A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

JAIST, 6. March 2014

Overview

- Formulas and predicates
- A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ▶ The type of a formula or predicate
- Realizability
- Extracted terms

Simultaneously define formula forms and predicate forms

$$A, B ::= P\vec{r} \mid A \to B \mid \forall_x A,$$

$$P, Q ::= X \mid \{\vec{x} \mid A\} \mid \mu_X(\forall_{\vec{x}_i}((A_{i\nu})_{\nu < n_i} \to X\vec{r}_i))_{i < k}$$

Need restriction: X at most strictly positive in $A_{i\nu}$.

Strict positivity

We define Y occurs at most strictly positive in C, for C either a formula form or a predicate form.

$$\frac{\operatorname{SP}(Y,P)}{\operatorname{SP}(Y,P\vec{r})} \qquad \frac{Y\notin\operatorname{FPV}(A)\quad\operatorname{SP}(Y,B)}{\operatorname{SP}(Y,A\to B)} \qquad \frac{\operatorname{SP}(Y,A)}{\operatorname{SP}(Y,\forall_x A)}$$

For
$$C = X$$
 or $C = \{\vec{x} \mid A\}$

$$\operatorname{SP}(Y,X) = \frac{\operatorname{SP}(Y,A)}{\operatorname{SP}(Y,\{\vec{x}\mid A\})}$$

For C an inductive predicate

$$\frac{\operatorname{SP}(Y, A_{i\nu}) \text{ for all } i < k, \ \nu < n_i}{\operatorname{SP}(Y, \mu_X(\forall_{\vec{x_i}}((A_{i\nu})_{\nu < n_i} \to X\vec{r_i}))_{i < k})}$$

Simultaneously define formulas and predicates

$$\frac{\operatorname{Pred}(P)}{\operatorname{F}(P\vec{r})} \qquad \frac{\operatorname{F}(A) \quad \operatorname{F}(B)}{\operatorname{F}(A \to B)} \qquad \frac{\operatorname{F}(A)}{\operatorname{F}(\forall_{x} A)}$$

For predicate variables or comprehension terms

$$\operatorname{Pred}(X) \qquad \frac{\operatorname{F}(A)}{\operatorname{Pred}(\{\vec{x} \mid A\})}$$

For inductive predicates

$$\frac{\mathrm{F}(A_{i\nu}) \text{ and } \mathrm{SP}(X, A_{i\nu}) \text{ for all } i < k, \ \nu < n_i}{\mathrm{Pred}(\mu_X(\forall_{\vec{x}_i}((A_{i\nu})_{\nu < n_i} \to X\vec{r}_i))_{i < k})}$$

where to avoid empty inductive predicates we also require

$$X \notin \text{FPV}(A_{0\nu})$$
 for all $\nu < n_0$.

Let $\forall_{\vec{x}}((A_{\nu}(X))_{\nu < n} \to X\vec{r})$ be the *i*-th component of *I*. Call

$$I_i^+$$
: $\forall_{\vec{x}}((A_{\nu}(I))_{\nu < n} \to I\vec{r})$

the i-th clause (or introduction axiom) of I.

- Formulas and predicates
- ► A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ▶ The type of a formula or predicate
- Realizability
- Extracted terms

Theory of computable functionals

TCF is the system in minimal logic for \rightarrow and \forall , whose formulas are those in F above, and whose axioms are, for each I,

- ightharpoonup all I_i^+
- $I^-: \forall_{\vec{x}} (I\vec{x} \to (\forall_{\vec{x}_i} ((A_{i\nu}(I \cap X))_{\nu < n_i} \to X\vec{r}_i))_{i < k} \to X\vec{x})$

where $I \cap X := \{\vec{x} \mid I\vec{x} \wedge X\vec{x}\}$ with \wedge defined inductively below.

Equalities

- (i) Defined function constants D are introduced by computation rules, written I = r, but intended as left-to-right rewrites.
- (ii) Leibniz equality Eq inductively defined below.
- (iii) Pointwise equality between partial continuous functionals can be defined inductively as well.
- (iv) If I and r have a finitary algebra as their type, I = r can be read as a boolean term, where = is the decidable equality defined as a boolean-valued binary function.

In TCF formulas A(r) and A(s) are identified if $r, s \in T^+$ have a common reduct.

