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The Dyck language of balanced lists of L and R

E: expressions formed as lists of left and right parentheses L, R.
Dyck language of balanced parentheses is generated by either of

grammar U : E ::=Nil | ELER
grammar S : E:=Nil| LER| EE

Restrict attention to U (has unique generation trees).
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Parsing

Goal: recognize whether a list of left and right parentheses is
balanced, and if so produce a generating tree (i.e., a parse tree).

» Write-and-verify method: write a parser as a shift-reduce
syntax analyser, and verify that it is correct and complete.

» Prove-and-extract method: Prove the specification A and
extract its computational content in the form of a realizing
term t. Since t is in T, we can automatically prove (verify)
t r A, by means of a formalization of the soundness theorem.
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» Formulate the grammar U as an inductively defined predicate
over lists x, y, z of parentheses L, R given by the clauses
InitU: U(Nil)
GenU: Ux — Uy — U(xLyR)
» Work with RP(n, x) meaning U(xR") and LP(n, y) meaning
U(L"y). For RP we have an inductive definition
RP(0, Nil)
Uz — RP(n,x) = RP(n+ 1, xzL)
LP can be defined via a boolean valued function
LP(0,Nil) =t
LP(n+ 1,Nil) = ff
LP(n, Lx) = LP(n+1,x)
LP(0, Rx) = ff
LP(n+ 1,Rx) = LP(n, x)
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Closure property of U

VY Vnx z(RP(n, x) —=¢ Uz = LP(n,y) — U(xzy)).
Proof.

Show by induction on y that the claim holds for all n.

Base Nil. Use elimination for RP(n, x).

Step. In case L :: y use IHy for n+ 1.

In case R :: y again use elimination for RP(n, x).

The first RP clause uses Efq, the second one IHy, GenU and
equality arguments.

O
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Have

ViV z(RP(n,x) = Uz = LP(n,y) — U(xzy)).

v

In particular V§(LP(0,y) — Uy).
Conversely V, (Uy — LP(0,y)) (by elimination for U).

Hence the test LP(0, y) is correct (all y in U satisfies it) and
complete (it implies y in U).

v

v

v

Because of LP(0, y) <» Uy we have a decision procedure for
U. With p a boolean variable we can express this by a proof of

VeI ((p — Uy) A ((p — F) = Uy — F)).

The computational content of this proof is a parser for U. Given y
it returns a boolean saying whether or not y is in U, and if so it
also returns a generation tree (i.e., a parse tree) for Uy.
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Extracted term

[x] LP 0 x@
(Rec list par=>list bin=>bin=>bin)x
([as,a] [case as ((Nil bin) -> a)
(a0::as0 -> 0)1)
([par,x0,f,as,al
[case par
(L -> f(a::as)0)
(R => [case as ((Nil bin) -> 0)
(a0::as0 -> f as0(a0 B a))1)1)
(Nil bin)
0
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[x] LP 0 x@
(Rec list par=>list bin=>bin=>bin)x
([as,a] [case as ((Nil bin) -> a)
(a0::as0 -> 0)1)
([par,x0,f,as,a]
[case par
(L —> f(a::as)0)
(R -> [case as ((Nil bin) -> 0)
(a0::as0 -> f as0(a0 B a))1)1)

(Nil bin)
0
It amounts to applying a function g to x, Nil and O, where
if a = Nil
g(Nil,ss,2) = a0 :
O else

g(L:: xo,a,a) = g(xo,a:: a,0)

0 if & = Nil
g(R :: xp,a5,a) = )
g(xo, 0,30 B a) if as=ag:: ap
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a ifas=Nil
O else
g(L::xp,a5,a) = g(xo,a:: a5, 0)

0] if & = Nil
g(R:x0,3,a) = .
g(xo0,a0,30 B a) if a=ap: ap

g(Nil,;as,a) = {

In g(x, as, a)
» x is a list of parentheses L, R to be parsed.
> a5 is a stack of parse trees.

