Extracting programs from proofs

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

JAIST, 7. March 2014

1/41

Overview

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

2/41

The Dyck language of balanced lists of L and R

E: expressions formed as lists of left and right parentheses L, R.
Dyck language of balanced parentheses is generated by either of

grammar U : E ::=Nil | ELER
grammar S : E:=Nil| LER| EE

Restrict attention to U (has unique generation trees).

3/41

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

4/41

Parsing

Goal: recognize whether a list of left and right parentheses is
balanced, and if so produce a generating tree (i.e., a parse tree).

» Write-and-verify method: write a parser as a shift-reduce
syntax analyser, and verify that it is correct and complete.

» Prove-and-extract method: Prove the specification A and
extract its computational content in the form of a realizing
term t. Since t is in T, we can automatically prove (verify)
t r A, by means of a formalization of the soundness theorem.

5/41

» Formulate the grammar U as an inductively defined predicate
over lists x, y, z of parentheses L, R given by the clauses
InitU: U(Nil)
GenU: Ux — Uy — U(xLyR)
» Work with RP(n, x) meaning U(xR") and LP(n, y) meaning
U(L"y). For RP we have an inductive definition
RP(0, Nil)
Uz — RP(n,x) = RP(n+ 1, xzL)
LP can be defined via a boolean valued function
LP(0,Nil) =t
LP(n+ 1,Nil) = ff
LP(n, Lx) = LP(n+1,x)
LP(0, Rx) = ff
LP(n+ 1,Rx) = LP(n, x)

6/41

Closure property of U

VY Vnx z(RP(n, x) —=¢ Uz = LP(n,y) — U(xzy)).
Proof.

Show by induction on y that the claim holds for all n.

Base Nil. Use elimination for RP(n, x).

Step. In case L :: y use IHy for n+ 1.

In case R :: y again use elimination for RP(n, x).

The first RP clause uses Efq, the second one IHy, GenU and
equality arguments.

O

7/41

Have

ViV z(RP(n,x) = Uz = LP(n,y) — U(xzy)).

v

In particular V§(LP(0,y) — Uy).
Conversely V, (Uy — LP(0,y)) (by elimination for U).

Hence the test LP(0, y) is correct (all y in U satisfies it) and
complete (it implies y in U).

v

v

v

Because of LP(0, y) <» Uy we have a decision procedure for
U. With p a boolean variable we can express this by a proof of

VeI ((p — Uy) A ((p — F) = Uy — F)).

The computational content of this proof is a parser for U. Given y
it returns a boolean saying whether or not y is in U, and if so it
also returns a generation tree (i.e., a parse tree) for Uy.

8 /41

Extracted term

[x] LP 0 x@
(Rec list par=>list bin=>bin=>bin)x
([as,a] [case as ((Nil bin) -> a)
(a0::as0 -> 0)1)
([par,x0,f,as,al
[case par
(L -> f(a::as)0)
(R => [case as ((Nil bin) -> 0)
(a0::as0 -> f as0(a0 B a))1)1)
(Nil bin)
0

9/41

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

10 /41

[x] LP 0 x@
(Rec list par=>list bin=>bin=>bin)x
([as,a] [case as ((Nil bin) -> a)
(a0::as0 -> 0)1)
([par,x0,f,as,a]
[case par
(L —> f(a::as)0)
(R -> [case as ((Nil bin) -> 0)
(a0::as0 -> f as0(a0 B a))1)1)

(Nil bin)
0
It amounts to applying a function g to x, Nil and O, where
if a = Nil
g(Nil,ss,2) = a0 :
O else

g(L:: xo,a,a) = g(xo,a:: a,0)

0 if & = Nil
g(R :: xp,a5,a) =)
g(xo, 0,30 B a) if as=ag:: ap

11 / 41

a ifas=Nil
O else
g(L::xp,a5,a) = g(xo,a:: a5, 0)

0] if & = Nil
g(R:x0,3,a) = .
g(xo0,a0,30 B a) if a=ap: ap

g(Nil,;as,a) = {

In g(x, as, a)
» x is a list of parentheses L, R to be parsed.
> a5 is a stack of parse trees.

> ais the working memory of the parser which stores the parse
tree being generated.

Initially g is called with x, the empty stack Nil and the empty
parse tree O.

