Invariance axioms for realizability

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

JAIST, 25. August 2016

1/31

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

» View a formula A as a computational problem, of type 7(A),
the type of a potential solution or “realizer” of A.

» Example: V,3p>,Prime(m) has type N — N.

Proposal: express this view as
invariance under realizability
of formulas A:

A <> there is a solution of problem A

» A may have nested implications.

» Hence a solution is a higher type computable functional
(“modified realizability").

2/31

Gédel (1958): “Uber eine noch nicht beniitzte Erweiterung
des finiten Standpunkts”. Higher type term system T.

Platek (1966): “Foundations of recursion theory".

Scott (1969): LCF “Logic for Computable Functions”. LCF's
term language has arithmetic, booleans and recursion in
higher types. LCF is based on classical logic.

Plotkin (1977): Higher type term system PCF, with partiality.

Martin-Lof (1984): constructive type theory. Formulas are
types. Functionals are total.

Proposal here: a constructive theory of computation in higher
types, based on the Scott (1970) - Ershov (1977) model of
partial continuous functionals.

points, ideals, abstract objects

™

finite approximations

3/31

Examples of computable functionals

» Fixed point operator Y: (p — p) — p defined by
Yf = f(Yf)

» Recursion operator R§: N =7 — (N — 7 — 7) — 7 defined
by

ROmf = m,
R(Sn)ymf = fn(Rnmf).

» Corecursion operator “Rf: 7 — (1 > U+ (N+7)) = N

4/31

Definition (Types).

pyoi=alp—=o|pe((piv)v<n = &)ick

Examples
U = peé (unit),
B = pe(&,6) (booleans),
N = pe(& €= (natural numbers, unary),
P =pe(§,€ = &€ =€) (positive numbers, binary),
D =pe(&, € =6 —=¢) (binary trees, or derivations),
L(a) = pe(§sa = € =€) (lists),
ax f:=p(a—p—=E) (product),
a+ = pe(a—& B —E) (sum).

5/31

(Finitary) algebras viewed as “non-flat Scott information systems”.

Why?
» Flat:
{o} {1} {2}
0

» Non flat: “tokens” for N are

5(5(50))

5(50) S(S(5%))

S0

6/31

Problem for flat algebras

v

Continuous functions are monotone: x C y — fx C fy.

v

Easy: every constructor gives rise to a continuous function.

v

Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms: Sx # 0 and Sx = Sy — x = y).

v

This holds for non-flat algebras, but not for flat ones. There
constructors must be strict (i.e., CX0y = @), hence

inP: So0 =0 = 5.0 (overlapping ranges),
in D: CO{0} =0 =C{0}0 (not injective).

7/31

The Scott-Ershov model of partial continuous functionals.

» Let A =(A,Conp,ta), B=(B,Cong,tpg) be “information
systems” (Scott). Function space: A — B := (C, Con,}):

C :=Cong x B,

{(Ui, bi)}ies € Con := VJg/(U U; € Conp — {bj}jes € Cong),
jeJ
{(Ui, bi)}tier = (U, b) == ({bi [Uta Uj } Fg b).

» Partial continuous functionals of type p: the “ideals” in C,
(ideals are consistent and deductively closed sets of tokens).

C, =(C,Con,HF,), C,no:=C,—C,.
» f € |C,|: limit of formal neighborhoods U € Con,_,,.

» f € |C,| computable: r.e. limit.

8/31

TCF (theory of computable functionals), a variant of HA* with
variables ranging over arbitrary partial continuous functionals.

>

v

Existence axioms: by terms, built from constants for (partial)
computable functionals, given by defining equations
(computation rules, pattern matching conditions apply)

Inductively (and coinductively) defined predicates. Totality for
ground types inductively defined.

Induction := elimination (or least-fixed-point) axiom for a
totality predicate. (Coinduction := greatest-fixed-point axiom
for a coinductively defined predicate.)

Minimal logic: —,V only. =4 (Leibniz), 3, V, A inductively
defined (Russell, Martin-Lof).
1 := (False =9 True). Ex-falso-quodlibet: 1 — A provable.

9/31

Proof terms in natural deduction

xP y? c” e vB AxC
| N\ | N\
Axe App -t -
N\
v V-

The realizability interpretation transforms such a proof term
directly into an object term.

10/31

Decoration

Proofs can be transformed and/or “decorated”, for efficiency of
the extracted program.

> A related concept of “proof irrelevance” has been studied by
Pfenning and (in Agda) by Abel/Scherer (2012).

We decorate

> connectives: —¢, V¢ and —"¢, V"¢, and

> l|east-fixed-point operators: u€, ™.
Distinguish two sorts of predicate variables

» computationally relevant ones X, Y,Z..., and

» non-computational ones X™¢, Y"¢ Z7¢ ..

11/31

Definition (Predicates and formulas).

