
Extracting programs from proofs

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

JAIST, 7. March 2014

1 / 41



Overview

I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

2 / 41



The Dyck language of balanced lists of L and R

E : expressions formed as lists of left and right parentheses L,R.
Dyck language of balanced parentheses is generated by either of

grammar U : E ::= Nil | ELER
grammar S : E ::= Nil | LER | EE

Restrict attention to U (has unique generation trees).

3 / 41



I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

4 / 41



Parsing

Goal: recognize whether a list of left and right parentheses is
balanced, and if so produce a generating tree (i.e., a parse tree).

I Write-and-verify method: write a parser as a shift-reduce
syntax analyser, and verify that it is correct and complete.

I Prove-and-extract method: Prove the specification A and
extract its computational content in the form of a realizing
term t. Since t is in T+, we can automatically prove (verify)
t r A, by means of a formalization of the soundness theorem.

5 / 41



I Formulate the grammar U as an inductively defined predicate
over lists x , y , z of parentheses L,R given by the clauses

InitU : U(Nil)

GenU : Ux → Uy → U(xLyR)

I Work with RP(n, x) meaning U(xRn) and LP(n, y) meaning
U(Lny). For RP we have an inductive definition

RP(0,Nil)

Uz → RP(n, x)→ RP(n + 1, xzL)

LP can be defined via a boolean valued function

LP(0,Nil) = tt

LP(n + 1,Nil) = ff

LP(n, Lx) = LP(n + 1, x)

LP(0,Rx) = ff

LP(n + 1,Rx) = LP(n, x)

6 / 41



Closure property of U

∀cy∀ncn,x ,z(RP(n, x)→c Uz →c LP(n, y)→ U(xzy)).

Proof.
Show by induction on y that the claim holds for all n.
Base Nil. Use elimination for RP(n, x).
Step. In case L :: y use IHy for n + 1.
In case R :: y again use elimination for RP(n, x).
The first RP clause uses Efq, the second one IHy, GenU and
equality arguments.

7 / 41



Have

∀cy∀ncn,x ,z(RP(n, x)→c Uz →c LP(n, y)→ U(xzy)).

I In particular ∀cy (LP(0, y)→ Uy).

I Conversely ∀y (Uy → LP(0, y)) (by elimination for U).

I Hence the test LP(0, y) is correct (all y in U satisfies it) and
complete (it implies y in U).

I Because of LP(0, y)↔ Uy we have a decision procedure for
U. With p a boolean variable we can express this by a proof of

∀cy∃dp((p → Uy) ∧l ((p → F)→ Uy → F)).

The computational content of this proof is a parser for U. Given y
it returns a boolean saying whether or not y is in U, and if so it
also returns a generation tree (i.e., a parse tree) for Uy .

8 / 41



Extracted term

[x] LP 0 x@

(Rec list par=>list bin=>bin=>bin)x

([as,a][case as ((Nil bin) -> a)

(a0::as0 -> O)])

([par,x0,f,as,a]

[case par

(L -> f(a::as)O)

(R -> [case as ((Nil bin) -> O)

(a0::as0 -> f as0(a0 B a))])])

(Nil bin)

O

9 / 41



I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

10 / 41



[x] LP 0 x@

(Rec list par=>list bin=>bin=>bin)x

([as,a][case as ((Nil bin) -> a)

(a0::as0 -> O)])

([par,x0,f,as,a]

[case par

(L -> f(a::as)O)

(R -> [case as ((Nil bin) -> O)

(a0::as0 -> f as0(a0 B a))])])

(Nil bin)

O

It amounts to applying a function g to x , Nil and O, where

g(Nil, as, a) =

{
a if as = Nil

O else

g(L :: x0, as, a) = g(x0, a :: as,O)

g(R :: x0, as, a) =

{
O if as = Nil

g(x0, as0, a0 B a) if as = a0 :: as0 11 / 41



g(Nil, as, a) =

{
a if as = Nil

O else

g(L :: x0, as, a) = g(x0, a :: as,O)

g(R :: x0, as, a) =

{
O if as = Nil

g(x0, as0, a0 B a) if as = a0 :: as0

In g(x , as, a)

I x is a list of parentheses L,R to be parsed.

I as is a stack of parse trees.

I a is the working memory of the parser which stores the parse
tree being generated.

