\frac{\vec{U} \vdash \vec{a^*}}{(\vec{U}, C\vec{a^*}) \in \llbracket C \rrbracket}(C), \quad \frac{(\vec{V}, a) \in \llbracket \lambda_{\vec{X}} M \rrbracket \quad \vec{U} \vdash \vec{P}(\vec{V})}{(\vec{U}, a) \in \llbracket D \rrbracket}(D),$$

with one rule (D) for every defining equation $D\vec{P}(\vec{x}) = M$.

Properties of the denotational semantics

- ▶ The value is preserved under standard β , η -conversion and the computation rules.
- ▶ An adequacy theorem holds: whenever a closed term M^{ι} has a token $a \in P(\vec{V})$ in its denotation $[\![M]\!]$, then M head reduces to a constructor term entailing a.

A theory of computable functionals (TCF)

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

$$\begin{split} A,B &::= P\vec{r} \mid A \to B \mid \forall_{\times} A \\ P &::= X \mid \{\vec{x} \mid A\} \mid I \end{split} \qquad \text{(I inductively defined)}.$$

 $\forall_X A$ not allowed, since this would be impredicative: in the predicate existence axiom $P := \{\vec{x} \mid A\}$ the formula A could contain quantifiers with the newly created P in its range.

 $\forall_{x^{\rho}} A$ is unproblematic: no such existence axioms.

Brouwer - Heyting - Kolmogorov

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- ▶ p proves $A \rightarrow B$ iff p is a construction transforming any proof q of A into a proof p(q) of B.
- ▶ p proves $\forall_{x^{\rho}}A(x)$ iff p is a construction such that for all a^{ρ} , p(a) proves A(a).

Leaves open:

- ▶ What is a "construction"?
- ▶ What is a proof of a prime formula?

Proposal:

- ► Construction: computable functional.
- ▶ Proof of a prime formula $I\vec{r}$: generation tree.

Example: generation tree for $\mathrm{Even}(6)$ should consist of a single branch with nodes $\mathrm{Even}(0)$, $\mathrm{Even}(2)$, $\mathrm{Even}(4)$ and $\mathrm{Even}(6)$.

The type $\tau(A)$ of a formula A

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- r = s is n.c.
- ightharpoonup Even(n) is c.r.

Extend the use of $\rho \to \sigma$ to the "nulltype symbol" \circ :

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^\rho} A) := \rho \to \tau(A)$$

with ι_I associated naturally with I.

Realizability

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

$$\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon \varepsilon := \varepsilon.$$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

Let A be a formula and t either a term of type $\tau(A)$ if the latter is a type, or the nullterm symbol ε for n.c. A.

$$t \mathbf{r} I \vec{s} := \begin{cases} I^{\mathbf{r}} t \vec{s} & \text{if } I \text{ is c.r. } (I^{\mathbf{r}} \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.,} \end{cases}$$

$$t \mathbf{r} (A \to B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B),$$

$$t \mathbf{r} \forall_{x} A := \forall_{x} (tx \mathbf{r} A).$$

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term $\operatorname{et}(M)$, of type $\tau(A)$. For M^A with A n.c. let $\operatorname{et}(M^A) := \varepsilon$. Else

$$\begin{array}{ll} \operatorname{et}(u^A) & := x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ \operatorname{et}((\lambda_{u^A} M^B)^{A \to B}) & := \lambda_{x_u^{\tau(A)}} \operatorname{et}(M), \\ \operatorname{et}((M^{A \to B} N^A)^B) & := \operatorname{et}(M) \operatorname{et}(N), \\ \operatorname{et}((\lambda_{x^\rho} M^A)^{\forall_x A}) & := \lambda_{x^\rho} \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_x A(x)} r)^{A(r)}) & := \operatorname{et}(M) r. \end{array}$$

Extracted terms for the axioms: let I be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with I.

Soundness. Let M be a derivation of A from assumptions u_i : C_i . Then we can derive et(M) \mathbf{r} A from assumptions x_{u_i} \mathbf{r} C_i .

Relation of TCF to type theory

- ▶ Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- ▶ Minimal logic: \rightarrow , \forall only. x = y (Leibniz equality), \exists , \lor , \land inductively defined (Martin-Löf).
- ▶ $\bot := (False = True)$. Ex-falso-quodlibet: $\bot \to A$ provable.
- ▶ "Decorations" \rightarrow^{nc} , \forall^{nc} (i) allow abstract theory (ii) remove unused data.