P Q = X | X | (R AY | " (V5™ (A)wen, =/ XF))ici
A, B = PF| A =" B |v/™A

Write —, V, p for —¢, V¢, u€. Examples

Totaly = ux(X0,V,¢(Xn — X(Sn)))
ExDy = ux(Vx(Yx = X))

ExLy = ux(Vx(Yx =" X))
CupUy 7 = pux(Y =" X, Z =" X)

CupNcey 7 == ux (Y = X, Z = X)
Abbreviations
A =ExDya
JA =ExLya
AV B = CupUy a8}
AV B := CupNcy a1 {18}
12/31

Axioms

We have introduction and elimination axioms for inductively
defined predicates /. Example:

Even := ux(X0,V;(Xn — X(5(5n))))
Introduction axioms
Even(0), V¢ (Even(n) — Even(S5(5n)))
Elimination axioms

Vi¢(Even(n) — PO — VY, (Even(m) — Pm — P(S(Sm))) — Pn).

13/31

Computationally relevant (c.r.) and non-computational
(n.c.) predicates and formulas

To every predicate or formula C assign its final predicate fp(C)

fp(X) == X, fp(X"°) := X" fp(P7) := fp(P)
fp({X | A}) :==1p(A) fp(A =/ B) := fp(B)
fp(1) =1, fp(I"°) =1 fp (VS ve/ne 4 A) = fp(A)

C is non-computational (n.c.) if its final predicate fp(C) is of the
form X" or ["°. Else: computationally relevant (c.r.).

14 /31

Logic with decorations

Introduction and elimination rules for —¢/m¢ \ye/ne,
» In n.c. parts of a derivation (i.e., with an n.c. end formula)
decorations are ignored.
» If MB is a derivation and u” not a “computational assumption
variable” (u” ¢ CA(M)), then (A ,aMB)A="B is a derivation.
» If MA is a derivation, x is not free in any formula of a free

assumption variable of M and x not a “computational object
variable” (x ¢ CV(M)), then (A, MA)"°4 is a derivation.

15 /31

Computational assumption variables CA(M*)

For A n.c. let CA(MA) := (). Assume A c.r.

CA(CA) =0 (c* an axiom),
CA(u?) = {u},
CA((A\aMBYA7BY = CA((A A M)A B) = CA(M) \ {u},
CA((MABNA)B) .= CA(M) U CA(N),
(MAZBNAYEY .= cA(M),
CA((MMA)A) := CA((MMA)A) .= CA(M),
CA (vaA(x r) (r)) — CA((MV“CA(X)) (r)) = CA(M).

16 /31

Computational object variables CV(M*)

For A n.c. let CV(MA) := (). Assume A c.r.

CV(CA) =0 (c* an axiom),

CV(uA) 0,

CV((AaMBYAZBY .= CV((A aMBYAZ™BY .= CV(M),
CV((MAZBNMBY .= CV(M) U CV(N),
CV((MA=BNAB) CV(M),

CV((AMA)™A) = ((A MA)HA) == CV(M) \ {x},
CV((MPACIP)AC)) .= CV(M) UFV(r),
CV((MTAK A .= cV(M).

17 /31

Type 7(C) of predicates and formulas C

Given X — &. For C n.c. let 7(C) := 0. Assume C is c.r.
7(X):=¢,

T({X[A}) = 7(A),

T(ux (V& V5, (A =" Bi = X1))i<k) = pe(T(¥i) = 7(Bi) = €)i<k -

Call ¢; the algebra associated with /.

7(P7) := 7(P),
(A= B) = 7(A) = 7(B) ifAisc.r.
|7 (B) if Ais n.c.

(Ve A) = (p > T(A)), (VA = T(A).

7(A =" B) := 7(B),

18 /31

Examples of ¢;. Recall

Then

Totaly = px (X0, ¥V, (Xn — X(5n)))
ExDy = px(V(YxP — X))

ExLy = ux(Vx(Yx =" X))
CupDy 7 = ux(Y = X, Z = X)
CupUy 7 == pux(Y =" X, Z =" X)

LTotaly =N
LExDy =px(LExLy ‘= p
LCupDy , =C+1nN oy, , =B

19/31

Realizability: C* (n.c.) for predicates and formulas C

Given X: (p') — X": (7(X),p). For C n.c. let C":= C.
Assume C is c.r. We define C": (7(C),d). Write zr C for C'z.

X" given, {X|A} ={z,X|zr A}

For 1 := jx (Y™ (A)vcn, /" XF:))ick define I by

I" .= 15 (V5 2. ((ziv ¥ Aiv)v<n, = CiXiZj v XTi))i<k

with the understanding that for
» for c.r. A;, followed by —: z;, r A;, and z;, is in C;X;Z;,
» X in A;, followed by —"¢: z;, r A;, but z;, is not in C;X;Z;,
> else we keep A;, and there is no z;,.

Only x;; with a computational V,; occur as arguments in CiXiZ:.
Here C; is the i-th constructor of the algebra ¢; generated from the
constructor types 7(Kj) with K; the i-th clause of /.