> ais the working memory of the parser which stores the parse
tree being generated.

Initially g is called with x, the empty stack Nil and the empty
parse tree O.
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if Nil
g(Nil, a5, a) rE=
O else

g(L:: xp,a5,a) = g(xo,a
(R - x0, 5, 3) { !fas—Nll
(x0, 350,80 B a) if a=ap:: ap
Read x from left to right.
Suppose x = L :: xp. Push the current parse tree a
(corresponding to Eg in EgLE;R) onto the stack. Then g
starts generating a parse tree for the rest xg of x, with O in
its working memory.
Suppose x = R :: xp. If the stack is Nil, return O. If not, pop
the top element ag from the stack. Then g starts generating a
parse tree for the rest xg of x, the tail asy of the stack, and as
current parse tree ag B a in its working memory.
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(load ""/minlog/init.scm")

(add-algs "bin"
) (Ilbinll IIOII)
> ("bin=>bin=>bin" "BinBranch"))

(add-infix-display-string "BinBranch" "B" ’pair-op)

(set! COMMENT-FLAG #f)
(libload "nat.scm")
(libload "list.scm")
(set! COMMENT-FLAG #t)

(add_algs llparll J ("LII llpar") J (IIRH Ilparll))
(add-totality "par")

(add-var-name "p" (py "boole"))
(add-var-name "x" "y" "z" (py "list par"))
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(add-ids

(1ist (list "U" (make-arity (py "list par")) "bin"))
>»("U(Nil par)" "InitU")
’("allnc x,y(U x -> U y -> U(x++L: ++y++R:))" "GenU"))

(add-program-constant "LP" (py "nat=>list par=>boole"))

(add-computation-rules
"LP 0(Nil par)"
"LP(Succ n) (Nil par)"
"LP n(L::x)"

"LP O(R::x)"
"LP(Succ n) (R::x)"

"True"
"False"
"LP(Succ n)x"
"False"

"LP n x")
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;5 RP (with a parameter predicate to be substituted by U)
(add-pvar-name "P" (make-arity (py "list par")))

(add-ids
(1ist (list "RP" (make-arity (py "nat") (py "list par"))
"list"))
>("RP O(Nil par)" "InitRP")
>("allnc n,x,z(P z => RP n x -> RP(Succ n) (x++z++L:))"
"GenRP"))
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;3 ClosureU

(set-goal

"all y allnc n,x,z(

(RP (cterm (x*) Ux))nx ->Uz ->LPny —>
U(x++z++y)) ™)

;3 Soundness
(set-goal "allnc y(Uy -> LP 0 y)")

;; Completeness
(set-goal "all y(LP Oy -> U y)")

;5 ParselLemma

(set-goal "all y ex p((p > U y) &
(p>F) >Uy->F)"
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(animate "ClosureU")
(animate "Completeness")

(add-var-name "a" (py "bin"))
(add-var-name "as" (py "list bin"))
(add-var-name "f" (py "list bin=>bin=>bin"))

(define eterm (proof-to-extracted-term

(theorem-name-to-proof "ParseLemma")))
(define parser-term (rename-variables (ut eterm)))
(ppc parser-term)
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(test-parser-term parser-term 6)
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Theorem (lIshihara’s trick)

Let f be a linear map from a Banach space X into a normed space
Y, and let (up) be a sequence in X converging to 0. Then for
0 < a < b either a < |fup| for some n or |fun| < b for all n.

Proof. Let M be a modulus of convergence of (u,) to 0; assume
MO = 0. Call ma hiton nif My < m < Mpy1 and a < |fup|.
First goal: define a function h: N — N such that

» h, =0 if for all N < n there is no hit;
» h, = m+ 2 if at n for the first time we have a hit, with m;
» h, =1 if there is an n’ < n with a hit.
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We will need the bounded least number operator u,g defined
recursively as follows (g a variable of type N — B).

pog =0,

]0 if g0
Hn€ = Sun(goS) otherwise.

