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Logic and arithmetic in finite types

I Free algebras

I Constants, terms, formulas

I Axioms of HAω, natural deduction

I Realizability interpretation, soundness

I Majorization and realizability



Types, free algebras

Our type system is defined by two type forming operations: arrow
types ρ→ σ, and the formation of inductively generated types
(free algebras) µ~α~κ, where ~α = (αj)j=1,...,N is a list of distinct
“type variables”, and ~κ = (κi )i=1,...,k is a list of “constructor
types”, whose argument types contain α1, . . . , αN in strictly
positive positions only.

Definition
Let ~α = (αj)j=1,...,N be a list of distinct type variables. Types
ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT(~α) are defined
inductively by

~ρ, ~σ1, . . . , ~σn ∈ Ty
~ρ→ (~σ1 → αj1) → . . .→ (~σn → αjn) → αj ∈ KT(~α)

(n ≥ 0)

κ1, . . . , κn ∈ KT(~α)

(µ~α (κ1, . . . , κn))j ∈ Ty
(n ≥ 1)

ρ, σ ∈ Ty
ρ→ σ ∈ Ty



Examples of free algebras

U := µαα, Unit

B := µα (α, α), Booleans

N := µα (α, α→ α), Natural numbers

L(ρ) := µα (α, ρ→ α→ α), Lists

ρ⊗ σ := µα (ρ→ σ → α), (Tensor) product

ρ+ σ := µα (ρ→ α, σ → α), Sum

(tree, tlist) := µ(α, β) (N → α, β → α,

β, α→ β → β),

Bin := µα (α, α→ α→ α), Binary trees

O := µα (α, α→ α, (N → α) → α), Ordinals

T0 := N,

Tn+1 := µα (α, (Tn → α) → α). Trees



Finitary algebras

A type is called finitary if it is a µ-type with all its parameter types
~ρ finitary, and in all its constructor types

~ρ→ (~σ1 → αj1) → . . .→ (~σn → αjn) → αj

the ~σ1, . . . , ~σn are all empty. In the examples above U, B, N, tree,
tlist and Bin are all finitary, whereas O and Tn+1 are not. L(ρ),
ρ⊗ σ and ρ+ σ are finitary provided their parameter types are. An
argument position in a type is called finitary if it is occupied by a
finitary type.



Recursion operators, by example

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : τ → τ → B → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : τ → (N → τ → τ) → N → τ,

nilL(α) := CL(α)
1 , consα→L(α)→L(α) := CL(α)

2 ,

Rτ
L(α) : τ → (α→ L(α) → τ → τ) → L(α) → τ,(

Inlρσ

)ρ→ρ+σ
:= Cρ+σ

1 ,(
Inrρσ

)σ→ρ+σ
:= Cρ+σ

2 ,

Rτ
ρ+σ : (ρ→ τ) → (σ → τ) → ρ+ σ → τ,(
⊗+

ρσ

)ρ→σ→ρ⊗σ
:= Cρ⊗σ

1 ,

Rτ
ρ⊗σ : (ρ→ σ → τ) → ρ⊗σ → τ.



Example: decidable equality

We can define decidable equality =µ : µ→ µ→ B, for finitary base
types µ.

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (n = m).



Conversion

To define the conversion relation, it will be helpful to use the
following notation. Let ~µ = µ~α~κ and

κi = ρ1 → . . . ρm → (~σ1 → αj1) → . . . (~σn → αjn) → αj ∈ KT(~α),

and consider C~µ
i
~N. Then we write ~NP = NP

1 , . . . ,N
P
m for the

parameter arguments Nρ1
1 , . . . ,N

ρm
m and ~NR = NR

1 , . . . ,N
R
n for the

recursive arguments N
~σ1→µj1
m+1 , . . . ,N

~σn→µjn
m+n ‘, and nR for the number

n of recursive arguments.
We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→ M[x := N],

λx .Mx 7→ M if x /∈ FV(M) (M not an abstraction),

(Rj
~M)µj→τj (C~µ

i
~N) 7→ Mi

~N
(
(Rj1

~M) ◦ NR
1

)
. . .

(
(Rjn

~M) ◦ NR
n

)
.

Here we have written Rj for R~µ,~τ
µj .



Reduction

The one step reduction relation → can now be defined as follows.
M → N if N is obtained from M by replacing a subterm M ′ in M
by N ′, where M ′ 7→ N ′. The reduction relations →+ and →∗ are
the transitive and the reflexive transitive closure of →, respectively.
For ~M = M1, . . . ,Mn we write ~M → ~M ′ if Mi → M ′

i for some
i ∈ {1, . . . , n} and Mj = M ′

j for all i 6= j ∈ {1, . . . , n}. A term M is
normal (or in normal form) if there is no term N such that M → N.

Clearly normal closed terms are of the form C~µ
i
~N.

Definition
The set SN of strongly normalizing terms is inductively defined by

(∀N.M → N ⇒ N ∈ SN) ⇒ M ∈ SN.

Theorem
Every term is strongly normalizing.



Atomic formulas, formulas

There is a syntactically defined definitional equality on terms: two
terms are called definitionally equal when they reduce to the same
normal form.
Recall that we have a decidable equality =µ : µ→ µ→ B, for
finitary base types µ. Every every atomic formula has the form
atom(rB), i.e., is built from a boolean term rB. In particular, there
is no need for (logical) falsity ⊥, since we can take the atomic
formula F := atom(ff) – called arithmetical falsity – built from the
boolean constant ff instead.
The formulas of HAω are built from atomic ones by the
connectives →, ∀, ∧ and ∃. We define negation ¬A by A → F .



Natural deduction

derivation term

u : A uA

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B



Natural deduction: ∀-rules

derivation term

| M
A ∀+ x (VarC)
∀xA

(λxMA)∀xA (VarC)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)



Induction axioms, by examples

Indp,A : A(tt) → A(ff) → ∀pB A(p),

Indn,A : A(0) → ∀n(A(n) → A(Sn)) → ∀nN A(n),

Indl ,A : A(nil) → ∀x ,l(A(l) → A(cons(x , l))) → ∀lL(α) A(l),

Indx ,A : ∀y1 A(Inl(y1)) → ∀y2 A(Inr(y2)) → ∀xρ1+ρ2 A(x).