Leibniz equality Eq

$$\begin{split} & \operatorname{Eq}^+ \colon \forall_x \operatorname{Eq}(x^\rho, x^\rho) \\ & \operatorname{Eq}^- \colon \forall_{x,y} (\operatorname{Eq}(x,y) \to \forall_x X x x \to X x y). \end{split}$$

Compatibility of Eq: $\forall_{x,y} (\text{Eq}(x,y) \to A(x) \to A(y))$.

Proof.

Use Eq⁻ with $\{x, y \mid A(x) \rightarrow A(y)\}$ for X.

Define falsity by $\mathbf{F} := \mathrm{Eq}(\mathrm{ff}, \mathrm{tt})$.

Ex-falso-quodlibet: $TCF \vdash \mathbf{F} \rightarrow A$ for $FPV(A) = \emptyset$.

Proof.

1. Show $\mathbf{F} \to \mathrm{Eq}(x^{\rho}, y^{\rho})$.

$$\begin{split} & \operatorname{Eq}(\mathcal{R}^{\rho}_{\mathbf{B}}\mathsf{ff}xy,\mathcal{R}^{\rho}_{\mathbf{B}}\mathsf{ff}xy) & \text{by } \operatorname{Eq}^{+} \\ & \operatorname{Eq}(\mathcal{R}^{\rho}_{\mathbf{B}}\mathsf{tt}xy,\mathcal{R}^{\rho}_{\mathbf{B}}\mathsf{ff}xy) & \text{by compatibility from } \operatorname{Eq}(\mathsf{ff},\mathsf{tt}) \\ & \operatorname{Eq}(x^{\rho},y^{\rho}) & \text{by conversion.} \end{split}$$

2. Show $\mathbf{F} \to A$, by induction on A. Case $I\vec{s}$. Let K_0 be the nullary clause, with final conclusion $I\vec{t}$.

By IH from **F** we can derive all parameter premises, hence $I\vec{t}$.

From **F** we also have $Eq(s_i, t_i)$ by 1.

Hence $I\vec{s}$ by compatibility.

The cases $A \to B$ and $\forall_x A$ are obvious.

Lifting a boolean term $r^{\mathbf{B}}$ to a formula

Define

$$atom(r^{\mathbf{B}}) := Eq(r^{\mathbf{B}}, tt).$$

This simplifies equational reasoning.

Example: by the computation rules the boolean term $Sr =_{\mathbb{N}} Ss$, i.e. $=_{\mathbb{N}} (Sr, Ss)$, is identified with $r =_{\mathbb{N}} s$. Hence: no need to prove

$$Sr =_{\mathbb{N}} Ss \rightarrow r =_{\mathbb{N}} s.$$

Existence

 $\exists_x A$ can be inductively defined (Martin-Löf):

$$Ex(Y) := \mu_X(\forall_x(Yx^\rho \to X)).$$

Abbreviate $\operatorname{Ex}(\{x^{\rho} \mid A\})$ by $\exists_x A$. Then

 \exists^+ : $\forall_x (Yx \to \exists_x Yx),$

 \exists^- : $\exists_X Yx \to \forall_X (Yx \to X) \to X$.

Conjunction, disjunction

And
$$(Y, Z) := \mu_X(Y \to Z \to X),$$

Or $(Y, Z) := \mu_X(Y \to X, Z \to X).$

Abbreviate And($\{ | A \}, \{ | B \}$) by $A \wedge B$ and Or($\{ | A \}, \{ | B \}$) by $A \vee B$. Then

Even numbers. Introduction axioms:

Even(0),
$$\forall_n(\text{Even}(n) \to \text{Even}(S(Sn)))$$

Elimination axiom:

$$\forall_n (\mathrm{Even}(n) \to X0 \to \forall_n (\mathrm{Even}(n) \to Xn \to X(\mathrm{S}(\mathrm{S}n))) \to Xn).$$

Totality. Introduction axioms:

$$T_{\mathbf{N}}0, \quad \forall_n(T_{\mathbf{N}}n \to T_{\mathbf{N}}(\mathbf{S}n)).$$

Elimination axiom:

$$\forall_n (T_{\mathbf{N}}n \to X0 \to \forall_n (T_{\mathbf{N}}n \to Xn \to X(\mathbf{S}n)) \to Xn).$$

- \triangleright Every "competitor" X satisfying the clauses contains T_N .
- ▶ Induction for **N**, which only holds for total numbers.
- Fits the logical elimination rules (main part comes first).
- ▶ "Strengthened" step formula $\forall_n (T_{\mathbf{N}}n \to Xn \to X(\mathbf{S}n))$.

