
Invariance axioms for realizability

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

JAIST, 25. August 2016

1 / 31

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I View a formula A as a computational problem, of type τ(A),
the type of a potential solution or “realizer” of A.

I Example: ∀n∃m>nPrime(m) has type N→ N.

Proposal: express this view as

invariance under realizability

of formulas A:

A↔ there is a solution of problem A

I A may have nested implications.

I Hence a solution is a higher type computable functional
(“modified realizability”).

2 / 31

I Gödel (1958): “Über eine noch nicht benützte Erweiterung
des finiten Standpunkts”. Higher type term system T .

I Platek (1966): “Foundations of recursion theory”.

I Scott (1969): LCF “Logic for Computable Functions”. LCF’s
term language has arithmetic, booleans and recursion in
higher types. LCF is based on classical logic.

I Plotkin (1977): Higher type term system PCF, with partiality.

I Martin-Löf (1984): constructive type theory. Formulas are
types. Functionals are total.

I Proposal here: a constructive theory of computation in higher
types, based on the Scott (1970) - Ershov (1977) model of
partial continuous functionals.

points, ideals, abstract objects

↑↓
finite approximations

3 / 31

Examples of computable functionals

I Fixed point operator Y : (ρ→ ρ)→ ρ defined by

Yf = f (Yf)

I Recursion operator RτN : N→ τ → (N→ τ → τ)→ τ defined
by

R0mf = m,

R(Sn)mf = fn(Rnmf).

I Corecursion operator coRτN : τ → (τ → U + (N + τ))→ N

4 / 31

Definition (Types).

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

Examples

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α + β := µξ(α→ ξ, β → ξ) (sum).

5 / 31

(Finitary) algebras viewed as “non-flat Scott information systems”.
Why?

I Flat:

∅
•

•
{0}

�
��
•
{1}

��
��
�•
{2}

. . .

I Non flat: “tokens” for N are

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

6 / 31

Problem for flat algebras

I Continuous functions are monotone: x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms: Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones. There
constructors must be strict (i.e., C~x∅~y = ∅), hence

in P: S0∅ = ∅ = S1∅ (overlapping ranges),

in D: C∅{0} = ∅ = C{0}∅ (not injective).

7 / 31

The Scott-Ershov model of partial continuous functionals.

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be “information
systems” (Scott). Function space: A→ B := (C ,Con,`):

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` (U, b) := ({ bi | U `A Ui } `B b).

I Partial continuous functionals of type ρ: the “ideals” in Cρ
(ideals are consistent and deductively closed sets of tokens).

Cι := (Cι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

8 / 31

TCF (theory of computable functionals), a variant of HAω with
variables ranging over arbitrary partial continuous functionals.

I Existence axioms: by terms, built from constants for (partial)
computable functionals, given by defining equations
(computation rules, pattern matching conditions apply)

I Inductively (and coinductively) defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate. (Coinduction := greatest-fixed-point axiom
for a coinductively defined predicate.)

I Minimal logic: →,∀ only. =d (Leibniz), ∃, ∨, ∧ inductively
defined (Russell, Martin-Löf).

I ⊥ := (False =d True). Ex-falso-quodlibet: ⊥ → A provable.

9 / 31

Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

10 / 31

Decoration

Proofs can be transformed and/or “decorated”, for efficiency of
the extracted program.

I A related concept of “proof irrelevance” has been studied by
Pfenning and (in Agda) by Abel/Scherer (2012).

We decorate

I connectives: →c, ∀c and →nc,∀nc, and

I least-fixed-point operators: µc, µnc.

Distinguish two sorts of predicate variables

I computationally relevant ones X ,Y ,Z . . . , and

I non-computational ones X nc,Y nc,Znc

11 / 31

Definition (Predicates and formulas).

P,Q ::= X | X nc | {~x | A } | µc/ncX (∀c/nc~xi
((Aiν)ν<ni →

c/nc X~ri))i<k

A,B ::= P~r | A→c/nc B | ∀c/ncx A

Write →, ∀, µ for →c, ∀c, µc. Examples

TotalN := µX (X0, ∀ncn (Xn→ X (Sn)))

ExDY := µX (∀x(Yx → X))

ExLY := µX (∀x(Yx →nc X))

CupUY ,Z := µX (Y →nc X , Z →nc X)

CupNcY ,Z := µncX (Y → X , Z → X)

Abbreviations

∃dxA := ExD{x |A}

∃lxA := ExL{x |A}

A ∨u B := CupU{|A},{|B}

A ∨nc B := CupNc{|A},{|B}

12 / 31

Axioms

We have introduction and elimination axioms for inductively
defined predicates I . Example:

Even := µX (X0,∀ncn (Xn→ X (S(Sn))))

Introduction axioms

Even(0), ∀ncn (Even(n)→ Even(S(Sn)))

Elimination axioms

∀ncn (Even(n)→ P0→ ∀ncm (Even(m)→ Pm→ P(S(Sm)))→ Pn).