12 /41

if Nil
g(Nil, a5, a) rE=
O else

g(L:: xp,a5,a) = g(xo,a
(R - x0, 5, 3) { !fas—Nll
(x0, 350,80 B a) if a=ap:: ap
Read x from left to right.
Suppose x = L :: xp. Push the current parse tree a
(corresponding to Eg in EgLE;R) onto the stack. Then g
starts generating a parse tree for the rest xg of x, with O in
its working memory.
Suppose x = R :: xp. If the stack is Nil, return O. If not, pop
the top element ag from the stack. Then g starts generating a
parse tree for the rest xg of x, the tail asy of the stack, and as
current parse tree ag B a in its working memory.
13 /41

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

14 /41

(load ""/minlog/init.scm")

(add-algs "bin"
) (Ilbinll IIOII)
> ("bin=>bin=>bin" "BinBranch"))

(add-infix-display-string "BinBranch" "B" ’pair-op)

(set! COMMENT-FLAG #f)
(libload "nat.scm")
(libload "list.scm")
(set! COMMENT-FLAG #t)

(add_algs llparll J ("LII llpar") J (IIRH Ilparll))
(add-totality "par")

(add-var-name "p" (py "boole"))
(add-var-name "x" "y" "z" (py "list par"))

15 /41

(add-ids

(1ist (list "U" (make-arity (py "list par")) "bin"))
>»("U(Nil par)" "InitU")
’("allnc x,y(U x -> U y -> U(x++L: ++y++R:))" "GenU"))

(add-program-constant "LP" (py "nat=>list par=>boole"))

(add-computation-rules
"LP 0(Nil par)"
"LP(Succ n) (Nil par)"
"LP n(L::x)"

"LP O(R::x)"
"LP(Succ n) (R::x)"

"True"
"False"
"LP(Succ n)x"
"False"

"LP n x")

16 / 41

;5 RP (with a parameter predicate to be substituted by U)
(add-pvar-name "P" (make-arity (py "list par")))

(add-ids
(1ist (list "RP" (make-arity (py "nat") (py "list par"))
"list"))
>("RP O(Nil par)" "InitRP")
>("allnc n,x,z(P z => RP n x -> RP(Succ n) (x++z++L:))"
"GenRP"))

17 /41

;3 ClosureU

(set-goal

"all y allnc n,x,z(

(RP (cterm (x*) Ux))nx ->Uz ->LPny —>
U(x++z++y)) ™)

;3 Soundness
(set-goal "allnc y(Uy -> LP 0 y)")

;; Completeness
(set-goal "all y(LP Oy -> U y)")

;5 ParselLemma

(set-goal "all y ex p((p > U y) &
(p>F) >Uy->F)"

18 /41

(animate "ClosureU")
(animate "Completeness")

(add-var-name "a" (py "bin"))
(add-var-name "as" (py "list bin"))
(add-var-name "f" (py "list bin=>bin=>bin"))

(define eterm (proof-to-extracted-term

(theorem-name-to-proof "ParseLemma")))
(define parser-term (rename-variables (ut eterm)))
(ppc parser-term)

19 /41

(test-parser-term parser-term 6)

Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing
Testing

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

() o e v s v o R o e e) N o e e

B o m e m e m e D e w e D W

AR R

RN R

NN R

Bt M MM WM WM MW W W

No
No
No

Parse tree:

No

Parse tree:
Parse tree:

No
No

Parse tree:
Parse tree:

No
No
No
No
No

0BOBOBO

0 B(0O B0O)BO
(0BOBOBO

(bBOBOBO
((0 B0O)B OB O

20 /41

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

21 /41

Theorem (lIshihara’s trick)

Let f be a linear map from a Banach space X into a normed space
Y, and let (up) be a sequence in X converging to 0. Then for
0 < a < b either a < |fup| for some n or |fun| < b for all n.

Proof. Let M be a modulus of convergence of (u,) to 0; assume
MO = 0. Call ma hiton nif My < m < Mpy1 and a < |fup|.
First goal: define a function h: N — N such that

» h, =0 if for all N < n there is no hit;
» h, = m+ 2 if at n for the first time we have a hit, with m;
» h, =1 if there is an n’ < n with a hit.