Transitive closure TC_{\prec}

Let \prec be a binary predicate variable. Introduction axioms:

$$\forall_{x,y}(x \prec y \to \mathrm{TC}_{\prec}(x,y)),$$

 $\forall_{x,y,z}(x \prec y \to \mathrm{TC}_{\prec}(y,z) \to \mathrm{TC}_{\prec}(x,z)).$

Elimination axiom:

$$\forall_{x,y}(\mathrm{TC}_{\prec}(x,y) \to \forall_{x,y}(x \prec y \to Xxy) \to \\ \forall_{x,y,z}(x \prec y \to \mathrm{TC}_{\prec}(y,z) \to Xyz \to Xxz) \to \\ Xxy).$$

Relation of TCF to type theory

- ▶ Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- ▶ Minimal logic: \rightarrow , \forall only. Eq(x, y) (Leibniz equality), \exists , \lor , \land inductively defined (Martin-Löf).
- ▶ $\mathbf{F} := \mathrm{Eq}(\mathsf{ff},\mathsf{tt})$. Ex-falso-quodlibet: $\mathbf{F} \to A$ provable.
- ▶ "Decorations" \rightarrow^{nc} , \forall^{nc} (i) allow abstract theory (ii) remove unused data.

- Formulas and predicates
- A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ▶ The type of a formula or predicate
- Realizability
- Extracted terms

Brouwer - Heyting - Kolmogorov

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- ▶ p proves $A \rightarrow B$ if and only if p is a construction transforming any proof q of A into a proof p(q) of B.
- ▶ p proves $\forall_{x^{\rho}}A(x)$ if and only if p is a construction such that for all a^{ρ} , p(a) proves A(a).

Leaves open:

- ▶ What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- ► Construction: computable functional.
- ▶ Proof of a prime formula $I\vec{r}$: generation tree.

Example: generation tree for $\mathrm{Even}(6)$ should consist of a single branch with nodes $\mathrm{Even}(0)$, $\mathrm{Even}(2)$, $\mathrm{Even}(4)$ and $\mathrm{Even}(6)$.

Decoration

Which of the variables \vec{x} and assumptions \vec{A} are actually used in the "solution" provided by a proof of

$$\forall_{\vec{x}}(\vec{A} \rightarrow I\vec{r})$$
?

To express this we split each of \rightarrow , \forall into two variants:

- ightharpoonup a "computational" one $ightharpoonup^c, orall^c$ and
- lacktriangle a "non-computational" one $ightarrow^{
 m nc}, orall^{
 m nc}$ (with restricted rules)

and consider

$$\forall_{\vec{X}}^{\text{nc}}\forall_{\vec{y}}^{\text{c}}(\vec{A} \to^{\text{nc}} \vec{B} \to^{\text{c}} X\vec{r}).$$

This will lead to a different (simplified) algebra ι_I associated with the inductive predicate I.

Examples

Write \rightarrow if it does not matter whether we have \rightarrow^c or \rightarrow^{nc} .

Eq⁺:
$$\forall_{x}^{\text{nc}} \text{Eq}(x^{\rho}, x^{\rho})$$

Eq⁻: $\forall_{x,y}^{\text{nc}} (\text{Eq}(x, y) \to \forall_{x}^{\text{nc}} X x x \to^{\text{c}} X x y),$
 $(\exists^{\text{u}})^{+}$: $\forall_{x}^{\text{nc}} (Y x \to^{\text{nc}} \exists_{x}^{\text{u}} Y x),$
 $(\exists^{\text{u}})^{-}$: $\exists_{x}^{\text{u}} Y x \to \forall_{x}^{\text{nc}} (Y x \to^{\text{nc}} X) \to^{\text{c}} X,$

 $(\wedge^{\mathrm{u}})^{+}: Y \to^{\mathrm{nc}} Z \to^{\mathrm{nc}} Y \wedge^{\mathrm{u}} Z,$

 $(\wedge^{\mathrm{u}})^{-}: Y \wedge^{\mathrm{u}} Z \to (Y \to^{\mathrm{nc}} Z \to^{\mathrm{nc}} X) \to^{\mathrm{c}} X.$

Computational variants of existence and conjunction

 \exists^u and \wedge^u have just been defined.

