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Computational content of proofs

I Here: Proofs on sequences (i.e., of type N→ ι, lev(ι) = 0)

What is special for sequences f : N→ ι ?

I Can be seen as streams, infinite type-0 objects.

Example: streams of booleans, S(B), with the single constructor

C : B→ S(B)→ S(B)

Why consider streams?

I Reals naturally represented by streams of signed digits −1, 0, 1

I Supports access from the front (“most significant digit”)

I Reduction of type levels
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Overview

I The model C of partial continuous functionals (Scott, Ershov)

I TCF (theory of computable functionals)

I Realizability, soundness theorem

I Computational content of the fan theorem for coconvex bars
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Computable functionals

General view: computations are finite.

Arguments not only numbers and functions, but also functionals of
any finite type.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).
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Information system A = (A,Con,`):

I A countable set of “tokens”,

I Con set of finite subsets of A,

I ` (“entails”) subset of Con× A.

such that

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,

U,V ∈ Con→ ∀a∈V (U ` a)→ V ` b → U ` b.

x ⊆ A is an ideal if

U ⊆ x → U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).
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Function spaces

Let A = (A,ConA,`A) and B = (B,ConB ,`B) be information
systems. Define A→ B := (C ,Con,`) where

I C := ConA × B,

I { (Ui , bi ) | i ∈ I } ∈ Con :=
∀J⊆I (

⋃
j∈J Uj ∈ ConA → { bj | j ∈ J } ∈ ConB)

I { (Ui , bi ) | i ∈ I } ` (U, b) means { bi | U `A Ui } `B b.

A→ B is an information system.

Application of an ideal r in A→ B to an ideal x in A is defined by

{ b ∈ B | ∃U⊆x r(U, b) }.
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(Free) algebras given by constructors:

N by 0N, SN→N

α× β by 〈., .〉α→β→α×β

α + β by (InLαβ)α→α+β, (InRαβ)β→α+β

L(α) by NilL(α),Consα→L(α)→L(α)

S(α) by SConsα→S(α)→S(α)

I by GenI→I

S(α) and I have no nullary constructor, hence no “total” objects.
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Information systems Cρ = (Cρ,Conρ,`ρ)

Cρ→σ := Cρ → Cσ. At base types ι:

Tokens are type correct constructor expressions Ca∗1 . . . a
∗
n.

(Examples: 0, C∗0, C 0∗, C (C∗0)0.)

U = {a1, . . . , an} is consistent if

I all ai start with the same constructor,

I (proper) tokens at j-th argument positions are consistent.

(Example: {C∗0,C 0∗}.)

U ` a (entails) if

I all ai ∈ U and also a start with the same constructor,

I (proper) tokens at j-th argument positions of ai entail j-th
argument of a.

(Example: {C∗0,C 0∗} ` C 00).
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Definition

I A partial continuous functional of type ρ is an ideal in Cρ.

I A partial continuous functional is computable if it is a
(primitive) recursively enumerable set of tokens.

Ideals in Cρ: Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold (“continuity”).

I x ι is total iff x = { a | {b} ` a } for some token (i.e.,
constructor expression) b without ∗.

I x ι is cototal iff every token b(∗) ∈ x has a “one-step
extension” b(C~∗ ) ∈ x .
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A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms of T+ are built from (typed) variables and (typed)
constants (constructors C or defined constants D, see below) by
(type-correct) application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation
rules, consisting of finitely many equations

D~Pi (~yi ) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi ) and Mi among ~yi , where the arguments
on the left hand side must be “constructor patterns”, i.e., lists of
applicative terms built from constructors and distinct variables.
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Examples

Fibonacci numbers

fib(0) = 0,

fib(1) = 1,

fib(n + 2) = fib(n) + fib(n + 1).

The corecursion operator coRτS(ρ) of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf =

{
yz if f (x) = 〈y , InL(z)〉,
y(coRx ′f ) if f (x) = 〈y , InR(x ′)〉.
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Predicates and formulas

P,Q ::= X | {~x | A } | µX (∀~xi ((Aiν)ν<ni → X~ri ))i<k | νX (. . . )

A,B ::= P~r | A→ B | ∀xA

Example: Even := µX (X 0,∀n(Xn→ X (S(Sn)))).

(Co)inductive predicates can be computationally relevant (c.r.) or
non-computational (n.c). Example: TN (c.r.) and T nc

N (n.c.)

