A theory of computable functionals

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

JAIST, 6. March 2014

1/34



Overview

v

Formulas and predicates

v

A theory of computable functionals

v

Brouwer - Heyting - Kolmogorov and decorations

v

The type of a formula or predicate

v

Realizability

Extracted terms

v

2/34



Simultaneously define formula forms and predicate forms

A B = PF| A= B| VA,
P, Q=X [{X| A} [ ux(Vz((Aiv)v<n = X7i))ick

Need restriction: X at most strictly positive in Aj,.

3/34



Strict positivity

We define Y occurs at most strictly positive in C, for C either a
formula form or a predicate form.
SP(Y, P) Y ¢ FPV(A) SP(Y,B) SP(Y,A)
SP(Y, Pr) SP(Y,A— B) SP(Y,V.A)

ForC=Xor C={X|A}

SP(Y, A)
SP(Y,{X[A})

SP(Y, X)

For C an inductive predicate

SP(Y,A;) for all i<k, v<n;
SP(Y7///X(V)_<}((AiV)V<n,- — XFi))i<k)

4/34



Simultaneously define formulas and predicates

Pred(P)  F(A) F(B) F(A)
F(PF) F(A— B)  F(VA)

For predicate variables or comprehension terms

F(A)

Pred(X —
edX) ({7 [AT)
For inductive predicates

F(Ai,) and SP(X, A;y) for all i<k, v<n;
Pred(,uX(V;,((Aiy)u<n,- — XF}))i<k)

where to avoid empty inductive predicates we also require

X §7_f FPV(AOV) for all v<ng.

5 /34



Let V3((Av(X))v<n — XTF) be the i-th component of /. Call
IE V(A1) v<n — I7)

the i-th clause (or introduction axiom) of /.

6/34



v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

7/34



Theory of computable functionals

TCEF is the system in minimal logic for — and V, whose formulas
are those in F above, and whose axioms are, for each /,

> all [
L A V;(I)? — (V;I((A,,/(I N X))I/<n,- — XF;')),'<;( — X)_(')
where I N X := {X | IX N XX} with A defined inductively below.

8 /34



Equalities

(i) Defined function constants D are introduced by computation
rules, written | = r, but intended as left-to-right rewrites.

(ii) Leibniz equality Eq inductively defined below.

(iii) Pointwise equality between partial continuous functionals can
be defined inductively as well.

(iv) If I and r have a finitary algebra as their type, / = r can be
read as a boolean term, where = is the decidable equality
defined as a boolean-valued binary function.

In TCF formulas A(r) and A(s) are identified if r,s € Tt have a
common reduct.

0/34



Leibniz equality Eq

Eq": V,Eq(x”, x)
Eq™: Ve (Eq(x, y) = Ve Xxx — Xxy).
Compatibility of Eq: Yy, (Eq(x,y) = A(x) = A(y)).

Proof.
Use Eq~ with { x,y | A(x) — A(y) } for X. O

10 /34



Define falsity by F := Eq(ff, tt).

Ex-falso-quodlibet: TCF + F — A for FPV(A) = 0.

Proof.
1. Show F — Eq(x”, y”).

Eq(Rgffxy, Reffxy) by Eq™"
Eq(Rgttxy, Rgffxy) by compatibility from Eq(ff, tt)

Eq(x?, y?) by conversion.

2. Show F — A, by induction on A. Case Is.

Let Ky be the nullary clause, with final conclusion /t.

By IH from F we can derive all parameter premises, hence /t.
From F we also have Eq(s;, t;) by 1.

Hence /S by compatibility.

The cases A — B and VA are obvious.

11/34



Lifting a boolean term rB to a formula

Define
atom(rB) := Eq(rB, tt).

This simplifies equational reasoning.

Example: by the computation rules the boolean term Sr =y Ss,
i.e. =n(Sr,Ss), is identified with r =N s. Hence: no need to prove

Sr=NSs —r=nSs.

12 /34



Existence

3xA can be inductively defined (Martin-Lof):
Ex(Y) := px(Vx(Yx — X)).
Abbreviate Ex({ x” | A}) by 34A. Then

3t Vi (Yx — 3x Yx),
3 I Yx = Vu(Yx = X) = X.

13 /34



Conjunction, disjunction

And(Y,Z) = ux(Y — Z = X),
Or(Y,2) =ux(Y =X, Z—= X).