Logical axioms

The logical axioms are ∧+, ∧−, ∃+ and ∃−, and the truth axiom
Axtt : atom(tt).
We postulate the compatibility axioms for f of a type of level ≤ 1:

x1 =µ1 y1 → · · · → xn =µn yn → f ~x =µ f ~y .

Let HAω be the theory based on the axioms above including the
induction axioms, and MLω be the (many-sorted) minimal logic,
where the induction axioms are left out.



Extensionality

We define pointwise equality =ρ, by induction on the type.
x1 =µ x2 is already defined, and

(x1 =ρ→σ x2) := ∀y (x1y =σ x2y).

The extensionality axioms are

y1 =ρ y2 → xy1 =σ xy2.

We write E-HAω when the extensionality axioms are present.
Howard proved that already the first non trivial instance of the
extensionality scheme

y1 =1 y2 → xy1 =N xy2

does not have a Dialectica realizer. In fact, he introduced the
majorizing relation as a tool to prove this result. This is in contrast
to the realizability interpretation, where extensionality axioms are
unproblematic, since they are ∃-free.



Weak extensionality rule

It is customary to try to alleviate the difficulty of not being able to
use extensionality when formalizing mathematical arguments
(when an application of the Dialectica interpretation is envisaged)
by adding a so-called weak extensionality rule

A0 → r =ρ s

A0 → t(r) =σ t(s)
(A0 quantifier-free)

to the formal system considered. Since the conclusion is
(equivalent to) a purely universal formula, this does not change the
behaviour of the formal system w.r.t. the Dialectica interpretation.
We write WE-HAω when the weak extensionality rule is present,
but not the extensionality axioms.



Other useful equality notions

Later we will consider some more equality notions: extensional
equality =e

ρ, hereditary extensional equality ≈ρ, and Leibniz
equality, where the latter is defined inductively, by the introduction
axiom

Eq+ : ∀x Eq(x , x)

and the elimination axiom

Eq− : ∀x ,y

(
∀xA(x , x) → Eq(x , y) → A(x , y)

)
.

Notice that Leibniz equality introduces additional atomic formulas,
which are not any more given by boolean terms. For types of level
≤ 1, pointwise and extensional equality will coincide.



Further axiom schemes

The axiom of choice (ACρ,σ) is the scheme

∀xρ∃yσA(x , y) → ∃f ρ→σ∀xρA(x , f (x)).

(AC) is the collection of all (ACρ,σ). By independence of premise
(IPω

∃-free) we mean the scheme

(A → ∃xρB) → ∃xρ(A → B) with A ∃-free and x /∈ FV(A).



The type of a realizer

A 7→ τ(A) (a type or the symbol ε). In case τ(A) = ε proofs of A
have no computational content; then A is called Harrop formula.

τ(P(~s )) := ε,

τ(∃xρA) :=

{
ρ if τ(A) = ε

ρ⊗ τ(A) otherwise,

τ(∀xρA) :=

{
ε if τ(A) = ε

ρ→ τ(A) otherwise,

τ(A → B) :=


τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A) → τ(B) otherwise,

τ(A ∧ B) :=


τ(B) if τ(A) = ε

τ(A) if τ(B) = ε

τ(A)⊗ τ(B) otherwise.



Extracted terms

We define [[M]], for a derivation M using axioms ∃±, induction
axioms, (AC) and (IPω

∃-free) and some ∃-free axioms.
Assume first that M derives a formula A with τ(A) 6= ε. Then its
extracted term [[M]] of type τ(A) is

[[uA]] := x
τ(A)
u (x

τ(A)
u uniquely associated with uA),

[[λuAM]] :=

{
[[M]] if τ(A) = ε

λx
τ(A)
u [[M]] otherwise,

[[MA→BN]] :=

{
[[M]] if τ(A) = ε

[[M]][[N]] otherwise,

[[(λxρM)∀xA]] := λxρ[[M]],

[[M∀xAt]] := [[M]]t.

For derivations MA where τ(A) = ε (i.e., A is a Harrop formula)
we define [[M]] := ε (ε some new symbol).



Extracted terms for the axioms

For the axioms

∃+
x ,A : ∀xρ(A → ∃xρA)

∃−x ,A,B : ∃xρA → ∀xρ(A → B) → B

we set

[[∃+
xρ,A]] :=

{
λxρx if τ(A) = ε

λxρλy τ(A)〈x , y〉 otherwise

[[∃−xρ,A,B ]] :=

{
λxρλf ρ→τ(B).fx if τ(A) = ε

λzρ⊗τ(A)λf ρ→τ(A)→τ(B).f (z0)(z1) otherwise.



Extracted terms for the axioms (continued)

For the axioms

∧+ : A → B → A ∧ B

∧− : (A → B → C ) → A ∧ B → C

we set

[[∧+]] :=


λxτ(A)x if τ(B) = ε

λy τ(B)y if τ(A) = ε

λxτ(A)λy τ(B)〈x , y〉 otherwise

[[∧−]] :=


λzτ(C)z if τ(A)=ε, τ(B)=ε

λf τ(A)→τ(C)λy τ(B).fy if τ(A)=ε, τ(B)6=ε
λf τ(A)→τ(C)λxτ(A).fx if τ(A)6=ε, τ(B)=ε

λf τ(A)→τ(B)→τ(C)λzτ(A)⊗τ(B).f (z0)(z1) if τ(A)6=ε, τ(B)6=ε.



Extracted terms for the axioms (continued)

The extracted term [[Indj ]] of an induction axiom is defined to be

the recursion operator R~µ,~τ
µj . Here ~µ, ~τ list only the types µj , τj

with τj := τ(Aj) 6= ε, i.e., the recursion operator is simplified
accordingly.