Initially g is called with x , the empty stack Nil and the empty
parse tree O.

12 / 41



g(Nil, as, a) =

{
a if as = Nil

O else

g(L :: x0, as, a) = g(x0, a :: as,O)

g(R :: x0, as, a) =

{
O if as = Nil

g(x0, as0, a0 B a) if as = a0 :: as0

I Read x from left to right.

I Suppose x = L :: x0. Push the current parse tree a
(corresponding to E0 in E0LE1R) onto the stack. Then g
starts generating a parse tree for the rest x0 of x , with O in
its working memory.

I Suppose x = R :: x0. If the stack is Nil, return O. If not, pop
the top element a0 from the stack. Then g starts generating a
parse tree for the rest x0 of x , the tail as0 of the stack, and as
current parse tree a0 B a in its working memory.

13 / 41



I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

14 / 41



(load "~/minlog/init.scm")

(add-algs "bin"

’("bin" "O")

’("bin=>bin=>bin" "BinBranch"))

(add-infix-display-string "BinBranch" "B" ’pair-op)

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(libload "list.scm")

(set! COMMENT-FLAG #t)

(add-algs "par" ’("L" "par") ’("R" "par"))

(add-totality "par")

(add-var-name "p" (py "boole"))

(add-var-name "x" "y" "z" (py "list par"))

15 / 41



(add-ids

(list (list "U" (make-arity (py "list par")) "bin"))

’("U(Nil par)" "InitU")

’("allnc x,y(U x -> U y -> U(x++L: ++y++R:))" "GenU"))

(add-program-constant "LP" (py "nat=>list par=>boole"))

(add-computation-rules

"LP 0(Nil par)" "True"

"LP(Succ n)(Nil par)" "False"

"LP n(L::x)" "LP(Succ n)x"

"LP 0(R::x)" "False"

"LP(Succ n)(R::x)" "LP n x")

16 / 41



;; RP (with a parameter predicate to be substituted by U)

(add-pvar-name "P" (make-arity (py "list par")))

(add-ids

(list (list "RP" (make-arity (py "nat") (py "list par"))

"list"))

’("RP 0(Nil par)" "InitRP")

’("allnc n,x,z(P z -> RP n x -> RP(Succ n)(x++z++L:))"

"GenRP"))

17 / 41



;; ClosureU

(set-goal

"all y allnc n,x,z(

(RP (cterm (x^) U x^))n x -> U z -> LP n y ->

U(x++z++y))")

;; Soundness

(set-goal "allnc y(U y -> LP 0 y)")

;; Completeness

(set-goal "all y(LP 0 y -> U y)")

;; ParseLemma

(set-goal "all y ex p((p -> U y) &

((p -> F) -> U y -> F))")

18 / 41



(animate "ClosureU")

(animate "Completeness")

(add-var-name "a" (py "bin"))

(add-var-name "as" (py "list bin"))

(add-var-name "f" (py "list bin=>bin=>bin"))

(define eterm (proof-to-extracted-term

(theorem-name-to-proof "ParseLemma")))

(define parser-term (rename-variables (nt eterm)))

(ppc parser-term)

19 / 41



(test-parser-term parser-term 6)

Testing on L::R::R::R::R::R: No

Testing on L::L::R::R::R::R: No

Testing on L::R::L::R::R::R: No

Testing on L::L::L::R::R::R: Parse tree: O B O B O B O

Testing on L::R::R::L::R::R: No

Testing on L::L::R::L::R::R: Parse tree: O B(O B O)B O

Testing on L::R::L::L::R::R: Parse tree: (O B O)B O B O

Testing on L::L::L::L::R::R: No

Testing on L::R::R::R::L::R: No

Testing on L::L::R::R::L::R: Parse tree: (O B O B O)B O

Testing on L::R::L::R::L::R: Parse tree: ((O B O)B O)B O

Testing on L::L::L::R::L::R: No

Testing on L::R::R::L::L::R: No

Testing on L::L::R::L::L::R: No

Testing on L::R::L::L::L::R: No

Testing on L::L::L::L::L::R: No

20 / 41



I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

21 / 41



Theorem (Ishihara’s trick)

Let f be a linear map from a Banach space X into a normed space
Y , and let (un) be a sequence in X converging to 0. Then for
0 < a < b either a ≤ ||fun|| for some n or ||fun|| ≤ b for all n.