22 /41

We will need the bounded least number operator u,g defined
recursively as follows (g a variable of type N — B).

pog =0,

]0 if g0
Hn€ = Sun(goS) otherwise.

From un,g we define

n . (/Jnfno)\mg(m + nO)) + no if ng<n
lu’nog = H
0 otherwise.

23 /41

To define h we use a function g of type N — B (to be defined
from cApproxSplit) such that

a<|fum| ifgm
[fum| < b otherwise.

Then we can define h, := H(g, M, n) where

0 if M, < puy, g and /\/in+1 <y
H(g,M,n):= ,uM"“g+ 2 if M, <pum,g and ,u g < Mpt1
1 if fm,8 < Mp.

24 /41

Next goal: define from h a sequence (v,) in X such that

» v, =0if h, =0;

> v, = nuy, if h, = m+2;

> Vv, = Vp_1 if h, = 1.
Let £ be the type of elements of X, and wus: N — £ a variable.
Define v, := Vg(g, M, us, n) where (writing up, for us(m))

0 if H(g, M, n) =
Ve(g, M, s,n) = { "™ i”ﬂ&MIﬁ_m+2

0 (arbitrary) if Hig,M,n)=1and n=10

Ve(g,M,u5,n—1) if H(g,M,n)=1and n>0.

One can show that (v,) has the properties listed above.

25 /41

Next we show that (v,) is a Cauchy sequence with modulus
N(k) := 2k + 1, which satisfies

_1
oN(k) = 2k’

Since our goal is stable, we may employ arbitrary case distinctions
(here: there is a hit / there is no hit).

By the assumed completeness of X we have a limit v of (v,). Pick
ng such that |fv| < npa. Assume that there is a first hit at some
n > ng, with value m. Then v = v, = nu,, and

na < nlfum| = [n(fum)| = |f(num)| = [fv] < noa < na,
a contradiction. Hence beyond this ng we cannot have a first hit.

If V<nohn = 0 then there is no hit and we have |fu,| < b for all n.
Otherwise there is a hit before ng, hence a < |fu,| for some n.

26 /41

The computational content machine extracted from this proof is

[f,us,M,a,al,k]
[let g
([nlnegb(cAC([nO] cApproxSplitBooleRat
a a0 lnorm(f(us n0))k)n))
[case (H g M
(cRealPosRatBound
lnorm(f ((cXCompl xi)
((V xi)g M us)
([k0] abs (IntS(2*k0)max 0))))
a))
(Zero -> False)
(Succ n -> True)]]

Here H and V are the functionals defined above.

27 / 41

cAC is the computational content of the axiom of choice

(pp IIACH)
all m ex boole (Pvar nat boole)” m boole —>
ex g all m (Pvar nat boole)” m(g m)

and hence the identity. cApproxSplitBooleRat and
cRealPosRatBound are the computational content of lemmata

all a,b,x,k(Real x -> 1/2%xk<=b-a ->
ex boole((boole -> x<<=b) andu ((boole -> F) —> a<<=x)))

all x,a(Real x -> 0<a -> ex n x<<=n%*a)

28 /41

Modifying the theorem by decorations

> In our formulation of Ishihara’s trick we have used the
decorated disjunction V" (u for uniform) to express the final
alternative.

» This means that the computational content of the lemma
returns just a boolean, expressing which side of the
disjunction holds, but not returning a witness for the
existential quantifier in the left hand side, 3,a < |fu,|.

» To change this use the “left” disjunction V! instead.

Then literally the same proof works.

29 /41

[f,us,M,a,al,k]
[let g
([nlnegb(cAC([nO] cApproxSplitBooleRat
a a0 lnorm(f(us n0))k)n))
[let n
(cRealPosRatBound
Inorm(f ((cXCompl xi)
((V xi)g M us)
([k0]abs (IntS(2*k0)max 0))))
a)
[case (H g M n)
(Zero -> (DummyR nat))
(Succ n0 -> Inl right(cHFind g M n))]]]

Note that the required witness is obtained by an application of
cHFind, the computational content of a lemma HFind:

(pp "HFind")
all g,M,n(M Zero=Zero -> (H g M n=Zero -> F) ->
ex n0,m(n0<=n & H g M n0=m+2))