From un,g we define

n . (/Jnfno)\mg(m + nO)) + no if ng<n
lu’nog = H
0 otherwise.
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To define h we use a function g of type N — B (to be defined
from cApproxSplit) such that

a<|fum| ifgm
[fum| < b otherwise.

Then we can define h, := H(g, M, n) where

0 if M, < puy, g and /\/in+1 <y
H(g,M,n):= ,uM"“g+ 2 if M, <pum,g and ,u g < Mpt1
1 if fm,8 < Mp.
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Next goal: define from h a sequence (v,) in X such that

» v, =0if h, =0;

> v, = nuy, if h, = m+2;

> Vv, = Vp_1 if h, = 1.
Let £ be the type of elements of X, and wus: N — £ a variable.
Define v, := Vg(g, M, us, n) where (writing up, for us(m))

0 if H(g, M, n) =
Ve(g, M, s,n) = { "™ i”ﬂ&MIﬁ_m+2

0 (arbitrary) if Hig,M,n)=1and n=10

Ve(g,M,u5,n—1) if H(g,M,n)=1and n>0.

One can show that (v,) has the properties listed above.
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Next we show that (v,) is a Cauchy sequence with modulus
N(k) := 2k + 1, which satisfies

_1
oN(k) = 2k’

Since our goal is stable, we may employ arbitrary case distinctions
(here: there is a hit / there is no hit).

By the assumed completeness of X we have a limit v of (v,). Pick
ng such that |fv| < npa. Assume that there is a first hit at some
n > ng, with value m. Then v = v, = nu,, and

na < nlfum| = [n(fum)| = |f(num)| = [fv] < noa < na,
a contradiction. Hence beyond this ng we cannot have a first hit.

If V<nohn = 0 then there is no hit and we have |fu,| < b for all n.
Otherwise there is a hit before ng, hence a < |fu,| for some n.
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The computational content machine extracted from this proof is

[f,us,M,a,al,k]
[let g
([nlnegb(cAC([nO] cApproxSplitBooleRat
a a0 lnorm(f(us n0))k)n))
[case (H g M
(cRealPosRatBound
lnorm(f ((cXCompl xi)
((V xi)g M us)
([k0] abs (IntS(2*k0)max 0))))
a))
(Zero -> False)
(Succ n -> True)]]

Here H and V are the functionals defined above.
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cAC is the computational content of the axiom of choice

(pp IIACH)
all m ex boole (Pvar nat boole)” m boole —>
ex g all m (Pvar nat boole)” m(g m)

and hence the identity. cApproxSplitBooleRat and
cRealPosRatBound are the computational content of lemmata

all a,b,x,k(Real x -> 1/2%xk<=b-a ->
ex boole((boole -> x<<=b) andu ((boole -> F) —> a<<=x)))

all x,a(Real x -> 0<a -> ex n x<<=n%*a)
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Modifying the theorem by decorations

> In our formulation of Ishihara’s trick we have used the
decorated disjunction V" (u for uniform) to express the final
alternative.

» This means that the computational content of the lemma
returns just a boolean, expressing which side of the
disjunction holds, but not returning a witness for the
existential quantifier in the left hand side, 3,a < |fu,|.

» To change this use the “left” disjunction V! instead.

Then literally the same proof works.
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[f,us,M,a,al,k]
[let g
([nlnegb(cAC([nO] cApproxSplitBooleRat
a a0 lnorm(f(us n0))k)n))
[let n
(cRealPosRatBound
Inorm(f ((cXCompl xi)
((V xi)g M us)
([k0]abs (IntS(2*k0)max 0))))
a)
[case (H g M n)
(Zero -> (DummyR nat))
(Succ n0 -> Inl right(cHFind g M n))]]]

Note that the required witness is obtained by an application of
cHFind, the computational content of a lemma HFind:

(pp "HFind")
all g,M,n(M Zero=Zero -> (H g M n=Zero -> F) ->
ex n0,m(n0<=n & H g M n0=m+2))
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Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

> Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf = Vo3mVaT(Fllam] C Ipn)  With lp = [b— %, b+ 2

Bmnf
Then
n—m modulus of (uniform) continuity (w)
n,ar— b approximating rational function (h)
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Readx and its witnesses

Inductively define a predicate Readx of arity (¢) by the clauses

ViVa(f[l] C Iy — X(Outy o f) — Readxf), (Readx)d
Vi‘(Readx(f oIn_1) — Readx(f o Ing) — Readx(f oIn;) —
Readxf).
(Readx)y

where Iy = [%, %] (d € {-1,0,1}) and

X+ d

(Outy o f)(x) := 2f(x) — d, (f oIng)(x) := f( 5 )-

Witnesses for Readxf: total ideals in
R, = ug(PutSD_mHg, Getf_*g_’é_%)

where SD := {—1,0,1}.
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Write, ““Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in
W := f1¢(Stop®, ContRe %),
Define ““Write, a companion predicate of Write, by
Ve (““Write f — Eq(f,Id) V Readcownitef ). (“°“Write) ™

Witnesses for “®Write f: W-cototal Ry-total ideals t.
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W-cototal Ry-total ideals

are possibly non well-founded trees t:

Get
Cont
Stop
Stop Puty
Get

» Get-Put-part: well-founded,

» Stop-Cont-part: not necessarily well-founded.
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W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t,.

» At node Stop, return the rest of the input unprocessed as
output.

» At node Cont t, continue with the tree t.

Output might be infinite, but Ryy-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.
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Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
\VI?C(Q f— V?C(Q f— Eq(f, Id) V Readcowrite\/Q f) — ““Write f)

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V3(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V2¢(Cf — Eq(f,Id) V Readeowritevcf). Assume Cf, in particular
Bmoaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. VpV3¢(Bmof — Cf — Readeowritevcf).
Proof. Induction on m, using Lemma 2 in the base case.
Lemma 2 [FindSD]. V}¢(Boof — 34(f[/] C 1g)).

Proof. Assume Bgf. Then f[lpg] C I for some b, by definition
of Bpm. Have b < —%, —% < ph< % or % < b. Can determine
either of /b,2 C 4, Ib,2 Clyor Ib,2 C I1, hence Ed(f[l] - Id)
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[oh] (CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([ohO]Inr((Rec nat=>..[type]..)
left (ohO(Succ(Succ Zero)))
([g,oh1] [let sd (cFindSd(g 0))
(Put sd
(InR([n]left(ohl(Succ n))a@
([al2#right (ohl(Succ n))a-SDToInt sd))))]1)
([n,st,g,oh1]
Get
(st([alg((a+IntN 1)/2))
([n0]left(ohl no)@
([alright (ohl n0) ((a+IntN 1)/2))))
(st ([alg(a/2)) ([n0]left (ohl no)e
([alright (ohl n0) (a/2))))
(st(lalg((a+1)/2)) ([n0]1left(ohl nl)@
([alright (ohl n0) ((a+1)/2)))))
right (ohO(Succ(Succ Zero)))
oh0))
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Corecursion
The corecursion operator “Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule
ORI NM — [case (MN)VFTRWT) of
inl _ +— Stop |
inr x — Cont(M% (\p[case pV T of
R(W-+7)(Ap P
inl yW — y |
inr z7 — “RyzM])
KROW7))

with M the map-operator.
» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).
» No termination; translate into Haskell for evaluation.
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Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

» Simply typed theory, with “lazy” free algebras as base types
(= constructors are injective and have disjoint ranges).

» Variables range over partial continuous functionals.

» Constants denote computable functionals (:= r.e. ideals).

» Minimal logic (—, V), plus inductive & coinductive definitions.
» Computational content in abstract theories.

» Decorations (—¢, V¢ and —"¢, V") to (i) allow abstract
theory and (ii) remove unused data.
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