Abbreviate And({| A},{| B}) by AAB and Or({| A},{| B}) by
AV B. Then

AT Y Z = YANZ,

AT YNZ = (Y —=Z—-X)—= X,

7% Y >YVZ, Z—>YVZ,

(A YVZ = (Y —=X)=(Z—X)—=X.

14 / 34



Even numbers. Introduction axioms:
Even(0), Vn(Even(n) — Even(S(Sn)))
Elimination axiom:
Vn(Even(n) — X0 — V,(Even(n) — Xn — X(S(Sn))) — Xn).
Totality. Introduction axioms:
TnO, Vo(Tnn — Tn(Sn)).
Elimination axiom:

Vo(Tnun — X0 — Vp(Tnn — Xn — X(Sn)) — Xn).

Every “competitor’ X satisfying the clauses contains Ty.
Induction for N, which only holds for total numbers.

Fits the logical elimination rules (main part comes first).
“Strengthened” step formula V,(Tyn — Xn — X(Sn)).

vV vV v Y

15/ 34



Transitive closure TC_

Let < be a binary predicate variable. Introduction axioms:

Viy(x <y = TC<(x,y)),
Vayz(x <y = TCx(y,z) = TC<(x, 2)).
Elimination axiom:

Vi (TCx(x,y) = Vi y(x <y = Xxy) —
Viy,z(x <y = TCx(y,z) = Xyz = Xxz) =
Xxy).

16 / 34



Relation of TCF' to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. Eq(x, y) (Leibniz equality), 3, v, A
inductively defined (Martin-Lof).

F := Eq(ff, tt). Ex-falso-quodlibet: F — A provable.

“Decorations” —"¢, V"¢ (i) allow abstract theory (ii) remove
unused data.

v

v

17 / 34



v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

18 /34



Brouwer - Heyting - Kolmogorov

Have —*, V*, /. BHK-interpretation:

» p proves A — B if and only if p is a construction transforming
any proof g of A into a proof p(q) of B.

» p proves V,»A(x) if and only if p is a construction such that
for all a”, p(a) proves A(a).

Leaves open:

» What is a “construction”?

» What is a proof of a prime formula?
Proposal:

» Construction: computable functional.

» Proof of a prime formula /7: generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

19 /34



Decoration

Which of the variables X and assumptions A are actually used in
the “solution” provided by a proof of

V(A = I7)?

To express this we split each of —,V into two variants:
» a “computational” one —¢,V° and
> a “non-computational” one —"¢ V¢ (with restricted rules)
and consider . _
VQCV;(A =" B = XT7).

This will lead to a different (simplified) algebra ¢; associated with
the inductive predicate /.

20/34



Examples

Write — if it does not matter whether we have —°¢ or —1¢,

Eqt: Vi Eq(x”, x?)

Eq™: Vo (Ba(x, y) — V3 Xxx = Xxy),
* Vel (Yx =" 31 Yx),

W Yx — Vi(Yx =" X) =° X,

Y 2% Z 3" YA Z,

YAN'Z = (Y =" Z 5" X) =X,

21/34



Computational variants of existence and conjunction

3" and A" have just been defined.

Ve (Yx —¢ 3 vx), Fyx ¢ Ve (Yx = X) =€ X,
Vo(Yx =™ 3 vx), 3L yx =0 VE(Yx -7 X) =° X,
VIO(Yx ¢ FEYx),  FLYx = VI(Yx ¢ X) =¢ X,
and similar for A:
Y s¢Zscypdz, Y AL Z 5 (Y ¢ Z =° X) 5 X,
Y scZsmeyalz Y AlZ 50 (Y o€ Z 55 X) 5¢ X,
Y " Z YN Z, YN ZSC(Y =-"Z-X)-X

22 /34



Computational variants of disjunction

Yy scyviz, zcvviz,

Y scyvviz, zoreyviz,

Y S Y\VEZ 2SS YV Z,

Y siCyyiz, Z s yyiz

with elimination axioms

Y Ve Z 50 (Y = X) =°(Z =° X) =° X,
Y VIZ 50 (Y 5 X) =°(Z =" X) - X,
Y V' Z = (Y =5 X) = (Z - X) =° X,
YV Z =C (Y =M X) =°(Z =" X) =° X.

