Computational content of proofs involving coinduction

Helmut Schwichtenberg
(j.w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, München

Kyoto University, 19. March 2014
Proof: 2 aspects

- provides insight (uniformity)
- may have computational content

Mathematics = logic + data + inductive definitions

- Logic: minimal, intro and elim for →, ∀
- Proof ~ lambda-term (Curry-Howard correspondence)
- Can embed classical and intuitionistic logic
Computable functionals

Arguments of any finite type, not only numbers and functions.

- **Principle of finite support.** If $H(\Phi)$ is defined with value n, then there is a finite approximation Φ_0 of Φ such that $H(\Phi_0)$ is defined with value n.

- **Monotonicity principle.** If $H(\Phi)$ is defined with value n and Φ' extends Φ, then also $H(\Phi')$ is defined with value n.

- **Effectivity principle.** An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ^0_1-definable).
Tokens, consistency and entailment at base types

Types

- Base types ι: free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := D$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : D \rightarrow D \rightarrow D$ (branch, or cons).

- Token a^D: $\circ, C \ast \circ, C \circ *, C(C \ast \circ) \circ$.
- $U^D := \{a_1, \ldots, a_n\}$ consistent if
 - all a_i start with the same constructor,
 - (proper) tokens at j-th argument positions are consistent
 (example: $\{C \ast \circ, C \circ *\}$).
- $U^D \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at j-th argument positions of a_i entail j-th argument of a (example: $\{C \ast \circ, C \circ *\} \vdash C \circ \circ$).

An ideal x^ρ is a (possibly infinite) set of tokens which is

- consistent and
- closed under entailment.
Tokens and entailment for \(\mathbb{N} \)

\[
\{ a \} \vdash b \text{ iff there is a path from } a \text{ (up) to } b \text{ (down).}
\]
Total and cototal ideals of base type

An ideal \(x' \) is **cototal** if every constructor tree \(P(\ast) \in x \) has a "\(\succsim_1 \)-predecessor" \(P(C_{\vec{\ast}}) \in x \); it is **total** if it is cototal and the relation \(\succsim_1 \) on \(x \) is well-founded.

Examples. **N:**

- Every total ideal is the deductive closure of a token \(S(S\ldots(S0)\ldots) \). The set of all tokens \(S(S\ldots(S\ast)\ldots) \) is a cototal ideal.

D (derivations):

- Total ideal \(\sim \) finite derivation.
- Cototal ideal \(\sim \) finite or infinite "locally correct" derivation [Mints 78].
- Arbitrary ideal \(\sim \) incomplete derivation, with "holes".
Tokens, consistency and entailment at function types

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \to \sigma$ are pairs (U, a) with $U \in \text{Con}_{\rho}$.

- $\{ (U_i, a_i) \mid i \in I \} \in \text{Con}_{\rho \to \sigma}$ means

\[
\forall J \subseteq I (\bigcup_{j \in J} U_j \in \text{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \text{Con}_{\sigma}).
\]

“Formal neighborhood”.

- $W \vdash_{\rho \to \sigma} (U, a)$ means $W U \vdash_\sigma a$, where application $W U$ of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_\rho U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^ρ is

\[
f(x) := \{ a^\sigma \mid \exists U \subseteq x (U, a) \in f \}.
\]

Principles of finite support and monotonicity hold.
Computable functionals

A partial continuous functional f^ρ is **computable** if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i \quad (i = 1, \ldots, n)$$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i, where $\vec{P}_i(\vec{y}_i)$ are “constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

$$M, N ::= x^\rho \mid C^\rho \mid D^\rho \mid (\lambda x^\rho M^\sigma)^{\rho \rightarrow \sigma} \mid (M^{\rho \rightarrow \sigma} N^\rho)^\sigma.$$
Examples

\[+ : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \] defined by

\[n + 0 = n, \]
\[n + Sm = S(n + m). \]

\[Y : (\tau \rightarrow \tau) \rightarrow \tau \] defined by

\[Yf = f(Yf). \]

\[R_{\mathbb{N}}^\tau : \mathbb{N} \rightarrow \tau \rightarrow (\mathbb{N} \rightarrow \tau \rightarrow \tau) \rightarrow \tau \] defined by

\[R_{\mathbb{N}}^\tau 0xf = x, \]
\[R_{\mathbb{N}}^\tau (S\,n)xf = fx(R_{\mathbb{N}}^\tau nxf). \]

Reduction (including \(\beta \), \(\eta \)) is non-terminating, but confluent.
Denotational semantics

How to use computation rules to define a computable functional?
Inductively define \((\vec{U}, a) \in [\lambda \vec{x} M] \ (\text{FV}(M) \subseteq \{\vec{x}\})\).