Case study: uniformly continuous functions (U. Berger)

- Formalization of an abstract theory of (uniformly) continuous real functions $f: I \to I$ (I := [-1, 1]).
- ▶ Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf o \forall_n \exists_m \underbrace{\forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,n})}_{B_{m,n}f} \quad \text{with } I_{b,n} := [b - \frac{1}{2^n}, b + \frac{1}{2^n}]$$

Then

$$n \mapsto m$$
 modulus of (uniform) continuity (ω)
 $n, a \mapsto b$ approximating rational function (h)

$Read_X$ and its witnesses

Inductively define a predicate Read_X of arity (φ) by the clauses

$$\forall_f^{\mathrm{nc}} \forall_d (f[I] \subseteq I_d \to X(\mathrm{Out}_d \circ f) \to \mathrm{Read}_X f), \qquad (\mathrm{Read}_X)_0^+$$

$$\forall_f^{\mathrm{nc}} (\mathrm{Read}_X (f \circ \mathrm{In}_{-1}) \to \mathrm{Read}_X (f \circ \mathrm{In}_0) \to \mathrm{Read}_X (f \circ \mathrm{In}_1) \to$$

$$\mathrm{Read}_X f). \qquad (\mathrm{Read}_X)_1^+$$

where $I_d = \left[\frac{d-1}{2}, \frac{d+1}{2} \right]$ $\left(d \in \{-1, 0, 1\} \right)$ and

$$(\operatorname{Out}_d \circ f)(x) := 2f(x) - d, \qquad (f \circ \operatorname{In}_d)(x) := f(\frac{x+d}{2}).$$

Witnesses for $Read_X f$: total ideals in

$$\mathbf{R}_{\alpha} := \mu_{\xi}(\mathsf{Put}^{\mathbf{SD} o lpha o \xi}, \mathsf{Get}^{\xi o \xi o \xi o \xi})$$

where
$$\textbf{SD} := \{-1, 0, 1\}.$$

Write, ^{co}Write and its witnesses

Nested inductive definition of a predicate Write of arity (φ) :

$$\operatorname{Write}(\operatorname{Id}), \quad \forall_f^{\operatorname{nc}}(\operatorname{Read}_{\operatorname{Write}}f \to \operatorname{Write}f) \qquad (\operatorname{Id} \text{ identity function}).$$

Witnesses for Write f: total ideals in

$$\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$$

Define coWrite, a companion predicate of Write, by

$$\forall_f^{\text{nc}}(^{\text{co}}\text{Write }f \to f = \text{Id} \vee \text{Read}_{^{\text{co}}\text{Write}}f).$$
 (coWrite)⁻

Witnesses for ${}^{co}Write f$: **W**-cototal **R**_W-total ideals t.

W-cototal Rw-total ideals

are possibly non well-founded trees t:

- ► Get-Put-part: well-founded,
- ► Stop-Cont-part: not necessarily well-founded.

W-cototal Rw-total ideals as stream transformers

View them as read-write machines.

- Start at the root of the tree.
- ▶ At node $Put_d t$, output the digit d, carry on with the tree t.
- ▶ At node Get t_{-1} t_0 t_1 , read a digit d from the input stream and continue with the tree t_d .
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont t, continue with the tree t.

Output might be infinite, but R_W -totality ensures that the machine can only read finitely many input digits before producing another output digit.

The machine represents a continuous function.

Cf implies $^{co}Write f$: informal proof

The greatest-fixed-point axiom (${}^{co}\mathrm{Write}$) $^+$ (coinduction) is

$$\forall_f^{\mathrm{nc}}(Q\,f\to\forall_f^{\mathrm{nc}}(Q\,f\to f=\mathrm{Id}\vee\mathrm{Read_{^{\mathrm{co}}Write}}\vee_Q f)\to{^{\mathrm{co}}Write}\,f).$$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{\mathrm{nc}}(\mathrm{C}f \to {}^{\mathrm{co}}\mathrm{Write}\,f)$.

Proof. Assume Cf. Use ($^{\text{co}}$ Write) $^+$ with competitor C. Suffices $\forall_f^{\text{nc}}(\text{C}f \to f = \text{Id} \lor \text{Read}_{^{\text{co}}\text{Write}\lor\text{C}}f)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some m. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read_{co}}_{\mathrm{Write} \lor \mathbf{C}}f)$.

Proof. Induction on *m*, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\text{nc}}(B_{0,2}f \to \exists_d(f[I] \subseteq I_d))$.

Proof. Assume $B_{0,2}f$. Then $f[I_{0,0}] \subseteq I_{b,2}$ for some b, by definition of $B_{n,m}$. Have $b \le -\frac{1}{4}$, $-\frac{1}{4} \le b \le \frac{1}{4}$ or $\frac{1}{4} \le b$. Can determine either of $I_{b,2} \subseteq I_{-1}$, $I_{b,2} \subseteq I_0$ or $I_{b,2} \subseteq I_1$, hence $\exists_d (f[I] \subseteq I_d)$.

```
[oh](CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([oh0]Inr((Rec nat=>..[type]..)
      left(oh0(Succ(Succ Zero)))
       ([g,oh1] [let sd (cFindSd(g 0))
           (Put sd
           (InR([n]left(oh1(Succ n))@
                ([a]2*right(oh1(Succ n))a-SDToInt sd))))])
       ([n,st,g,oh1]
        Get
         (st([a]g((a+IntN 1)/2))
          ([n0]left(oh1 n0)@
           ([a]right(oh1 n0)((a+IntN 1)/2))))
         (st([a]g(a/2))([n0]left(oh1 n0)@
                        ([a]right(oh1 n0)(a/2)))
         (st([a]g((a+1)/2))([n0]left(oh1 n0)@
                            ([a]right(oh1 n0)((a+1)/2))))
      right(oh0(Succ(Succ Zero)))
      oh0))
```

Corecursion

The rules for \mathcal{R} work from the leaves towards the root, and terminate because total ideals are well-founded.