Example

For the induction scheme

Indn,A : A(0) → ∀n(A(n) → A(n + 1)) → ∀nA(n)

we have

[[Indn,A]] := Rτ
N : τ → (N → τ → τ) → N → τ,

where τ := τ(A) 6= ε.

As extracted terms of (AC) and (IPω
∃-free) we can take identities of

the appropriate types.



Modified realizability

We define formulas r mr A, where A is a formula and r is a term
of type τ(A) if the latter is a type, or the symbol ε if τ(A) = ε.

r mr P(~s ) := P(~s ),

r mr (∃xA(x)) :=

{
ε mr A(r) if τ(A) = ε

r1 mr A(r0) otherwise,

r mr (∀xA) :=

{
∀xε mr A if τ(A) = ε

∀x rx mr A otherwise,

r mr (A → B) :=


ε mr A → r mr B if τ(A) = ε

∀x(x mr A → ε mr B) if τ(A) 6= ε = τ(B)

∀x(x mr A → rx mr B) otherwise,

r mr (A ∧ B) :=


r mr B if τ(A) = ε

r mr A if τ(B) = ε

(r0 mr A) ∧ (r1 mr B) otherwise.



Realizability (continued)

Formulas which do not contain the existence quantifier ∃ play a
special role in this context; we call them ∃-free (or invariant); in
the literature such formulas are also called “negative”. Their
crucial property is that for an ∃-free formula A we have
ε mr A = A. Notice also that every formula r mr A is ∃-free.



Soundness

Theorem
Let M : A be a derivation in HAω + AC + IPω

∃-free + Ax∃-free from
assumptions ui : Ci (i = 1, . . . , n). Then we can find a derivation
µ(M) in HAω + Ax∃-free of

[[M]] mr A

from assumptions ūi : xui mr Ci .

Proof.
Induction on M.



Characterization

We consider the question under what conditions a formula A and
its modified realizability interpretation ∃xx mr A are equivalent.

Theorem (Characterization)

AC + IPω
∃-free ` A ↔ ∃xx mr A.

Proof.
Induction on A; case A → B with τ(A) 6= ε and τ(B) 6= ε.

(A → B) ↔ (∃xx mr A → ∃yy mr B) by IH

↔ ∀x(x mr A → ∃yy mr B) by MLω

↔ ∀x∃y (x mr A → y mr B) by (IPω
∃-free)

↔ ∃f ∀x(x mr A → f (x) mr B) by (AC)

↔ ∃f f mr (A → B).



Extraction

Theorem (Extraction)

Assume HAω + AC + IPω
∃-free + Ax∃-free ` ∀x∃yA(x , y)

with A(x , y) an arbitrary formula with at most the displayed
variables free. Then we can find a closed HAω-term t such that

HAω + AC + IPω
∃-free + Ax∃-free ` ∀xA(x , tx).

Proof.
We assume τ(A(x , y)) 6= ε. HAω + Ax∃-free proves

[[M]] mr ∀x∃yA(x , y) by the Soundness Theorem

∀x([[M]]x mr ∃yA(x , y))

∀x([[M]]x1 mr A(x , [[M]]x0)).

Hence HAω + AC + IPω
∃-free + Ax∃-free ` ∀xA(x , [[M]]x0) by the

Characterization Theorem.



Majorization

We assume here that all base types are finitary, and that ≥µ is a
given reflexive and transitive relation on the total ideals of base
type µ such that

I for every y ∈ Gµ there are only finitely many x ∈ Gµ with
y ≥ x ;

I there is a max-operation on Gµ such that

max(x , y) ≥ x , y ,

z ≥ x → z ≥ y → z ≥ max(x , y).



Majorization (continued)

We extend ≥µ to higher types, in a pointwise fashion (as for =µ)

x1 ≥ρ→σ x2 := ∀y (x1y ≥σ x2y).

Following Howard, we define a relation x∗ majρ x (x∗ hereditarily
majorizes x) for x∗, x ∈ Gρ, by induction on the type ρ:

x∗ majµ x := x∗ ≥µ x ,

x∗ majρ→σ x := ∀y∗,y (y∗ majρ y → x∗y∗ majσ xy).

Lemma

(a) ` x∗ =ρ x̃∗ → x =ρ x̃ → x∗ majρ x → x̃∗ majρ x̃ .

(b) ` x∗ majρ x → x ≥ρ x̃ → x∗ majρ x̃ .

Proof.
Induction on ρ. We argue informally, and only treat (b). Case
ρ→ σ. Assume y∗ majρ y . Then x∗y∗ majσ xy and xy ≥σ x̃y ,
hence by IH x∗y∗ majσ x̃y .



Majorization of closed HAω-terms

x is called hereditarily majorizable if there is an x∗ such that
x∗ maj x .
Let 1 denote the type N → N. Clearly, for every monotone
function D of type 1 we have D maj D. Moreover, Rτ

µ is
hereditarily majorizable:

Lemma (Majorization)

(a) Define M : (µ→ τ) → µ→ τ with τ = ~ρ→ µ′ by

Mfn~x := max
i≤n

fi~x .

Then HAω ` ∀n f̄ n maj fn → Mf̄ maj f .

(b) HAω ` f ∗, g∗ maj f , g → Rµf ∗g∗n maj Rµfgn.

(c) Define R∗
µfg := M(Rµfg). Then HAω ` R∗

µ maj Rµ.



Majorization of closed HAω-terms

Lemma
Let r(~x) be a HAω-term with free variables among ~x. Assume that
HAω ` c∗ maj c for all constants c in r . Let r∗ be r with all
constants c replaced by c∗. Then
HAω ` ~x∗ maj ~x → r(~x∗) maj r(~x).

Proof.
Induction on r . Case λy r(y ,~x). We argue informally. Assume
~x∗ maj ~x . We must show
y∗ maj y → (λy r(y ,~x∗))y∗ maj (λy r(y ,~x))y . So assume
y∗ maj y . Then by IH r(y∗,~x∗) maj r(y ,~x), which is our
claim.