20/31

Realizability (ctd.): C* (n.c.) for formulas C

For c.r. formulas let
zr Pr:=P'(z,7)
zr(A— B) = {VX(XVA—>zxrB) if Ais c.r.
zr(A—="B):=A—zrB

zr VA :=Vy(zx r A)
z rv;ch = VX(Z r A)

A—=zrB if Aisn.c.

21/31

Example: Even and Even'

For Even := ux(X0,V5¢(Xn — X(5(5n)))) with tgyen = N:
Even" := px:(0r X0,V m(mr Xn — Smr X(5(5n))))
Introduction axioms:

(Even")§ : 0 r Even(0),
(Even"){ : Vs m(m r Even(n) — Sm r Even(S(Sn)))

Elimination axiom:

(Even")™: ¥y m(m r Even(n) — Q"°00 —
Vn,m(m r Even(n) — Q"mn — Q"°(Sm, S(5n))) —
Q" mn).

22 /31

Further examples

Recall
ExDy :NX((Xp—>X))
EXLY :NX((YXp —he X))
CupDy 7 1= pux(Y = X, Z = X)
CupUy 7 = pux(Y =" X, Z =" X)

Then

ExDY. = pxr(Vxz(zr Yx = (x,2) r X))

ExLY, = pxe(Vx(Yx = x r X))

Vy(yr Y = Inl(y) r X), V.(zr Z — Inr(z) r X))
Y >ttrX, Z—ffrX)

Cung/r’Zr = ,U/Bl(cr
CupUY 7 = px:

~_~ o~ o~ o~

23 /31

Realizers for decorated

(x,2)r3A< zr A forAcr.
xr LA A
zr A B(zr A) for Acr.

Non-computational variant C*¢ of C: have X™¢ and /"¢, and

(XA = {X[A™}
(PF)° := P"°F

(A" By = A — B
(vf(/HCA)nC = vanc

24 /31

Invariance axioms

For c.r. formulas A we take as axioms
Inva: A+ 3 (zr A)
They are realized by identities:

(A\2)r (A= 3 (zr A),
(A2)r (3i(zr A) = A).

Consequences are choice and independence of premise.

25 /31

Choice

From the invariance axioms we can derive

Vi3, A(y) = FEVLA(fx) for An.c.
Y, 3SA(y) — FFVLA(f) for Acur.

Proof.
By the invariance axioms it suffices to find a realizer.
(Aff) ¥ (VT Aly) — FpVeA(f))
Ve(f r VT Aly) — f r FpVLA(K))
Ve(V(f r 3,A(y)) = VA(fx))
Ve(ViA(fx) — Vi A(fx)). O

26 /31

Independence of premise

Assume x ¢ FV(A). From the invariance axioms we can derive

(A= 3B) -3 (A= B) for A Bnec.
(A-3B)» 3 (A= B) for Bn.c.
(A—=34B) - 34A—=B) forAnc, Ber.
(A—="¢39B) 5 34(A = B) for Ber.

Proof.

By the invariance axioms it suffices to find a realizer. For A, B n.c.
(Aex) 1 ((A— 3B) = (A — B))
Vi(xr(A—3B) = xr3L (A= B))

Vi((A = xr3LB) = xr3L(A = B))
V«((A— B) - A— B). O

27 /31

Extracted terms
For derivations M4 with A n.c. let et(MA) := e. Otherwise

et(u?) = ZZ(A) (ZZ(A) uniquely associated to 1),
T7(A i .
(A MBYA=B) o [et(M) if Aiscr
et(M) if Aisn.c.

et(M)et(N) if Ais c.r.

ct(MAZENYB) = {et(/\/l) if Ais n.c.

et((Ae MA)™A) = Met(M),
et((MHAK A = et(M)r,
et((Aa M)A E) = et(M),
et((MAZENA)E) = et(M),
et((Ae MA)HA) = et(M),
et (M AKX A = et(M).

28 /31

Extracted terms for the axioms.
> Let / be c.r.

et(I1) := Cj, et(/I7) =R,

where both C; and R refer to the algebra ¢; associated with /.

» For the invariance axioms we take identities.

29 /31

The term extracted from a proof in TCF + Inv + Ax"° is a
solution of the problem posed by the proven formula.
(Ax"¢ is an arbitrary set of n.c. formulas viewed as axioms).

Theorem (Soundness)

Let M be a derivation of a formula A from assumptions u;: C;

(i < n). Then we can derive

et(M)rA ifAisc.r.
A if Ais n.c.
from assumptions

z, v G ifCiscr
G if C; is n.c.

All derivations are in TCF + Inv + Ax". Proof by induction on M.

30/31

Conclusion

Framework TCF for constructive analysis.

>

>

Invariance axioms (= AC, IP) helpful; realized by identities.

Expressive term language T (arbitrary defining equations,
e.g. for fixed point operators, corecurion).

Realizability interpretation provides extracted terms expressing
computational content of proofs.

From M: A obtain M>: (et(M) r A). The soundness proof
M3 can be automatically generated and checked.

Decorations for fine tuning and efficiency.

31/31