Case \(\lambda_{\vec{x},y,z} M\) with \(\vec{x}\) free in \(M\), but not \(y\).

\[
\frac{\text{Case } \lambda_{\vec{x},y,z} M \text{ with } \vec{x} \text{ free in } M, \text{ but not } y.}{(\vec{U}, \vec{W}, a) \in [\lambda_{\vec{x},z} M]} \quad (K).
\]

Case \(\lambda_{\vec{x}} M\) with \(\vec{x}\) the free variables in \(M\).

\[
\frac{\text{Case } \lambda_{\vec{x}} M \text{ with } \vec{x} \text{ the free variables in } M.}{U \vdash a \quad (U, a) \in [\lambda_{\vec{x}} x]} \quad (V), \quad (\vec{U}, V, a) \in [\lambda_{\vec{x}} M] \quad (\vec{U}, V) \subseteq [\lambda_{\vec{x}} N] \quad (A).
\]

For every constructor \(C\) and defined constant \(D\):

\[
\frac{\vec{U} \vdash a^* \quad (\vec{U}, Ca^*) \in [C]} \quad (C), \quad (\vec{V}, a) \in [\lambda_{\vec{x}} M] \quad \vec{U} \vdash \vec{P}(\vec{V}) \quad (D),
\]

with one rule \((D)\) for every defining equation \(D \vec{P}(\vec{x}) = M\).
Properties of the denotational semantics

- The value is preserved under standard β, η-conversion and the computation rules.

- An adequacy theorem holds: whenever a closed term M^ι has a token $a \in P(\vec{V})$ in its denotation $\llbracket M \rrbracket$, then M head reduces to a constructor term entailing a.
A theory of computable functionals (TCF)

A variant of HA$^\omega$.

Formulas A and predicates P are defined simultaneously

$$A, B ::= P \vec{r} \mid A \to B \mid \forall X A$$

$$P ::= X \mid \{ \vec{x} \mid A \} \mid I \quad (I \text{ inductively defined}).$$

$\forall X A$ not allowed, since this would be impredicative: in the predicate existence axiom $P ::= \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

$\forall x^p A$ is unproblematic: no such existence axioms.
Brouwer - Heyting - Kolmogorov

Have \rightarrow^\pm, \forall^\pm, I^\pm. **BHK-interpretation:**

- p proves $A \rightarrow B$ iff p is a construction transforming any proof q of A into a proof $p(q)$ of B.
- p proves $\forall x \rho A(x)$ iff p is a construction such that for all a^ρ, $p(a)$ proves $A(a)$.

Leaves open:

- What is a “construction”?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\bar{r}$: generation tree.

Example: generation tree for $\text{Even}(6)$ should consist of a single branch with nodes $\text{Even}(0)$, $\text{Even}(2)$, $\text{Even}(4)$ and $\text{Even}(6)$.
The type \(\tau(A) \) of a formula \(A \)

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- \(r = s \) is n.c.
- \(\text{Even}(n) \) is c.r.

Extend the use of \(\rho \rightarrow \sigma \) to the “nulltype symbol” \(\circ \):

\[
(\rho \rightarrow \circ) := \circ, \quad (\circ \rightarrow \sigma) := \sigma, \quad (\circ \rightarrow \circ) := \circ.
\]

Define the type \(\tau(A) \) of a formula \(A \) by

\[
\tau(I \vec{r}) = \begin{cases}
\iota_I & \text{if } I \text{ is c.r.}, \\
\circ & \text{if } I \text{ is n.c.},
\end{cases}
\]

\[
\tau(A \rightarrow B) := \tau(A) \rightarrow \tau(B),
\]

\[
\tau(\forall x \rho A) := \rho \rightarrow \tau(A)
\]

with \(\iota_I \) associated naturally with \(I \).
Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for n.c. formulas. Extend term application to ε by

$$\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$$

Definition ($t \text{ r } A$, t realizes A)