Clauses and least-fixed-point (induction) axiom for TN:

(T +
N )0 : 0 ∈ TN

(T +
N )1 : ∀n(n ∈ TN → Sn ∈ TN)

T−N : 0 ∈ X → ∀n(n ∈ TN → n ∈ X → Sn ∈ X )→ TN ⊆ X

and similar for the n.c. variant T nc
N .
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Coinductive predicates: coTN (c.r.) and coT nc
N (n.c.)

Closure and greatest-fixed-point (coinduction) axioms for coTN:

coT−N : ∀n(n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′))

coT +
N : ∀n(n ∈ X → n ≡ 0 ∨ ∃n′((n′ ∈ coTN ∨ n′ ∈ X ) ∧ n ≡ Sn′))→

X ⊆ coTN

and similar for the n.c. variant coT nc
N (with X nc, ∨nc for X , ∨).
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Existence ∃, conjunction ∧, disjunction ∨, ∨nc

These are nullary inductive predicates with parameters

∃+ : ∀x(x ∈ P → ∃x(x ∈ P))

∃− : ∃x(x ∈ P)→ ∀x(x ∈ P → C )→ C (x /∈ FV(C ))

∧+ : A→ B → A ∧ B

∧− : A ∧ B → (A→ B → C )→ C

∨+
i : Ai → A0 ∨ A1

∨− : A ∨ B → (A→ C )→ (B → C )→ C

(∨nci )+ : Ai → A0 ∨nc A1 (A0, A1 n.c.)

(∨nc)− : A ∨nc B → (A→ C )→ (B → C )→ C (A, B, C n.c.)
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Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I Proposed to view a formula A as a computational problem, of
type τ(A), the type of a potential solution or “realizer” of A.

I Example: ∀n∈TN∃m∈TN(m > n∧m ∈ Prime) has type N→ N.
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Type τ(C ) of a c.r. predicate or formula C

τ(X ) := ξ (ξ uniquely assigned to X )

τ({~x | A }) := τ(A)

τ(µX (∀~xi ((Aiν)ν<ni → X~ri ))i<k︸ ︷︷ ︸
I

) := µξ((τ(Aiν)ν<ni )→ ξ)i<k︸ ︷︷ ︸
ιI

(similar for coI )

τ(P~r ) := τ(P)

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.)

τ(∀xA) := τ(A)
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Realizability extension C r of c.r. predicates or formulas C

We write z r C for C rz if C is a formula.

X r (uniquely assigned to X : (~ρ), of arity (τ(X ), ~ρ ))

{~x | A }r := { z ,~x | z r A }
I r, coI r

z r P~r := P r(z ,~r )

z r (A→ B) :=

{
∀w (w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A)
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Extracted term et(M) of a derivation MA with A c.r.

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA)

et((λuAMB)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxMA)∀xA) := et(M)

et((M∀xA(x)t)A(t)) := et(M)

et(I +
i ) := Ci (i-th constructor of ι associated to I )

et(I−) := Rτι (recursor for ι)

et(coI−) := Dι (destructor of ι associated to coI )

et(coI +) := coRτι (corecursor for ι)
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An n.c. part of M is a subderivation with an n.c. end formula.
Such n.c. parts do not contribute to the computational content.

Theorem (Soundness)

Let M be a derivation of a formula A from assumptions u : C (c.r.)
and v : D (n.c.) Then we can find a derivation of{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions zu r C and D.

Proof.
By induction on M. Few cases: →±, ∀± and c.r. axioms.
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I View trees as sets of nodes u, v ,w of type L(B) (lists of
booleans), which are downward closed.

I Paths are seen as cototal objects s of type S(B).

I Sets of nodes are given by (not necessarily total) functions b
of type L(B)→ B. To be or not to be in b is expressed by
saying that b(u) is defined with 1 or 0 as its value.

I A set b of nodes is a bar if every path s hits the bar, i.e.,
there is an n such that s(n) ∈ b.

For simplicity assume that bars b are upwards closed:

∀u,p(u ∈ b → pu ∈ b).
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I Josef Berger and Gregor Svindland recently gave a
constructive proof of the fan theorem for “coconvex” bars.