Proof. Let M be a modulus of convergence of (un) to 0; assume
M0 = 0. Call m a hit on n if Mn ≤ m < Mn+1 and a ≤ ||fum||.
First goal: define a function h : N→ N such that

I hn = 0 if for all n′ ≤ n there is no hit;

I hn = m + 2 if at n for the first time we have a hit, with m;

I hn = 1 if there is an n′ < n with a hit.

22 / 41



We will need the bounded least number operator µng defined
recursively as follows (g a variable of type N→ B).

µ0g := 0,

µSng :=

{
0 if g0

Sµn(g ◦ S) otherwise.

From µng we define

µnn0g :=

{
(µn−n0λmg(m + n0)) + n0 if n0 ≤ n

0 otherwise.

23 / 41



To define h we use a function g of type N→ B (to be defined
from cApproxSplit) such that{

a ≤ ||fum|| if gm

||fum|| ≤ b otherwise.

Then we can define hn := H(g ,M, n) where

H(g ,M, n) :=


0 if Mn ≤ µMng and Mn+1 ≤ µMn+1

Mn
g

µ
Mn+1

Mn
g + 2 if Mn ≤ µMng and µ

Mn+1

Mn
g < Mn+1

1 if µMng < Mn.

24 / 41



Next goal: define from h a sequence (vn) in X such that

I vn = 0 if hn = 0;

I vn = num if hn = m + 2;

I vn = vn−1 if hn = 1.

Let ξ be the type of elements of X , and us : N→ ξ a variable.
Define vn := Vξ(g ,M, us, n) where (writing um for us(m))

Vξ(g ,M, us, n) :=


0 if H(g ,M, n) = 0

num if H(g ,M, n) = m + 2

0 (arbitrary) if H(g ,M, n) = 1 and n = 0

Vξ(g ,M, us, n − 1) if H(g ,M, n) = 1 and n > 0.

One can show that (vn) has the properties listed above.

25 / 41



Next we show that (vn) is a Cauchy sequence with modulus
N(k) := 2k + 1, which satisfies

N(k) + 1

2N(k)
≤ 1

2k
.

Since our goal is stable, we may employ arbitrary case distinctions
(here: there is a hit / there is no hit).

By the assumed completeness of X we have a limit v of (vn). Pick
n0 such that ||fv || ≤ n0a. Assume that there is a first hit at some
n > n0, with value m. Then v = vn = num and

na ≤ n||fum|| = ||n(fum)|| = ||f (num)|| = ||fv || ≤ n0a < na,

a contradiction. Hence beyond this n0 we cannot have a first hit.

If ∀n≤n0hn = 0 then there is no hit and we have ||fun|| ≤ b for all n.
Otherwise there is a hit before n0, hence a ≤ ||fun|| for some n.

26 / 41



The computational content machine extracted from this proof is

[f,us,M,a,a0,k]

[let g

([n]negb(cAC([n0]cApproxSplitBooleRat

a a0 lnorm(f(us n0))k)n))

[case (H g M

(cRealPosRatBound

lnorm(f((cXCompl xi)

((V xi)g M us)

([k0]abs(IntS(2*k0)max 0))))

a))

(Zero -> False)

(Succ n -> True)]]

Here H and V are the functionals defined above.

27 / 41



cAC is the computational content of the axiom of choice

(pp "AC")

all m ex boole (Pvar nat boole)^ m boole ->

ex g all m (Pvar nat boole)^ m(g m)

and hence the identity. cApproxSplitBooleRat and
cRealPosRatBound are the computational content of lemmata

all a,b,x,k(Real x -> 1/2**k<=b-a ->

ex boole((boole -> x<<=b) andu ((boole -> F) -> a<<=x)))

all x,a(Real x -> 0<a -> ex n x<<=n*a)

28 / 41



Modifying the theorem by decorations

I In our formulation of Ishihara’s trick we have used the
decorated disjunction ∨u (u for uniform) to express the final
alternative.

I This means that the computational content of the lemma
returns just a boolean, expressing which side of the
disjunction holds, but not returning a witness for the
existential quantifier in the left hand side, ∃na ≤ ||fun||.

I To change this use the “left” disjunction ∨l instead.

Then literally the same proof works.