Let A be a formula and t either a term of type $\tau(A)$ if the latter is a type, or the nullterm symbol ε for n.c. A.

$$t \text{ r } l\breve{s} := \begin{cases} l^r t\breve{s} & \text{if } l \text{ is c.r. (} l^r \text{ inductively defined)}, \\ l\breve{s} & \text{if } l \text{ is n.c.}, \end{cases}$$

$$t \text{ r } (A \rightarrow B) := \forall x (x \text{ r } A \rightarrow tx \text{ r } B),$$

$$t \text{ r } \forall x A := \forall x (tx \text{ r } A).$$
Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term $\text{et}(M)$, of type $\tau(A)$. For M^A with A n.c. let $\text{et}(M^A) := \varepsilon$. Else

$$
\text{et}(u^A) := x_u^\tau(A) \quad (x_u^\tau(A) \text{ uniquely associated to } u^A),
$$

$$
\text{et}((\lambda u^A M^B)^{A \rightarrow B}) := \lambda x_u^\tau(A) \text{et}(M),
$$

$$
\text{et}((M^{A \rightarrow B} N^A)^B) := \text{et}(M) \text{et}(N),
$$

$$
\text{et}((\lambda x^\rho M^A)^{\forall x^A}) := \lambda x^\rho \text{et}(M),
$$

$$
\text{et}((M^{\forall x^A(x)} r)^{A(r)}) := \text{et}(M)r.
$$

Extracted terms for the axioms: let I be c.r.

$$
\text{et}(I_i^+) := C_i, \quad \text{et}(I^-) := \mathcal{R},
$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with I.

Soundness. Let M be a derivation of A from assumptions $u_i : C_i$. Then we can derive $\text{et}(M) \ r A$ from assumptions $x_{u_i} \ r C_i$.
Relation of TCF to type theory

- Main difference: partial functionals are first class citizens.
- “Logic enriched”: Formulas and types kept separate.
- Minimal logic: \to, \forall only. $x = y$ (Leibniz equality), \exists, \lor, \land inductively defined (Martin-Löf).
- $\bot := (\text{False} = \text{True})$. Ex-falso-quodlibet: $\bot \rightarrow A$ provable.
- “Decorations” \rightarrow^{nc}, \forall^{nc} (i) allow abstract theory (ii) remove unused data.
Case study: uniformly continuous functions (U. Berger)

- Formalization of an abstract theory of (uniformly) continuous real functions $f : I \rightarrow I$ $(I := [-1, 1])$.
- Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf \rightarrow \forall \, n \exists \, m \forall \, a \exists \, b (f[I_{a,m}] \subseteq I_{b,n}) \quad \text{with } I_{b,n} := [b - \frac{1}{2n}, b + \frac{1}{2n}]$$

Then

- $n \mapsto m$ modulus of (uniform) continuity (ω)
- $n, a \mapsto b$ approximating rational function (h)
Read_X and its witnesses

Inductively define a predicate Read_X of arity (φ) by the clauses

\[\forall^{nc}_f \forall_d (f[I] \subseteq I_d \rightarrow X(Out_d \circ f) \rightarrow \text{Read}_X f), \quad (\text{Read}_X)_0^+ \]

\[\forall^n_c (\text{Read}_X (f \circ \text{In}_{-1}) \rightarrow \text{Read}_X (f \circ \text{In}_0) \rightarrow \text{Read}_X (f \circ \text{In}_1) \rightarrow \text{Read}_X f). \quad (\text{Read}_X)_1^+ \]

where \(l_d = \left[\frac{d-1}{2}, \frac{d+1}{2} \right] \) (\(d \in \{-1, 0, 1\} \)) and

\[(\text{Out}_d \circ f)(x) := 2f(x) - d, \quad (f \circ \text{In}_d)(x) := f\left(\frac{x + \frac{d}{2}}{2}\right). \]

Witnesses for Read_X f: total ideals in

\[R_\alpha := \mu_\xi(\text{Put}^{SD \rightarrow \alpha \rightarrow \xi}, \text{Get}^{\xi \rightarrow \xi \rightarrow \xi \rightarrow \xi}) \]

where SD := \{-1, 0, 1\}.