I They call a set b ⊆ {0, 1}∗ coconvex if for every n and path s

s̄(n) ∈ b → ∃m
(
∀v≤s̄(m)(v ∈ b) ∨ ∀v≥s̄(m)(v ∈ b)

)
,

where v ≤ w means |v | = |w | and v is left of w . Equivalently

s̄(n) ∈ b → ∃p,m
(
(p = 0→ ∀v≤s̄(m)(v ∈ b)) ∧
(p = 1→ ∀v≥s̄(m)(v ∈ b))

)
.

Two “moduli” p and m, depending on s, n and b.

I Better “finally coconvex”, with coconvex in the sense that the
b-nodes at height n form the complement of a convex set.
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Uniform coconvexity with modulus d (direction)

I Simplification: p only, depending on node u (i.e., p = d(u)).

I Special case of the B&S concept. Goal: better algorithm.

Definition
A set b ⊆ {0, 1}∗ is uniformly coconvex with modulus d if for all u
we have: if the innermost path from pu (where p := d(u)) hits b
in some node v ∈ b, then{

∀w (wpu ≤ v → wpu ∈ b) if p = 0,

∀w (wpu ≥ v → wpu ∈ b) if p = 1.
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u

0u 1u

v∈bw0u

v∈b w1u
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Recall: coTS(ρ) is the greatest fixed point of the clause

s ∈ coTS(ρ) → ∃x∈Tρ,s′∈coTS(ρ)
(s = xs ′)

The corecursion operator coRτS(ρ), of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ)

is defined by

coRxf =

{
yz if f (x) = 〈y , InL(z)〉,
y(coRx ′f ) if f (x) = 〈y , InR(x ′)〉.
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Lemma (Cototality of corecursion)

Let f : τ → ρ× (S(ρ) + τ) be of InR-form, i.e., f (x) has the form
〈y , InR(x ′)〉 for all x. Then coRxf ∈ coTS(ρ) for all x.

Proof.
By coinduction with competitor predicate

X := { z | ∃x(z = coRxf ) }.

Need to prove that X satisfies the clause defining coTS(ρ):

∀z(z ∈ X → ∃y∃z ′(z ′ ∈ X ∧ z = yz ′)).

Let z = coRxf for some x . Since f is assumed to be of InR-form
we have y , x ′ such that f (x) = 〈y , InR(x ′)〉. By the definition of
coRτS(ρ) we obtain coRxf = y(coRx ′f ). Use coRx ′f ∈ X .
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The escape path sd ∈ S(B) is constructed from d corecursively:

Start with the root node. At any node u, take the
opposite direction to what d(u) says, and continue.

Definition (Distance)

Dbnu := ∀v (|v | = n→ vu ∈ b)

“u has distance n from the bar b”
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Lemma (BoundL, BoundR)

Let b be a uniformly coconvex bar with modulus d. Then for every
n there are bounds `n, rn for the b-distances of all nodes of the
same length n that are left / right of sd(n).

Proof. For n = 0 there are no such nodes.
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Consider sd(n + 1) = (sd)nu of length n + 1. Assume (sd)n = 0.
Then every node to the left of 0u is a successor node of one to the
left of u, and hence `n+1 = `n − 1. The nodes to the right of 0u
are 1u and then nodes which are all successor nodes of one to the
right of u. Since 1u is d(u)u, by assumption we have its b-distance
m. Let rn+1 = max(m, rn − 1).

`n

n

`n+1

u

0u 1u

m

rn

rn+1
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Extracted term for BoundL

[hit,d,n](Rec nat=>nat)n 0

([n0,n1][case (d(U d n0))

(True -> Pred n1 max hit(True::U d n0)cCoSTConstFalse)

(False -> Pred n1)])

and for BoundR

[hit,d,n](Rec nat=>nat)n 0

([n0,n1][case (d(U d n0))

(True -> Pred n1)

(False -> Pred n1 max hit(False::U d n0)cCoSTConstTrue)])

with hit of type L(B)→ I→ N.
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Theorem
Let b be a uniformly coconvex bar with modulus d. Then b is a
uniform bar, i.e.,

∃m∀u(|u| = m→ u ∈ b).
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Let sd be the escape path. Since b is a bar, the escape path sd
hits b at some length n. Use lemma Bounds: the uniform bound is
n + max(`n, rn)

`n

n

∈ b

sd(n)

rn
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Extracted term

[hit,d]

cBoundL hit d(hit Nil(cEscCoST d))max

cBoundR hit d(hit Nil(cEscCoST d))+

hit Nil(cEscCoST d)

with hit of type L(B)→ I→ N.
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