$$\begin{array}{ll} \forall_{x}^{\mathrm{c}}(Yx \to^{\mathrm{c}} \exists_{x}^{\mathrm{d}}Yx), & \exists_{x}^{\mathrm{d}}Yx \to^{\mathrm{c}} \forall_{x}^{\mathrm{c}}(Yx \to^{\mathrm{c}}X) \to^{\mathrm{c}}X, \\ \forall_{x}^{\mathrm{c}}(Yx \to^{\mathrm{nc}} \exists_{x}^{\mathrm{l}}Yx), & \exists_{x}^{\mathrm{l}}Yx \to^{\mathrm{c}} \forall_{x}^{\mathrm{c}}(Yx \to^{\mathrm{nc}}X) \to^{\mathrm{c}}X, \\ \forall_{x}^{\mathrm{nc}}(Yx \to^{\mathrm{c}} \exists_{x}^{\mathrm{r}}Yx), & \exists_{x}^{\mathrm{r}}Yx \to^{\mathrm{c}} \forall_{x}^{\mathrm{nc}}(Yx \to^{\mathrm{c}}X) \to^{\mathrm{c}}X, \end{array}$$

and similar for \wedge :

$$Y \rightarrow^{c} Z \rightarrow^{c} Y \wedge^{d} Z,$$
 $Y \wedge^{d} Z \rightarrow^{c} (Y \rightarrow^{c} Z \rightarrow^{c} X) \rightarrow^{c} X,$
 $Y \rightarrow^{c} Z \rightarrow^{nc} Y \wedge^{l} Z,$ $Y \wedge^{l} Z \rightarrow^{c} (Y \rightarrow^{c} Z \rightarrow^{nc} X) \rightarrow^{c} X,$
 $Y \rightarrow^{nc} Z \rightarrow^{c} Y \wedge^{r} Z,$ $Y \wedge^{r} Z \rightarrow^{c} (Y \rightarrow^{nc} Z \rightarrow^{c} X) \rightarrow^{c} X$

Computational variants of disjunction

$$\begin{split} Y &\rightarrow^{\mathrm{c}} Y \vee^{\mathrm{d}} Z, \quad Z \rightarrow^{\mathrm{c}} Y \vee^{\mathrm{d}} Z, \\ Y &\rightarrow^{\mathrm{c}} Y \vee^{\mathrm{l}} Z, \quad Z \rightarrow^{\mathrm{nc}} Y \vee^{\mathrm{l}} Z, \\ Y &\rightarrow^{\mathrm{nc}} Y \vee^{\mathrm{r}} Z, \quad Z \rightarrow^{\mathrm{c}} Y \vee^{\mathrm{r}} Z, \\ Y &\rightarrow^{\mathrm{nc}} Y \vee^{\mathrm{u}} Z, \quad Z \rightarrow^{\mathrm{nc}} Y \vee^{\mathrm{u}} Z \end{split}$$

with elimination axioms

$$Y \vee^{\mathrm{d}} Z \rightarrow^{\mathrm{c}} (Y \rightarrow^{\mathrm{c}} X) \rightarrow^{\mathrm{c}} (Z \rightarrow^{\mathrm{c}} X) \rightarrow^{\mathrm{c}} X,$$
 $Y \vee^{\mathrm{l}} Z \rightarrow^{\mathrm{c}} (Y \rightarrow^{\mathrm{c}} X) \rightarrow^{\mathrm{c}} (Z \rightarrow^{\mathrm{nc}} X) \rightarrow^{\mathrm{c}} X,$
 $Y \vee^{\mathrm{r}} Z \rightarrow^{\mathrm{c}} (Y \rightarrow^{\mathrm{nc}} X) \rightarrow^{\mathrm{c}} (Z \rightarrow^{\mathrm{c}} X) \rightarrow^{\mathrm{c}} X,$
 $Y \vee^{\mathrm{u}} Z \rightarrow^{\mathrm{c}} (Y \rightarrow^{\mathrm{nc}} X) \rightarrow^{\mathrm{c}} (Z \rightarrow^{\mathrm{nc}} X) \rightarrow^{\mathrm{c}} X.$

Each inductive predicate is marked as computationally relevant (c.r.) or non-computational (n.c.) (or Harrop). In the latter case:

- ▶ it is "uniform one-clause defined", i.e., has just one clause with $\forall^{nc}, \rightarrow^{nc}$ only (examples: Eq, \exists^u, \land^u), or
- ▶ it is a "witnessing predicate" I^r, or
- ▶ all clauses are "non-computational invariant" (no \exists , \lor).

Notation in the final case: $\mu_X^{\rm nc}(K_0,\ldots,K_{k-1})$. Elimination scheme must be restricted to n.c. formulas.