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (φ):

$$\text{Write}(\text{Id}), \quad \forall^n_{nc}(\text{Read}_\text{Write} f \rightarrow \text{Write} f) \quad (\text{Id identity function}).$$

Witnesses for $\text{Write} f$: total ideals in

$$\mathcal{W} := \mu_\xi (\text{Stop}_\xi, \text{Cont}^{R_\xi \rightarrow \xi}).$$

Define coWrite, a companion predicate of Write, by

$$\forall^n_{nc}(\text{coWrite} f \rightarrow f = \text{Id} \lor \text{Read}_{\text{coWrite}} f). \quad (\text{coWrite})^-$$

Witnesses for $\text{coWrite} f$: \mathcal{W}-cototal $R_{\mathcal{W}}$-total ideals t.
W-cototal R_W-total ideals are possibly non well-founded trees t:

- Get-Put-part: well-founded,
- **Stop-Cont**-part: not necessarily well-founded.
W-cototal \mathbb{R}_W-total ideals as stream transformers

View them as read-write machines.

- Start at the root of the tree.
- At node $\text{Put}_d t$, output the digit d, carry on with the tree t.
- At node $\text{Get } t_{-1} t_0 t_1$, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont t, continue with the tree t.

Output might be infinite, but \mathbb{R}_W-totality ensures that the machine can only read finitely many input digits before producing another output digit.

The machine represents a continuous function.
Cf implies $\text{coWrite } f$: informal proof

The greatest-fixed-point axiom (coWrite^+ (coinduction)) is

$$\forall_{nc}^f (Q f \rightarrow \forall_{nc}^f (Q f \rightarrow f = \text{Id} \vee \text{Read}_{\text{coWrite}} \vee Q f) \rightarrow \text{coWrite } f).$$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_{nc}^f (C f \rightarrow \text{coWrite } f)$.

Proof. Assume $C f$. Use (coWrite^+ with competitor C. Suffices $\forall_{nc}^f (C f \rightarrow f = \text{Id} \vee \text{Read}_{\text{coWrite}} \vee C f)$. Assume $C f$, in particular $B_{m,2} f := \forall_a \exists_b (f[I_a,m] \subseteq I_{b,2})$ for some m. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_{nc}^f (B_{m,2} f \rightarrow C f \rightarrow \text{Read}_{\text{coWrite}} \vee C f)$.

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_{nc}^f (B_{0,2} f \rightarrow \exists_d (f[I] \subseteq l_d))$.

Proof. Assume $B_{0,2} f$. Then $f[I_{0,0}] \subseteq I_{b,2}$ for some b, by definition of $B_{n,m}$. Have $b \leq -\frac{1}{4}, -\frac{1}{4} \leq b \leq \frac{1}{4}$ or $\frac{1}{4} \leq b$. Can determine either of $I_{b,2} \subseteq l_{-1}, I_{b,2} \subseteq l_0$ or $I_{b,2} \subseteq l_1$, hence $\exists_d (f[I] \subseteq l_d)$.

23 / 29
([oh](CoRec (nat=>nat@(rat=>rat))=>algwrite)oh
([oh0]Inr((Rec nat=>..[type]..)
 left(oh0(Succ(Succ Zero))))
([g,oh1] [let sd (cFindSd(g 0))
 (Put sd
 (InR([n]left(oh1(Succ n))@
 ([a]2*right(oh1(Succ n))a-SDToInt sd))))]
([n,st,g,oh1]
 Get
 (st([a]g((a+IntN 1)/2))
 ([n0]left(oh1 n0)@
 ([a]right(oh1 n0)((a+IntN 1)/2)))))
 (st([a]g(a/2))([n0]left(oh1 n0)@
 ([a]right(oh1 n0)(a/2)))))
 (st([a]g((a+1)/2))([n0]left(oh1 n0)@
 ([a]right(oh1 n0)((a+1)/2)))))
right(oh0(Succ(Succ Zero))))
oh0))
Corecursion

The rules for \mathcal{R} work from the leaves towards the root, and terminate because total ideals are well-founded.