For cototal ideals a similar operator defines functions with cototal ideals as values: corecursion. Consider $\iota = \mu_{\xi}(\kappa_0, \dots, \kappa_{k-1})$.

constructor type:

destructor type:

$$\sum_{i < k} \prod_{\nu < n_i} \rho_{i\nu}(\iota) \to \iota$$

$$\iota \to \sum_{i < k} \prod_{\nu < n_i} \rho_{i\nu}(\iota)$$

type of recursion operator:

type of corecursion operator:

$$\iota \to (\sum_{i < k} \prod_{\nu < n_i} \rho_{i\nu}(\iota \times \tau) \to \tau) \to \tau \quad \tau \to (\tau \to \sum_{i < k} \prod_{\nu < n_i} \rho_{i\nu}(\iota + \tau)) \to \iota$$

Examples

$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{N}}^{\tau}\colon \tau \to (\tau \to \mathbf{U} + (\mathbf{N} + \tau)) \to \mathbf{N},$$
$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{L}(\rho)}^{\tau}\colon \tau \to (\tau \to \mathbf{U} + \rho \times (\mathbf{L}(\rho) + \tau)) \to \mathbf{L}(\rho).$$

For $f: \rho \to \tau$, $g: \sigma \to \tau$ define $[f,g]^{\rho+\sigma\to\tau} := \lambda_x(\mathcal{R}^\tau_{\rho+\sigma}xfg)$. Let x_1 , x_2 denote the two projections of x of type $\rho \times \sigma$.

$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{N}}^{\tau} NM = [\lambda_{-}0, \lambda_{x}(\mathrm{S}([\mathrm{id}^{\mathbf{N} \to \mathbf{N}}, \lambda_{y}({}^{\mathrm{co}}\mathcal{R}_{\mathbf{N}}^{\tau}yM)]x))](MN),$$
$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{L}(\rho)}^{\tau} NM = [\lambda_{-}\mathrm{Nil}, \lambda_{x}(x_{1} :: [\mathrm{id}, \lambda_{y}({}^{\mathrm{co}}\mathcal{R}_{\mathbf{L}(\rho)}^{\tau}yM)]x_{2})](MN).$$

Corecursion for W

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}_{\mathbf{W}}^{ au}$ has type

$$au o (au o \mathbf{U} + \mathbf{R}_{\mathbf{W} + au}) o \mathbf{W}.$$

Conversion rule

$$^{\operatorname{co}}\mathcal{R}_{\mathbf{W}}^{ au}\mathsf{NM}\mapsto [\mathbf{case}\;(MN)^{\mathbf{U}+\mathbf{R}(\mathbf{W}+ au)}\;\mathbf{of}$$

$$\mathrm{DummyL}\mapsto\mathsf{Stop}\;|$$

$$\mathrm{Inr}\;x\mapsto\mathsf{Cont}(\mathcal{M}_{\mathbf{R}(\mathbf{W}+ au)}^{\mathbf{W}}(\lambda_{p}[\mathbf{case}\;p^{\mathbf{W}+ au}\;\mathbf{of}\;$$

$$\mathrm{InL}\;y^{\mathbf{W}}\mapsto y\;|$$

$$\mathrm{InR}\;z^{ au}\mapsto{}^{\operatorname{co}}\mathcal{R}_{\mathbf{W}}^{ au}zM])$$

$$x^{\mathbf{R}(\mathbf{W}+ au)}]$$

with $\mathcal M$ a "map"-operator.

- ▶ Here τ is $\mathbf{N} \to \mathbf{N} \times (\mathbf{Q} \to \mathbf{Q})$, for pairs of $\omega \colon \mathbf{N} \to \mathbf{N}$ and $h \colon \mathbf{N} \to \mathbf{Q} \to \mathbf{Q}$ (variable name oh).
- No termination; translate into Haskell for evaluation.

Conclusion

TCF (theory of computable functionals) as a possible foundation for exact real arithmetic.

- Simply typed theory, with "lazy" free algebras as base types (⇒ constructors are injective and have disjoint ranges).
- Variables range over partial continuous functionals.
- Constants denote computable functionals (:= r.e. ideals).
- Minimal logic (→, ∀), plus inductive & coinductive definitions.
- Computational content in abstract theories.
- ▶ Decorations $(\rightarrow, \forall \text{ and } \rightarrow^{nc}, \forall^{nc})$ for fine-tuning.

References

- U. Berger, From coinductive proofs to exact real arithmetic. CSL 2009.
- ► K. Miyamoto and H.S., Program extraction in exact real arithmetic. To appear, MSCS.
- K. Miyamoto, F. Nordvall Forsberg and H.S., Program extraction from nested definitions. ITP 2013.
- H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Logic, ASL & Cambridge UP, 2012.