Hence every closed term r of HAω is hereditarily majorizable. In
fact, we have constructed a closed term r∗ of HAω such that
r∗ maj r .



Extraction of uniform bounds

Theorem
Let s be a closed HAω-term, A(x , y , z) a formula with at most the
displayed variables free, and τ a type of level ≤ 2. Assume that

HAω + AC + IPω
∃-free ` ∀x1∀y≤ρsx∃zτ A(x , y , z).

Then we can find a closed HAω-term t such that

HAω + AC + IPω
∃-free ` ∀x1∀y≤ρsx∃z≤τ tx A(x , y , z).



Extraction of uniform bounds: proof

Let Hω := HAω + AC + IPω
∃-free. By the Soundness Theorem we

have a closed HAω-term r such that

Hω ` r mr ∀x1∀y≤ρsx∃zτ A(x , y , z).

Unfolding the definition of mr and using the fact that y ≤ρ sx is
∃-free we obtain (assuming τ(A(x , y , z)) 6= ε)

Hω ` ∀x1∀y≤ρsx rxy1 mr A(x , y , rxy0)

and hence by the Characterization Theorem

Hω ` ∀x1∀y≤ρsx A(x , y , rxy0).



Extraction of uniform bounds: proof (continued)

Recall
Hω ` ∀x1∀y≤ρsx A(x , y , rxy0).

Let r1 := λxλy .rxy0. Pick majorizing terms s∗, r∗1 for s, r1. Writing
xM for Mx with the M from the Majorization Lemma we have
s∗xM majρ sx , hence

HAω ` ∀x1∀y≤ρsx s∗xM majρ y .

For simplicity assume τ = 2 := (N → N) → N. Then

HAω ` ∀x1∀y≤ρsx∀f r∗1 xM(s∗xM)f M ≥N r1xyf .

Hence we can take t := λxλf .r∗1 xM(s∗xM)f M , because
tx ≥2 t1xy =def rxy0.



Fan rule

Corollary (Fan Rule)

Let A(y , n) be a formula with at most the displayed variables free.
Assume that

HAω + AC + IPω
∃-free ` ∀y1∃nN A(y , n).

Then

HAω + AC + IPω
∃-free ` ∀x1∃mN∀y≤1x∃n≤Nm A(y , n).

Proof.
Let s be the identity in the theorem above. Take m := tx .



Constructive real analysis

1. Motivation

2. Tools: Reals, continuous functions

3. Inverse functions

4. Implementation, and demonstration

5. ODE’s: Cauchy-Euler method

6. Moore’s K th-order method



Motivation

I “Mathematics as a numerical language”.

I Extract programs from proofs, for exact real numbers.

I Special emphasis on low type level witnesses (making use of
separability).



Tools

. . . for algorithmically reasonable proofs: Small variants of
Bishop/Bridges’ development of constructive analysis.

Idea: use separability to avoid high type levels.



Reals

A real number x is a pair ((an)n∈N, α) with an ∈ Q and α : N → N
such that (an)n is a Cauchy sequence with modulus α, that is

∀k,n,m

(
α(k) ≤ n,m → |an − am| ≤ 2−k

)
,

and α is weakly increasing.

Two reals x := ((an)n, α), y := ((bn)n, β) are equivalent (written
x = y), if

∀k |aα(k+1) − bβ(k+1)| ≤ 2−k .



Nonnegative and positive reals

A real x := ((an)n, α) is nonnegative (written x ∈ R0+) if

∀k −2−k ≤ aα(k).

It is k-positive (written x ∈k R+) if

2−k ≤ aα(k+1).

x ∈ R0+ and x ∈k R+ are compatible with equivalence.
Can define x 7→ kx such that an ≤ 2kx for all n.
However, x 7→ kx is not compatible with equivalence.



Arithmetical functions

Given x := ((an)n, α) and y := ((bn)n, β), define

z cn γ(k)

x + y an + bn max(α(k + 1), β(k + 1))
−x −an α(k)
|x | |an| α(k)
x · y an · bn max(α(k + 1 + k|y |),

β(k + 1 + k|x |))

1
x for |x | ∈l R+

{
1
an

if an 6= 0

0 if an = 0
α(2(l + 1) + k)



Cleaning up a real

After some computations involving reals, rationals in the Cauchy
sequences may become complex. Hence: clean up a real, as
follows.

Lemma
For every real x = ((an)n, α) we can construct an equivalent real
y = ((bn)n, β) where the rationals bn are of the form cn/2

n with
integers cn, and with modulus β(k) = k + 2.

Proof.
cn := baα(n) · 2nc.



Redundant dyadic representation of reals

The existence of the usual b-adic representation of reals cannot be
proved constructively (1.000 . . . vs .999 . . . ). Cure: in addition to
0, . . . , b − 1 also admit −1 as a numeral. For b = 2:

Lemma
Every real x can be represented in the form

∞∑
n=−k

an2
−n with an ∈ {−1, 0, 1}.

Notice: uniqueness is lost (this is not a problem).



Comparison of reals

Write x ≤ y for y − x ∈ R0+ and x < y for y − x ∈ R+.

x ≤ y ↔ ∀k∃p∀n≥p an ≤ bn + 2−k

x < y ↔ ∃k,q∀n≥q an + 2−k ≤ bn

Write x <k,q y (or simply x <k y if q is not needed) when we
want to call these witnesses. Notice:

x ≤ y ↔ y 6< x .



Continuous functions

A continuous function f : I → R on a compact interval I with
rational end points is given by

I an approximating map hf : (I ∩Q) → N → Q,

I a (uniform) modulus map αf : N → N such that (hf (c , n))n is
a real with modulus αf ;

I ωf : N → N (uniform) modulus of continuity:

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k

for n ≥ αf (k). αf , ωf required to be weakly increasing.

Notice: hf , αf , ωf are of type level 1 only.



Application of a continuous function to a real

Definition
Given a continuous function f (by hf , αf , ωf ) and a real
x := ((an)n, α), application f (x) is defined to be

(hf (an, n))n

with modulus k 7→ max(αf (k + 2), α(ωf (k + 1)− 1)).