23/34



Each inductive predicate is marked as computationally relevant
(c.r.) or non-computational (n.c.) (or Harrop). In the latter case:

> it is “uniform one-clause defined"”, i.e., has just one clause
with vV?¢, —"¢ only (examples: Eq, 3%, A"), or

> it is a “witnessing predicate” /", or
» all clauses are “non-computational invariant” (no 3, V).

Notation in the final case: u}°(Ko, ..., Kk—_1). Elimination scheme
must be restricted to n.c. formulas.

Examples of n.c. inductive predicates are Eq, 3%, A", V*¢ where
(an)ar: Y > yviez, (\/“C)f: Z ="y v Z,

Note that V" is c.r.

24 /34



v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

25 /34



The type 7(C) of a formula or predicate C, and ¢,
7(C) type or the “nulltype symbol” o. Extend use of p — o to o:

(p—0)i=0, (0—=0):=0, (0c—0):=o.

Assume a global assignment of a type variable £ to every X.

(1(A) — 7(B)), 7(A-="B):=17(B),
Vi A) == (p — 7(A), T(ViA) :=T7(A),

|
MXC(K0> SUR) Kk—l)) =0,

\1
=
X,

<

5
<
Q
>
>
1
g

Y

1

x
S
A
Z

= pe(r(7) = 7(Bj) = E)ic -

! Ll

Call ¢ the algebra associated with /.
26 /34



Examples

Leta,beQ, xeR keZ feR—R.

» The formula

Chx(a<b—x<bV'a<x)

a,b,x

has type Q - Q -+ R — B.

» The formula
fk(f(0) <0< f(1) —
1
Van(lb - al < 1F(8) ~ (@) =
3, f(x)=0)

has type (R -+ R) - Z — R.

27 /34



v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

28 /34



Realizability

Introduce a special nullterm symbol ¢ to be used as a “realizer” for
n.c. formulas. Extend term application to € by

et:=¢, te:=t, cg:=e¢.

Assume a global assignment giving for every predicate variable X
of arity p' a predicate variable X" of arity (7(X), o).

tr Xr:= X"tr,
tr(A—°B) =V (xrA — txrB),
tr (A—="B):=Vi(xrA — trB),
tr VS A =V (tx r A),
tr VA =V (t r A),
tr(ux(Ko,...,Kgo1))s:=1"ts

!

In case Ais n.c., Vi(x r A — B(x)) means e r A — B(e).
29 /34



For

= /LX(V)%CV}C‘;’-((AiV)V<n,- —1e (Biu)l/<m,- —¢ XFi))i<k

Ir = { sz | (M&C(vgﬁﬁ,ﬁi((ﬂu;y Up r Aiu)l/<n; _>nc (Viu r Bil/)V<m,‘
X(Ciyivi)Fi))ick)wX }.
For a general n.c. inductive predicate (with restricted elimination

scheme) we define ¢ r IS to be /5. For the special n.c. inductive
predicates /", Eq, 3" and A" let

erl"ts = I"t5,
erEq(t,s) =Eq(t,s),
er A =3, (yrA),

er (AAYB) := T(xr A) A" (y r B).

—

30 /34



v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

31/34



For a derivation M of a formula A we define its extracted term
et(M), of type 7(A). For MA with A n.c. let et(M?A) := ¢. Else

et(u™) = ;™ (x7™ uniquely associated to u?),
et((AaMBYA7B) = \TWe(M),

et((/WHCB/vA) ) = et(M)et(N),

et((Ax )W‘) = Net(M),

et((M )A") = et(M)r,

et((AaM )A*“B) = et(M),

et(MAZBNA)B) = et(M),

et((Aee MA)A) = et(M),

et((MV“CA )A<f>) ct(M).

Here )\;SA)et(I\/I) means et(M) if Ais n.c.

32/34



Extracted terms for the axioms.
» Let / be c.r.

et(;") := Cj, et(I7) =R,

where both C; and R refer to the algebra ¢; associated with /.

> Let / be a general n.c. predicate. Take ¢ for both the clauses
and the (restricted!) elimination axiom.

» For the witnessing predicate /" define et((/")”) :=R,,.
» For Eq, 3", A" take identities of the appropriate type.

33 /34



Theorem (Soundness)
Let M be a derivation of A from assumptions u;: C;. Then we can
derive et(M) v A from assumptions x,, v C;.

Proof.
By induction on M. O

» The derivation in TCF of et(M) r A can be machine checked
(automated verification).

» Coq’'s extraction returns Ocaml code.

» Agda views (complete) proofs as programs.

34 /34