13 / 31

Computationally relevant (c.r.) and non-computational
(n.c.) predicates and formulas

To every predicate or formula C assign its final predicate fp(C)

fp(X) := X , fp(X nc) := X nc

fp({~x | A }) := fp(A)

fp(I) := I , fp(I nc) := I nc

fp(P~r) := fp(P)

fp(A→c/nc B) := fp(B)

fp(∀c/ncx A) := fp(A)

C is non-computational (n.c.) if its final predicate fp(C) is of the
form X nc or I nc. Else: computationally relevant (c.r.).

14 / 31

Logic with decorations

Introduction and elimination rules for →c/nc, ∀c/nc.

I In n.c. parts of a derivation (i.e., with an n.c. end formula)
decorations are ignored.

I If MB is a derivation and uA not a “computational assumption
variable” (uA /∈ CA(M)), then (λuAM

B)A→
ncB is a derivation.

I If MA is a derivation, x is not free in any formula of a free
assumption variable of M and x not a “computational object
variable” (x /∈ CV(M)), then (λxM

A)∀
nc
x A is a derivation.

15 / 31

Computational assumption variables CA(MA)

For A n.c. let CA(MA) := ∅. Assume A c.r.

CA(cA) := ∅ (cA an axiom),

CA(uA) := {u},
CA((λuAM

B)A→B) := CA((λuAM
B)A→

ncB) := CA(M) \ {u},
CA((MA→BNA)B) := CA(M) ∪ CA(N),

CA((MA→ncBNA)B) := CA(M),

CA((λxM
A)∀xA) := CA((λxM

A)∀
nc
x A) := CA(M),

CA((M∀xA(x)r)A(r)) := CA((M∀
nc
x A(x)r)A(r)) := CA(M).

16 / 31

Computational object variables CV(MA)

For A n.c. let CV(MA) := ∅. Assume A c.r.

CV(cA) := ∅ (cA an axiom),

CV(uA) := ∅,
CV((λuAM

B)A→B) := CV((λuAM
B)A→

ncB) := CV(M),

CV((MA→BNA)B) := CV(M) ∪ CV(N),

CV((MA→ncBNA)B) := CV(M),

CV((λxM
A)∀xA) := CV((λxM

A)∀
nc
x A) := CV(M) \ {x},

CV((M∀xA(x)r)A(r)) := CV(M) ∪ FV(r),

CV((M∀
nc
x A(x)r)A(r)) := CV(M).

17 / 31

Type τ(C) of predicates and formulas C

Given X 7→ ξ. For C n.c. let τ(C) := ◦. Assume C is c.r.

τ(X) := ξ,

τ({~x | A }) := τ(A),

τ(µX (∀nc~xi ∀~yi (~Ai →nc ~Bi → X~ri))i<k︸ ︷︷ ︸
I

) := µξ(τ(~yi)→ τ(~Bi)→ ξ)i<k︸ ︷︷ ︸
ιI

.

Call ιI the algebra associated with I .

τ(P~r) := τ(P),

τ(A→ B) :=

{
τ(A)→ τ(B) if A is c.r.

τ(B) if A is n.c.
τ(A→nc B) := τ(B),

τ(∀xρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A).

18 / 31

Examples of ιI . Recall

TotalN := µX (X0,∀ncn (Xn→ X (Sn)))

ExDY := µX (∀x(Yxρ → X))

ExLY := µX (∀x(Yxρ →nc X))

CupDY ,Z := µX (Y → X , Z → X)

CupUY ,Z := µX (Y →nc X , Z →nc X)

Then

ιTotalN := N

ιExDY
:= ρ× ζ ιExLY

:= ρ

ιCupDY ,Z
:= ζ + η ιCupUY ,Z

:= B

19 / 31

Realizability: C r (n.c.) for predicates and formulas C

Given X : (~ρ) 7→ X r : (τ(X), ~ρ). For C n.c. let C r := C .
Assume C is c.r. We define C r : (τ(C), ~σ). Write z r C for C rz .

X r given, {~x | A }r := { z ,~x | z r A }.

For I := µX (∀c/nc~yi
((Aiν)ν<ni →c/nc X~ri))i<k define I r by

I r := µncX r(∀~xi ,~zi ((ziν r Aiν)ν<ni → Ci~xi~zi r X~ri))i<k

with the understanding that for

I for c.r. Aiν followed by →: ziν r Aiν and ziν is in Ci~xi~zi ,

I X in Aiν followed by →nc: ziν r Aiν but ziν is not in Ci~xi~zi ,

I else we keep Aiν and there is no ziν .

Only xij with a computational ∀xij occur as arguments in Ci~xi~zi .
Here Ci is the i-th constructor of the algebra ιI generated from the
constructor types τ(Ki) with Ki the i-th clause of I .

20 / 31

Realizability (ctd.): C r (n.c.) for formulas C

For c.r. formulas let

z r P~r := P r(z ,~r)

z r (A→ B) :=

{
∀x(x r A→ zx r B) if A is c.r.