Lemma

x = y → f (x) = f (y),

|x − y | ≤ 2−ωf (k) → |f (x)− f (y)| ≤ 2−k .



Intermediate value theorem

Let a < b be rationals. If f : [a, b] → R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform lower bound on its slope,
then we can find x ∈ [a, b] such that f (x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then either z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 2−n < d − c , and
f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2

3(d − c),
such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c , d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .



Inverse functions

Theorem
Let f : [a, b] → R be continuous with a uniform lower bound on its
slope. Let f (a) ≤ a′ < b′ ≤ f (b). We can find a continuous
g : [a′, b′] → R such that f (g(y)) = y for every y ∈ [a′, b′] and
g(f (x)) = x for every x ∈ [a, b] such that a′ ≤ f (x) ≤ b′.

Proof sketch.
Let f (a) ≤ a′ < b′ ≤ f (b). Construct a continuous g : [a′, b′] → R
by the Intermediate Value Theorem.



Example: squaring f : [1, 2] → [1, 4]

Given by

I the approximating map hf (a, n) := a2,

I the uniform Cauchy modulus αf (k) := 1, and

I the modulus k 7→ k + 1 of uniform continuity.

The lower bound on its slope is l := 0, because for all c , d ∈ [1, 2]

2−m ≤ d − c → c2 <m d2.

Then hg (u, n) := c
(u)
n , as constructed in the IVT for x2 − u,

iterating IVTAux. The Cauchy modulus αg is such that
(2/3)n ≤ 2−k+3 for n ≥ αg (k), and the modulus of uniform
continuity is ωf (k) := k + 2.



Program extraction

Formalization: many details. Important: representation of data.
Here: direct approach, by explicitely building the required number
systems (natural numbers in binary, rationals, reals as Cauchy
sequences of rationals with a modulus, continuous functions in the
sense of the type-1 representation described above, etc.)

Method of program extraction based on modified realizability



Related work on program extraction

I Luis Cruz-Filipe: Thesis in Nijmegen 2004 (Geuvers), on
C-CoRN.

I Stefan Berghofer: “Proofs, Programs and Executable
Specifications in Higher Order Logic”, 2003 (Nipkow).

I Monika Seisenberger: “On the Constructive Content of
Proofs”, 2003.



C-CoRN: Constructive Coq Repository at Nijmegen

Grew out of the FTA project.

I Strong extensionality required: ∀x ,y (f (x)#f (y) → x#y).
Missing witness harmful for program extraction.

I The Set, Prop distinction in Coq was found to be insufficient.
Introduced CProp in addition.

Alternative here: use modified realizability interpretation for
(internal) program extraction. Soundness proof can be machine
generated.

Some issues:



Animation

Suppose a proof of a theorem uses a lemma.

I Then the proof term contains the name of the lemma, say L.

I In the term extracted from this proof we want to preserve the
structure of the original proof. So we use a new constant cL
at places where the computational content of the lemma is
needed.

I When we want to execute the program, we have to replace
the constant cL corresponding to a lemma L by the extracted
program of its proof. This can be achieved by adding
computation rules for cL.

I We can be rather flexible here and enable/block rewriting by
using animate/deanimate as desired.



Let

It often happens that a subterm has many occurrences in a term,
which leads to unwanted recomputations when evaluating it.

I Cure: “optimize” the term after extraction, and replace for
instance M[x := N] with many occurrences of x in M by
(λxM)N (or a corresponding “let”-expression).

I This can already be done at the proof level: When an object
(value of a variable or realizer of a premise) is used more than
once, make sure (if necessary by a cut) that the goal has the
form A → B or ∀xA.

I Now use the “identity lemma” Id : P̂ → P̂, with a predicate
variable P̂. Its realizer then has the form λf , x .fx .

I If cId is not animated, the extracted term has the form
cId(λxM)N, which is printed as [let x N M].



Quantifiers without computational content

Besides the usual quantifiers, ∀ and ∃, Minlog has so-called
non-computational quantifiers, ∀nc and ∃nc, which allow for the
extraction of simpler programs.

I The nc-quantifiers, which were first introduced by Berger
(1993), can be viewed as a refinement of the Set/Prop
distinction in constructive type systems like Coq or Agda.

I Intuitively, a proof of ∀nc
x A(x) (A(x) non-Harrop) represents a

procedure that assigns to every x a proof M(x) of A(x) where
M(x) does not make “computational use” of x , i.e., the
extracted program [[M(x)]] does not depend on x .

I Dually, a proof of ∃nc
x A(x) is a proof of M(x) for some x

where the witness x is “hidden”, that is, not available for
computational use.



Ordinary differential equations

Let f : D → R be continuous, D ⊆ R2. A solution of

y ′ = f (x , y), (1)

on an interval I is a continuous function ϕ : I → R with a
continuous derivative ϕ′ such that (x , ϕ(x)) ∈ D and

ϕ′(x) = f (x , ϕ(x)) (x ∈ I )



Uniqueness

Theorem
Let f : D → R be continuous. Assume that f satisfies a Lipschitz
condition w.r.t. its 2nd argument:

|f (x , y1)− f (x , y2)| ≤ L|y1 − y2|

with L > 0. Let ϕ,ψ : I → R be two solutions of (1). If
ϕ(a) = ψ(a) for some a ∈ I , then ϕ(x) = ψ(x) for all x ∈ I .

Example

The equation y ′ = y1/3 with y(0) = 0 shows that the Lipschitz
condition is necessary for uniqueness: we have two solutions
ϕ(x) = 0 und ϕ(x) = (2

3x)3/2.
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Peano’s existence theorem for ODEs

I . . . does not require a Lipschitz condition.

I But: Peano’s existence theorem entails that for every real x
we can decide whether x ≥ 0 or x ≤ 0 (Aberth 1970).

I Hence: We cannot expect to be able to prove it constructively.