Examples of n.c. inductive predicates are Eq, \exists^u , \wedge^u , \vee^{nc} where

$$(\vee^{\mathrm{nc}})_0^+ \colon Y \to^{\mathrm{nc}} Y \vee^{\mathrm{nc}} Z, \qquad (\vee^{\mathrm{nc}})_1^+ \colon Z \to^{\mathrm{nc}} Y \vee^{\mathrm{nc}} Z.$$

Note that \vee^{u} is c.r.

- Formulas and predicates
- A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ► The type of a formula or predicate
- Realizability
- Extracted terms

The type $\tau(C)$ of a formula or predicate C, and ι_I

 $\tau(C)$ type or the "nulltype symbol" \circ . Extend use of $\rho \to \sigma$ to \circ :

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Assume a global assignment of a type variable ξ to every X.

$$\tau(P\vec{r}) := \tau(P),$$

$$\tau(A \to^{c} B) := (\tau(A) \to \tau(B)), \quad \tau(A \to^{nc} B) := \tau(B),$$

$$\tau(\forall_{x^{\rho}}^{c} A) := (\rho \to \tau(A)), \quad \tau(\forall_{x^{\rho}}^{nc} A) := \tau(A),$$

$$\tau(X) := \xi,$$

$$\tau(\{\vec{x} \mid A\}) := \tau(A),$$

$$\tau(\mu_{X}^{nc}(K_{0}, \dots, K_{k-1})) := \circ,$$

$$\tau(\underline{\mu_{X}}(\forall_{\vec{x}_{i}}^{nc} \forall_{\vec{y}_{i}}^{c} (\vec{A}_{i} \to^{nc} \vec{B}_{i} \to^{c} X\vec{r}_{i}))_{i < k}) := \underline{\mu_{\xi}}(\tau(\vec{y}_{i}) \to \tau(\vec{B}_{i}) \to \xi)_{i < k}.$$

Call ι_I the algebra associated with I.

Examples

Let $a, b \in \mathbf{Q}$, $x \in \mathbf{R}$, $k \in \mathbf{Z}$, $f \in \mathbf{R} \to \mathbf{R}$.

The formula

$$\forall_{a,b,x}^{c} (a < b \rightarrow x \leq b \lor^{u} a \leq x)$$

has type $\mathbf{Q} \to \mathbf{Q} \to \mathbf{R} \to \mathbf{B}$.

▶ The formula

$$egin{aligned} & \forall_{f,k}^{\mathrm{c}}(f(0) \leq 0 \leq f(1)
ightarrow \ & \forall_{a,b} ig(rac{1}{2^k} |b-a| \leq |f(b)-f(a)|ig)
ightarrow \ & \exists_x^{\mathrm{l}} f(x) = 0) \end{aligned}$$

has type $(\mathbf{R} \to \mathbf{R}) \to \mathbf{Z} \to \mathbf{R}$.

- Formulas and predicates
- A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ▶ The type of a formula or predicate
- ► Realizability
- Extracted terms

Realizability

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

$$\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon \varepsilon := \varepsilon.$$

Assume a global assignment giving for every predicate variable X of arity $\vec{\rho}$ a predicate variable $X^{\mathbf{r}}$ of arity $(\tau(X), \vec{\rho})$.

$$t \mathbf{r} X \vec{r} := X^{\mathbf{r}} t \vec{r},$$

$$t \mathbf{r} (A \rightarrow^{c} B) := \forall_{x} (x \mathbf{r} A \rightarrow t x \mathbf{r} B),$$

$$t \mathbf{r} (A \rightarrow^{nc} B) := \forall_{x} (x \mathbf{r} A \rightarrow t \mathbf{r} B),$$

$$t \mathbf{r} \forall_{x}^{c} A := \forall_{x} (t x \mathbf{r} A),$$

$$t \mathbf{r} \forall_{x}^{nc} A := \forall_{x} (t \mathbf{r} A),$$

$$t \mathbf{r} \underbrace{(\mu_{X} (K_{0}, \dots, K_{k-1}))}_{t} \vec{s} := I^{\mathbf{r}} t \vec{s}$$

In case A is n.c., $\forall_x (x \mathbf{r} A \to B(x))$ means $\varepsilon \mathbf{r} A \to B(\varepsilon)$.