A→ z r B if A is n.c.

z r (A→nc B) := A→ z r B

z r ∀xA := ∀x(zx r A)

z r ∀ncx A := ∀x(z r A)

21 / 31

Example: Even and Evenr

For Even := µX (X0,∀ncn (Xn→ X (S(Sn)))) with ιEven = N:

Evenr := µncX r(0 r X0,∀n,m(m r Xn→ Sm r X (S(Sn))))

Introduction axioms:

(Evenr)+0 : 0 r Even(0),

(Evenr)+1 : ∀n,m(m r Even(n)→ Sm r Even(S(Sn)))

Elimination axiom:

(Evenr)− : ∀n,m(m r Even(n)→ Qnc00→
∀n,m(m r Even(n)→ Qncmn→ Qnc(Sm,S(Sn)))→
Qncmn).

22 / 31

Further examples

Recall

ExDY := µX (∀x(Yxρ → X))

ExLY := µX (∀x(Yxρ →nc X))

CupDY ,Z := µX (Y → X , Z → X)

CupUY ,Z := µX (Y →nc X , Z →nc X)

Then

ExDr
Y r := µncX r(∀x ,z(z r Yx → (x , z) r X))

ExLr
Y := µncX r(∀x(Yx → x r X))

CupDr
Y r,Z r := µncX r(∀y (y r Y → Inl(y) r X), ∀z(z r Z → Inr(z) r X))

CupUr
Y ,Z := µncX r(Y → tt r X , Z → ff r X)

23 / 31

Realizers for decorated ∃

(x , z) r ∃dxA↔ z r A for A c.r.

x r ∃lxA↔ Anc

z r ∃rxA↔ ∃ncx (z r A) for A c.r.

Non-computational variant Cnc of C : have X nc and I nc, and

{~x | A }nc := {~x | Anc }
(P~r)nc := Pnc~r

(A→c/nc B)nc := A→ Bnc

(∀c/ncx A)nc := ∀xAnc

24 / 31

Invariance axioms

For c.r. formulas A we take as axioms

InvA : A↔ ∃lz(z r A)

They are realized by identities:

(λzz) r (A→ ∃lz(z r A)),

(λzz) r (∃lz(z r A)→ A).

Consequences are choice and independence of premise.

25 / 31

Choice

From the invariance axioms we can derive

∀x∃lyA(y)→ ∃lf ∀xA(fx) for A n.c.

∀x∃dyA(y)→ ∃df ∀xA(fx) for A c.r.

Proof.
By the invariance axioms it suffices to find a realizer.

(λf f) r (∀x∃lyA(y)→ ∃lf ∀xA(fx))

∀f (f r ∀x∃lyA(y)→ f r ∃lf ∀xA(fx))

∀f (∀x(fx r ∃lyA(y))→ ∀xA(fx))

∀f (∀xA(fx)→ ∀xA(fx)).

26 / 31

Independence of premise
Assume x /∈ FV(A). From the invariance axioms we can derive

(A→ ∃lxB)→ ∃lx(A→ B) for A,B n.c.

(A→nc ∃lxB)→ ∃lx(A→ B) for B n.c.

(A→ ∃dxB)→ ∃dx (A→ B) for A n.c., B c.r.

(A→nc ∃dxB)→ ∃dx (A→ B) for B c.r.

Proof.
By the invariance axioms it suffices to find a realizer. For A,B n.c.

(λxx) r ((A→ ∃lxB)→ ∃lx(A→ B))

∀x(x r (A→ ∃lxB)→ x r ∃lx(A→ B))

∀x((A→ x r ∃lxB)→ x r ∃lx(A→ B))

∀x((A→ B)→ A→ B).

27 / 31

Extracted terms
For derivations MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
zu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxρM
A)∀xA) := λρxet(M),

et((M∀xA(x)r)A(r)) := et(M)r ,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

28 / 31

Extracted terms for the axioms.

I Let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both Ci and R refer to the algebra ιI associated with I .

I For the invariance axioms we take identities.

29 / 31

The term extracted from a proof in TCF + Inv + Axnc is a
solution of the problem posed by the proven formula.
(Axnc is an arbitrary set of n.c. formulas viewed as axioms).

Theorem (Soundness)

Let M be a derivation of a formula A from assumptions ui : Ci

(i < n). Then we can derive{
et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

All derivations are in TCF+ Inv +Axnc. Proof by induction on M.

30 / 31

Conclusion

Framework TCF for constructive analysis.

I Invariance axioms (⇒ AC, IP) helpful; realized by identities.

I Expressive term language T+ (arbitrary defining equations,
e.g. for fixed point operators, corecurion).

I Realizability interpretation provides extracted terms expressing
computational content of proofs.

I From M : A obtain MS : (et(M) r A). The soundness proof
MS can be automatically generated and checked.

I Decorations for fine tuning and efficiency.

31 / 31