Picard’s existence theorem for ODEs

Theorem
On R : |x − a0| ≤ h, |y − b0| ≤ Mh, let f be continuous and
bounded by M. Assume that f satisfies a Lipschitz condition w.r.t.
its 2nd argument. Let ϕ0(x) := b0,

ϕn+1(x) := b0 +

∫ x

a0

f (t, ϕn(t)) dt, |x − a0| ≤ h.

(ϕn)n∈N converges uniformly and absolutely to a solution of (1).

Algorithmic problem: For ϕn+1(x) one needs ϕn on [a0, x ].



The Cauchy-Euler method

Simple idea: polygons (⇒ possibly adaptive). What is an
“approximate solution”?

(a) It satisfies (1) up to ε.

(b) It differs from the exact solution by at most ε.

We aim for (b), but initially only get (a):

Theorem
On R : |x − a0| ≤ h, |y − b0| ≤ Mh, let f be continuous and
bounded by M. We can construct an approximate solution (a
polygon) ϕn : [a0 − h, a0 + h] → R of (1) up to the error 2−n such
that ϕn(a0) = b0.



The fundamental inequality

Let f : D → R be continuous, and satisfy a Lipschitz condition
w.r.t. its second argument. Let

ϕ,ψ : [a, b] → R

be solutions up to 2−k , 2−l of (1). Assume ϕ ≤ ψ on [a, b], or else
that ϕ and ψ are rational polygons. Then

∣∣ψ(x)− ϕ(x)
∣∣ ≤ eL(x−a)

∣∣ψ(a)− ϕ(a)
∣∣ +

2−k + 2−l

L

(
eL(x−a) − 1

)
for all x ∈ [a, b].



The Cauchy-Euler existence theorem for ODEs

Theorem
On R : |x − a0| ≤ h, |y − b0| ≤ Mh, let f be continuous and
bounded by M. Assume that f satisfies a Lipschitz condition w.r.t.
its 2nd argument. Let ϕn be the rational polygon, which is an
approximate solution of (1) up to the error 2−n:

|ϕ′n(x)− f (x , ϕn(x))| ≤ 2−n for x ∈ I with ϕ′n(x) defined.

(ϕn) converges uniformly and absolutely to a solution of (1).

Algorithmic note: ϕn is not defined recursively.



Approximate and exact solutions

Theorem
Assume the hypotheses of the Cauchy-Euler theorem. Let
ϕ : [a0 − h, a0 + h] → R be an exact solution of (1) such that
ϕ(a0) = b0, ϕn be an approximate solution up to the error 2−n

such that ϕn(a0) = b0, and ϕ ≤ ϕn or ϕn ≤ ϕ. Then there is a
constant c independent of n such that |ϕ(x)− ϕn(x)| ≤ 2−nc for
|x − a0| ≤ h.

Proof.
By the fundamental inequality

|ϕ(x)− ϕn(x)| ≤ 2−n · 1

L
(eLh − 1)︸ ︷︷ ︸

c



Moore’s K th-order method

Reference: R.E. Moore, Interval Analysis, Prentice-Hall 1966.

It is convenient to consider autonomous systems of first-order
differential equations

dy(x)

dx
= f (y(x)). (2)

f : A1 × · · · × An(⊆ Rn) → Rn is a vector-valued function.

Assume that there is a positive rational L such that for all points
u, v in A, f satisfies the Lipschitz condition

|f (u)− f (v)| ≤ L|u − v |. (3)



Moore’s first-order method

∼ Cauchy-Euler existence proof: We have a constructive proof of

∀y0∃a0>0∃y(x) : [−a0,a0]→Rn

(dy(x)

dx
= f (y(x)) ∧ y(0) = y0

)
.

By the Lipschitz condition we can find an a0 which works
uniformly for all y0 in some [a, b], hence

∀y0∈[a,b]∃y(x) : [−a0,a0]→Rn

(dy(x)

dx
= f (y(x)) ∧ y(0) = y0

)
.

Recall that y(x) is computed as a continuous function, which
includes a Cauchy sequence representation of its values together
with a (uniform) Cauchy modulus (depending on y0 only). So
without additional effort we have some enclosure information.

Quality? At least it allows us to compute for any initial value y0 in
[a, b] and any given point x in [−a0, a0] an interval containing the
value of the solution for y0 at the point x .
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Moore’s K th-order method

Write equation (2) in component form, and assume that the
fi (y) = fi (y1, . . . , yn) have continuous total derivatives. Then

dy(x)

dx
= f (y(x)) =: f (0)(y(x)),

d2y(x)

dx2
=

d

dx
f (0)(y(x)) =

n∑
m=1

∂f
(0)
i

∂ym
f

(0)
m =: f (1)(y(x)),

d3y(x)

dx2
=

d

dx
f (1)(y(x)) =

n∑
m=1

∂f
(1)
i

∂ym
f

(0)
m =: f (2)(y(x))

etc., where f
(j)
i stands for f

(j)
i (y1(x), . . . , yn(x)).



Taylor’s theorem

Generally, for j = 1, 2, . . . ,

d jy(x)

dx j
= f

(j−1)
i (y1(x), . . . , yn(x)).

Now apply Taylor’s theorem with Lagrangian rest. Then for
sufficiently small h,

yi (x) = yi (0) +
K−1∑
j=1

f
(j−1)
i (y1(0), . . . , yn(0))

j!
x j +

f
(K−1)
i (y1(ϑ), . . . , yn(ϑ))

K !
xK

(4)

for some ϑ ∈ [0, h].



Idea of Moore’s K th-order method

(4) used as a basis for enclosure arguments. Feature of (4): the
unknown ϑ only appears in a product with a factor xK , which is
small if x is small and K is big. Given an approximation A of the
initial value y(0) so that Y ([0, h]) ⊂ A, some interval estimates
become possible. By clever heuristics Moore chooses h and A so
that w(Y (x)) is “as small as possible for as long as possible”.