For cototal ideals a similar operator defines functions with cototal ideals as values: **corecursion**. Consider $\iota = \mu_\xi(\kappa_0, \ldots, \kappa_{k-1})$.

constructor type:
\[
\sum_{i<k} \prod_{\nu<n_i} \rho_{i\nu}(\iota) \rightarrow \iota
\]

decorator type:
\[
\iota \rightarrow \sum_{i<k} \prod_{\nu<n_i} \rho_{i\nu}(\iota)
\]

type of recursion operator:
\[
\iota \rightarrow (\sum_{i<k} \prod_{\nu<n_i} \rho_{i\nu}(\iota \times \tau) \rightarrow \tau) \rightarrow \tau
\]

type of corecursion operator:
\[
\tau \rightarrow (\tau \rightarrow \sum_{i<k} \prod_{\nu<n_i} \rho_{i\nu}(\iota + \tau)) \rightarrow \iota
\]
Examples

\[\text{co} \mathcal{R}^\tau_N : \tau \to (\tau \to U + (N + \tau)) \to N,\]
\[\text{co} \mathcal{R}^\tau_{L(\rho)} : \tau \to (\tau \to U + \rho \times (L(\rho) + \tau)) \to L(\rho).\]

For \(f : \rho \to \tau, \ g : \sigma \to \tau\) define \([f, g]^{\rho + \sigma \to \tau} := \lambda_x (\mathcal{R}^\tau_{\rho + \sigma} x f g)\). Let \(x_1, x_2\) denote the two projections of \(x\) of type \(\rho \times \sigma\).

\[\text{co} \mathcal{R}^\tau_N NM = [\lambda_0, \lambda_x (S([\text{id}^N \to N, \lambda_y (\text{co} \mathcal{R}^\tau_N y M) x])]) (MN),\]
\[\text{co} \mathcal{R}^\tau_{L(\rho)} NM = [\lambda_\text{Nil}, \lambda_x (x_1 :: [\text{id}, \lambda_y (\text{co} \mathcal{R}^\tau_{L(\rho)} y M)] x_2]) (MN).\]
Corecursion for \(W \)

The corecursion operator \(\text{co}R^\tau_W \) has type

\[
\tau \to (\tau \to U + R_{W+\tau}) \to W.
\]

Conversion rule

\[
\text{co}R^\tau_W NM \mapsto [\text{case } (MN)^{U+R(W+\tau)} \text{ of } \\
\quad \text{DummyL } \mapsto \text{Stop } | \\
\quad \text{Inr } x \mapsto \text{Cont}(\mathcal{M}_W^{R(W+\tau)}(\lambda p [\text{case } p^{W+\tau} \text{ of } \\
\quad \quad \text{InL } y^W \mapsto y | \\
\quad \quad \text{InR } z^\tau \mapsto \text{co}R^\tau_W zM]) \\
\quad x^{R(W+\tau)}]
\]

with \(\mathcal{M} \) a "map"-operator.

- Here \(\tau \) is \(N \to N \times (Q \to Q) \), for pairs of \(\omega: N \to N \) and \(h: N \to Q \to Q \) (variable name \(oh \)).
- No termination; translate into Haskell for evaluation.
Conclusion

TCF (theory of computable functionals) as a possible foundation for exact real arithmetic.

- Simply typed theory, with “lazy” free algebras as base types (⇒ constructors are injective and have disjoint ranges).
- Variables range over partial continuous functionals.
- Constants denote computable functionals (:= r.e. ideals).
- Minimal logic (→, ∀), plus inductive & coinductive definitions.
- Computational content in abstract theories.
- Decorations (→, ∀ and →^{nc}, ∀^{nc}) for fine-tuning.
References

- U. Berger, From coinductive proofs to exact real arithmetic. CSL 2009.
- K. Miyamoto and H.S., Program extraction in exact real arithmetic. To appear, MSCS.
- K. Miyamoto, F. Nordvall Forsberg and H.S., Program extraction from nested definitions. ITP 2013.