29 / 41



[f,us,M,a,a0,k]

[let g

([n]negb(cAC([n0]cApproxSplitBooleRat

a a0 lnorm(f(us n0))k)n))

[let n

(cRealPosRatBound

lnorm(f((cXCompl xi)

((V xi)g M us)

([k0]abs(IntS(2*k0)max 0))))

a)

[case (H g M n)

(Zero -> (DummyR nat))

(Succ n0 -> Inl right(cHFind g M n))]]]

Note that the required witness is obtained by an application of
cHFind, the computational content of a lemma HFind:

(pp "HFind")

all g,M,n(M Zero=Zero -> (H g M n=Zero -> F) ->

ex n0,m(n0<=n & H g M n0=m+2))
30 / 41



I Parsing balanced lists of parentheses
I Informal proof
I Discussion of the extracted term
I Formalization, extraction and testing

I Ishihara’s trick

I Computing with infinite data

31 / 41



Case study: uniformly continuous functions (U. Berger)

I Formalization of an abstract theory of (uniformly) continuous
real functions f : I → I (I := [−1, 1]).

I Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf → ∀n∃m ∀a∃b(f [Ia,m] ⊆ Ib,n)︸ ︷︷ ︸
Bm,nf

with Ib,n := [b − 1
2n , b + 1

2n ]

Then

n 7→ m modulus of (uniform) continuity (ω)

n, a 7→ b approximating rational function (h)

32 / 41



ReadX and its witnesses

Inductively define a predicate ReadX of arity (ϕ) by the clauses

∀ncf ∀d(f [I ] ⊆ Id → X (Outd ◦ f )→ ReadX f ), (ReadX )+0

∀ncf (ReadX (f ◦ In−1)→ ReadX (f ◦ In0)→ ReadX (f ◦ In1)→
ReadX f ).

(ReadX )+1

where Id = [d−12 , d+1
2 ] (d ∈ {−1, 0, 1}) and

(Outd ◦ f )(x) := 2f (x)− d , (f ◦ Ind)(x) := f (
x + d

2
).

Witnesses for ReadX f : total ideals in

Rα := µξ(PutSD→α→ξ,Getξ→ξ→ξ→ξ)

where SD := {−1, 0, 1}.

33 / 41



Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f ) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → Eq(f , Id) ∨ ReadcoWritef ). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

34 / 41



W-cototal RW-total ideals

are possibly non well-founded trees t:

..

.

•
@
@@

..

.

•
..
.

•
�

��• Get

• Cont

Stop •
@
@@

Stop
• •��������

Putd

•
Get

I Get-Put-part: well-founded,

I Stop-Cont-part: not necessarily well-founded.

35 / 41



W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

36 / 41



Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → Eq(f , Id) ∨ ReadcoWrite∨Q f )→ coWrite f ).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f ).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → Eq(f , Id) ∨ ReadcoWrite∨Cf ). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf ).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I ] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I ] ⊆ Id).

37 / 41



[oh](CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh

([oh0]Inr((Rec nat=>..[type]..)

left(oh0(Succ(Succ Zero)))

([g,oh1] [let sd (cFindSd(g 0))

(Put sd

(InR([n]left(oh1(Succ n))@

([a]2*right(oh1(Succ n))a-SDToInt sd))))])

([n,st,g,oh1]

Get

(st([a]g((a+IntN 1)/2))

([n0]left(oh1 n0)@

([a]right(oh1 n0)((a+IntN 1)/2))))

(st([a]g(a/2))([n0]left(oh1 n0)@

([a]right(oh1 n0)(a/2))))

(st([a]g((a+1)/2))([n0]left(oh1 n0)@

([a]right(oh1 n0)((a+1)/2)))))

right(oh0(Succ(Succ Zero)))

oh0))

38 / 41



Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ )→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

inl 7→ Stop |
inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

inl yW 7→ y |
inr zτ 7→ coRτWzM])

xR(W+τ)]

with M the map-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

39 / 41



Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

I Simply typed theory, with “lazy” free algebras as base types
(⇒ constructors are injective and have disjoint ranges).

I Variables range over partial continuous functionals.

I Constants denote computable functionals (:= r.e. ideals).

I Minimal logic (→, ∀), plus inductive & coinductive definitions.

I Computational content in abstract theories.

I Decorations (→c,∀c and →nc, ∀nc) to (i) allow abstract
theory and (ii) remove unused data.

40 / 41



References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear, MSCS.

I K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

41 / 41