One has to assume (among other things) that the interval versions
F (j) of f (j) satisfy a Lipschitz condition

w(F (j)(Y )) ≤ Ljw(Y ), (5)

where F (j)(Y ) denotes the interval-vector-valued function with

components F (j)(Y ) = (F
(j)
1 (Y ), . . . ,F

(j)
n (Y )), and w(I ) is the

width of the interval I .



Alternative

It is possible to use the constructive proof of (4) directly as a
source for estimates. This avoids

I the bad effect of interval computations with many occurrences
of the same expression (y(0) in our case), and

I makes the somewhat stiff assumption (5) superfluous.



Conclusion

I Constructive analysis with witnesses of low type level. Type
level 1 representation of continuous functions.

I Extraction of reasonable programs is possible.

I The Cauchy-Euler construction of approximate solutions to
ODEs as a type level 1 process.

I Moore’s ideas for enclosure of solutions can be transferred to
the present setting, with Cauchy sequences instead of
intervals.



Extraction from classical proofs

I Minimal and intuitionistic arithmetic

I Realizability

I The Dragalin-Friedman A-translation

I Example: hsh is not the identity

I Example: Wellfoundedness of N
I Example: Dickson’s lemma



Goal

I A refined method of extracting reasonable and sometimes
unexpected programs from classical proofs.

I In ∀x ∃̃yB(x , y), the kernel B(x , y) need not be quantifier-free,
but only has to belong to the strictly larger class of goal
formulas.

I Allow unproven lemmas D in the proof of ∀x ∃̃yB(x , y), where
D is a definite formula.



Idea

Transform a proof of ∃̃yG (G quantifier-free) into a proof of ∃yG .

Simple idea: replace ⊥ anywhere in the proof by ∃yG . Then
∀y (G → ⊥) → ⊥ is turned into ∀y (G → ∃yG ) → ∃yG , and since
the premise is trivially provable, we have the claim.

Unfortunately, this simple argument is not quite correct.

I G may contain ⊥, and hence is changed under the
substitution ⊥ 7→ ∃yG .

I We may have used axioms or lemmata involving ⊥ (e.g.,
⊥ → P), which need not be derivable after the substitution.

However, the simple idea can be turned into something useful.



Lemmata

Given a derivation (in minimal logic) of ∃̃yG from ~D and axioms

Indn,A : A(0) → ∀n(A(n) → A(n + 1)) → ∀nA(n),

Indp,A : P(tt) → P(ff) → ∀pA(p),

Axtt : atom(tt),

EfqA : atom(ff) → A.

atom is a unary predicate symbol taking one argument of the type
B of booleans. The intended interpretation of atom is the set {tt};
hence “atom(r)” means “r = tt”. Assume that the lemmata ~D
and the goal formula G are such that (with BA := B[⊥ := A])

`i
~D → D

∃yG
i , (6)

`i G∃yG → ∃yG ; (7)

here `i means derivability in intuitionistic arithmetic, i.e., with the
additional axioms Efq-LogA : ⊥ → A.



Lemmata (continued)

The substitution ⊥ 7→ ∃yG turns the axioms (except Efq-LogA)
into new instances of the same scheme. Hence from our given
derivation (in minimal logic) of ~D → ∀y (G → ⊥) → ⊥ we obtain

`i
~D∃yG → ∀y (G∃yG → ∃yG ) → ∃yG .

Now (6) allows to drop the substitution in ~D, and by (7) the
second premise is derivable. Hence

`i
~D → ∃yG .

We identify classes of formulas – to be called definite and goal
formulas – such that slight generalizations of (6) and (7) hold.

Obtain an explicit representation of the term extracted (via
realizability) from the derivation M of ~D → ∃yG just constructed,
of the form pt1 . . . tns, where p is extracted from M and
t1, . . . , tn, s are determined by the formulas ~D and G only.



Terms and formulas

Constants: εU, ttB, ffB, nilρ, consρ, RL(ρ)
τ , c

L(ρ)
τ .

Terms: cρ, xρ, (λxρrσ)ρ→σ, (rρ→σsρ)σ.

Formulas: ⊥, X , atom(tB), A → B, ∀xρA.

Abbreviations: ¬A := A → ⊥, ∃̃xA := ¬∀x¬A.
Further predicate symbols P might be added.



Axioms for ZX
0 (minimal arithmetic)

Induction axiom Indl ,A:

A(nilρ) → ∀xρ,lL(ρ)(A(l) → A(consρ(x , l))) → ∀lL(ρ)A(l).

Cases axiom Casesl ,A:

A(nilρ) → ∀xρ,lL(ρ)A(consρ(x , l)) → ∀lL(ρ)A(l),

A(tt) → A(ff) → ∀pBA(p).

Truth and falsity axioms:

Axtt : atom(tt),

Axff,A : atom(ff) → A.



Axioms for ZX (intuitionistic arithmetic)

In addition ex-falso-quodlibet:

Efq-LogA : ⊥ → A

Notice that every instance ⊥ → A of ex-falso-quodlibet is derivable
from

⊥ → X ,

⊥ → atom(ff).



Derivations in minimal logic

uB (assumptions) | axioms |
(λuAMB)A→B | (MA→BNA)B |
(λxMA)∀xA | (M∀xA(x)t)A(t)

where in λxMA, x /∈ FV(B) for all B with uB ∈ FA(M).

` denotes derivability in minimal logic.



Computational content τ(A) (type or ε)

τ(X ) := ν,

τ(P(~s)) := ε (in particular, τ(⊥) = ε),

τ(∀xρA) :=

{
ε if τ(A) = ε

ρ→ τ(A) otherwise,

τ(A → B) :=


τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A) → τ(B) otherwise.



Extracted term [[M]] : τ(A) for τ(A) 6= ε

[[uA]] := x
τ(A)
u (x

τ(A)
u associated with uA)

[[λuAM]] :=

{
[[M]] if τ(A) = ε

λx
τ(A)
u [[M]] otherwise

[[MA→BN]] :=

{
[[M]] if τ(A) = ε

[[M]][[N]] otherwise

[[λxρM]] := λxρ[[M]]

[[Mt]] := [[M]]t



Extracted terms for axioms

For the induction axiom Indl ,A :

A(nilρ) → ∀xρ,lL(ρ)(A(l) → A(consρ(x , l))) → ∀lL(ρ)A(l).