For

$$I := \mu_X(\forall_{\vec{x}_i}^{\mathrm{nc}} \forall_{\vec{y}_i}^{\mathrm{c}} ((A_{i\nu})_{\nu < n_i} \to^{\mathrm{nc}} (B_{i\nu})_{\nu < m_i} \to^{\mathrm{c}} X\vec{r}_i))_{i < k}$$

define

$$I^{\mathbf{r}} := \{ w, \vec{x} \mid (\mu_X^{\mathrm{nc}}(\forall_{\vec{x}_i, \vec{y}_i, \vec{u}_i}^{\mathrm{nc}}((\exists_{u_{i\nu}}u_{i\nu} \mathbf{r} A_{i\nu})_{\nu < n_i} \rightarrow^{\mathrm{nc}} (v_{i\nu} \mathbf{r} B_{i\nu})_{\nu < m_i} \rightarrow X(C_i \vec{y}_i \vec{v}_i) \vec{r}_i))_{i < k}) w \vec{x} \}.$$

For a general n.c. inductive predicate (with restricted elimination scheme) we define ε **r** $I\vec{s}$ to be $I\vec{s}$. For the special n.c. inductive predicates $I^{\mathbf{r}}$, Eq, \exists^{u} and \wedge^{u} let

$$\varepsilon \mathbf{r} I^{\mathbf{r}} t \vec{s} := I^{\mathbf{r}} t \vec{s},
\varepsilon \mathbf{r} \operatorname{Eq}(t, s) := \operatorname{Eq}(t, s),
\varepsilon \mathbf{r} \exists_{x}^{u} A := \exists_{x, y}^{u} (y \mathbf{r} A),
\varepsilon \mathbf{r} (A \wedge^{u} B) := \exists_{x}^{u} (x \mathbf{r} A) \wedge^{u} \exists_{y}^{u} (y \mathbf{r} B).$$

- Formulas and predicates
- ► A theory of computable functionals
- Brouwer Heyting Kolmogorov and decorations
- ▶ The type of a formula or predicate
- Realizability
- Extracted terms

For a derivation M of a formula A we define its extracted term $\operatorname{et}(M)$, of type $\tau(A)$. For M^A with A n.c. let $\operatorname{et}(M^A) := \varepsilon$. Else

$$\begin{array}{ll} \operatorname{et}(u^{A}) & := x_{u}^{\tau(A)} \quad (x_{u}^{\tau(A)} \text{ uniquely associated to } u^{A}), \\ \operatorname{et}((\lambda_{u^{A}}M^{B})^{A\to^{c}B}) & := \lambda_{x_{u}}^{\tau(A)}\operatorname{et}(M), \\ \operatorname{et}((M^{A\to^{c}B}N^{A})^{B}) & := \operatorname{et}(M)\operatorname{et}(N), \\ \operatorname{et}((\lambda_{x^{\rho}}M^{A})^{\forall_{x}^{c}A}) & := \lambda_{x}^{\rho}\operatorname{et}(M), \\ \operatorname{et}((M^{\forall_{x}^{c}A(x)}r)^{A(r)}) & := \operatorname{et}(M)r, \\ \operatorname{et}((\lambda_{u^{A}}M^{B})^{A\to^{nc}B}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{A\to^{nc}B}N^{A})^{B}) & := \operatorname{et}(M), \\ \operatorname{et}((\lambda_{x^{\rho}}M^{A})^{\forall_{x}^{nc}A}) & := \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_{x}^{nc}A(x)}r)^{A(r)}) & := \operatorname{et}(M). \end{array}$$

Here $\lambda_{x_n}^{\tau(A)}$ et(M) means et(M) if A is n.c.

Extracted terms for the axioms.

▶ Let / be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both C_i and \mathcal{R} refer to the algebra ι_I associated with I.

- ▶ Let I be a general n.c. predicate. Take ε for both the clauses and the (restricted!) elimination axiom.
- ▶ For the witnessing predicate $I^{\mathbf{r}}$ define $\operatorname{et}((I^{\mathbf{r}})^{-}) := \mathcal{R}_{\iota_{I}}$.
- ▶ For Eq, \exists^u , \wedge^u take identities of the appropriate type.

Theorem (Soundness)

Let M be a derivation of A from assumptions u_i : C_i . Then we can derive $\operatorname{et}(M)$ \mathbf{r} A from assumptions x_{u_i} \mathbf{r} C_i .

Proof.

By induction on M.

- ▶ The derivation in TCF of et(M) **r** A can be machine checked (automated verification).
- Cog's extraction returns Ocaml code.
- Agda views (complete) proofs as programs.