30 / 41

» Parsing balanced lists of parentheses

» Informal proof
» Discussion of the extracted term
» Formalization, extraction and testing

» Ishihara’s trick

» Computing with infinite data

31/41

Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

> Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf = Vo3mVaT(Fllam] C Ipn) With lp = [b— %, b+ 2

Bmnf
Then
n—m modulus of (uniform) continuity (w)
n,ar— b approximating rational function (h)

32/41

Readx and its witnesses

Inductively define a predicate Readx of arity (¢) by the clauses

ViVa(f[l] C Iy — X(Outy o f) — Readxf), (Readx)d
Vi‘(Readx(f oIn_1) — Readx(f o Ing) — Readx(f oIn;) —
Readxf).
(Readx)y

where Iy = [%, %] (d € {-1,0,1}) and

X+ d

(Outy o f)(x) := 2f(x) — d, (f oIng)(x) := f(5)-

Witnesses for Readxf: total ideals in
R, = ug(PutSD_mHg, Getf_*g_’é_%)

where SD := {—1,0,1}.

33/41

Write, ““Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in
W := f1¢(Stop®, ContRe %),
Define ““Write, a companion predicate of Write, by
Ve (““Write f — Eq(f,Id) V Readcownitef). (“°“Write) ™

Witnesses for “®Write f: W-cototal Ry-total ideals t.

34 /41

W-cototal Ry-total ideals

are possibly non well-founded trees t:

Get
Cont
Stop
Stop Puty
Get

» Get-Put-part: well-founded,

» Stop-Cont-part: not necessarily well-founded.

35 /41

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t,.

» At node Stop, return the rest of the input unprocessed as
output.

» At node Cont t, continue with the tree t.

Output might be infinite, but Ryy-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

36 /41

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
\VI?C(Q f— V?C(Q f— Eq(f, Id) V Readcowrite\/Q f) — ““Write f)

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V3(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V2¢(Cf — Eq(f,Id) V Readeowritevcf). Assume Cf, in particular
Bmoaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. VpV3¢(Bmof — Cf — Readeowritevcf).
Proof. Induction on m, using Lemma 2 in the base case.
Lemma 2 [FindSD]. V}¢(Boof — 34(f[/] C 1g)).

Proof. Assume Bgf. Then f[lpg] C I for some b, by definition
of Bpm. Have b < —%, —% < ph< % or % < b. Can determine
either of /b,2 C 4, Ib,2 Clyor Ib,2 C I1, hence Ed(f[l] - Id)

37/41

[oh] (CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([ohO]Inr((Rec nat=>..[type]..)
left (ohO(Succ(Succ Zero)))
([g,oh1] [let sd (cFindSd(g 0))
(Put sd
(InR([n]left(ohl(Succ n))a@
([al2#right (ohl(Succ n))a-SDToInt sd))))]1)
([n,st,g,oh1]
Get
(st([alg((a+IntN 1)/2))
([n0]left(ohl no)@
([alright (ohl n0) ((a+IntN 1)/2))))
(st ([alg(a/2)) ([n0]left (ohl no)e
([alright (ohl n0) (a/2))))
(st(lalg((a+1)/2)) ([n0]1left(ohl nl)@
([alright (ohl n0) ((a+1)/2)))))
right (ohO(Succ(Succ Zero)))
oh0))

38 / 41

Corecursion
The corecursion operator “Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule
ORI NM — [case (MN)VFTRWT) of
inl _ +— Stop |
inr x — Cont(M% (\p[case pV T of
R(W-+7)(Ap P
inl yW — y |
inr z7 — “RyzM])
KROW7))

with M the map-operator.
» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).
» No termination; translate into Haskell for evaluation.
39 /41

Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

» Simply typed theory, with “lazy” free algebras as base types
(= constructors are injective and have disjoint ranges).

» Variables range over partial continuous functionals.

» Constants denote computable functionals (:= r.e. ideals).

» Minimal logic (—, V), plus inductive & coinductive definitions.
» Computational content in abstract theories.

» Decorations (—¢, V¢ and —"¢, V") to (i) allow abstract
theory and (ii) remove unused data.

40 /41

References

v

U. Berger, From coinductive proofs to exact real arithmetic.
CSL 20009.

K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear, MSCS.

v

v

K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013.

v

H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

41/ 41