[[Indl ,A]] := RL(ρ)
τ : τ → (ρ→ L(ρ) → τ → τ) → L(ρ) → τ

Similarly: [[Casesl ,A]] := c
L(ρ)
τ (with τ := τ(A) 6= ε).

Let [[Efq-LogX ]] := aν
0 .

For MA with τ(A) = ε (i.e. A without computational content)
define [[M]] := ε (some new symbol).



Realizability

Fix a comprehension term A = { y | A0 }, A0 without X .

r mrA X := A(r)

r mrA P(~s) := P(~s)

r mrA ∀xA :=

{
∀x(ε mrA A) if τ(A) = ε

∀x(rx mrA A) otherwise

r mrA A→B :=


ε mrA A → r mrA B if τ(A)=ε

∀x(x mrA A → ε mrA B) if τ(A)6=ε=τ(B)

∀x(x mrA A → rx mrA B) otherwise

Notice: τ(A) = ε and ε mrA A = A, for A without X .



Soundness

Let x
τ(A)
u := ε in case τ(A) = ε.

Theorem
Assume that M is a ZX -derivation of B. Then there is a
Z-derivation of

[[M]] mrA B

from the assumptions { x
τ(C)
u mrA C | uC ∈ FA(M) }.

Proof.
Induction on M.



Definite and goal formulas

A formula C is relevant if it “ends” with ⊥:

C := ⊥ | B → C | ∀xC

Define definite and goal formulas D, G simultaneously by

D := P | G → D if G relevant ⇒ D relevant

| ∀xD

G := P | D → G if D qfree or relevant

| ∀xG if G irrelevant

Write BA for B[⊥ := A].



Translation

Lemma
ZX ` D → DX and ZX ` (~G → X ) → ~GX → X.

Theorem (Translation)

If Z0 ` ~D → ∀~y (~G → ⊥) → ⊥, then ZX ` ~D → ∀~y (~G → X ) → X.

Hence (X := ∃~y
~G)

Z ` ~D → ∃~y
~G .

Proof.
ZX

0 ` ~DX → ∀~y (~GX → X ) → X (replace ⊥ by X ). Now use the
Lemma.

Open Problem. Characterize {A | ZX ` A → AX }.



A non-example (Kreisel)

` ∀x ∃̃yA generally does not yield a program to compute y from x :
Clearly ` ∀x(∀yTxxy → ∀zTxxz), hence

` ∀x ∃̃y (Txxy → ∀zTxxz).

However, there is no computable f satisfying

Txx(fx) → ∀zTxxz ,

for then Txx(fx) ↔ ∀zTxxz .



Definite & goal formulas: examples

` ∀z(¬¬Txxz → Txxz︸ ︷︷ ︸
not definite

) → ∀y

(
(Txxy → ∀zTxxz︸ ︷︷ ︸

goal

) → ⊥
)
→ ⊥.

Replace T by ¬S :

`
(
∀y (¬Sxxy → ∀z¬Sxxz︸ ︷︷ ︸

not goal

) → ⊥
)
→ ⊥.



The Dragalin-Friedman A-translation

I Insert ¬¬ at every atom (6= ⊥): all formulas are relevant.

I Then all qfree formulas are definite and goal formulas; all
Π0

1-formulas are definite.

I Problem (cf. Murthy’s case study for Higman’s lemma): too
many negations.



Example 1: hsh is not the identity

We show ∃̃n h(s(hn)) 6= n and extract an (unexpected) program
from it (due to U.Berger).

Surjectivity Lemma. g ◦ f surjective implies g surjective.

Injectivity Lemma. g ◦ f injective implies f injective.

Surjectivity-Injectivity Lemma.
g ◦ f surjective and g injective implies f surjective.



Example 1: hsh is not the identity (ctd.)

hsh-Theorem. ∀n s(n) 6= 0 → ¬∀n h(s(h(n))) = n.

Proof.
Assume h ◦ s ◦ h is the identity.

h injective by the Injectivity Lemma

s ◦ h surjective by the Surjectivity-Injectivity Lemma

s surjective by the Surjectivity Lemma

Contradiction.



Example 1: hsh is not the identity (ctd.)

hsh-Theorem-dn. ∀n s(n) 6= 0 → ∃̃n h(s(h(n))) 6= n.

∀n s(n) 6= 0 is a definite formula.

General theory applies: the proof contains an algorithm.
Which one?



Extracted term

[s,h][if (h(s(h(h 0)))=h 0)
[if (h(s(h(s(h(h 0)))))=s(h(h 0)))

0
(s(h(h 0)))]

(h 0)]

If h(s(h(h0))) 6= h0, take h0. Assume h(s(h(h0))) = h0. If
h(s(h(s(h(h0))))) = s(h(h0)), then also h(s(h0)) = s(h(h0)); take
0 (using our assumption on s). Assume
h(s(h(s(h(h0))))) 6= s(h(h0)). Take s(h(h0)).



Example 2: Wellfoundedness of N

∀f N→N ∃̃k(f (k + 1) < f (k) → ⊥).

Classical proof: “choose k such that f (k) is minimal”.

But: this k cannot possibly be computed.

So what is the extracted algorithm?



Minimum principle

∃̃k R(k) → ∃̃k(R(k) ∧ ∀l<k(R(l) → ⊥)).

This is logically equivalent to

∀k

(
R(k) → ∀l<k(R(l) → ⊥) → ⊥

)
→ ∀k(R(k) → ⊥).

Premise: progressiveness of R(k) → ⊥ w.r.t. <

Prog := ∀k

(
∀l<k(R(l) → ⊥) → R(k) → ⊥

)
.

Prove this by zero-successor-induction on n w.r.t.

B(n) := ∀k<n(R(k) → ⊥).



Extracted program

[f][if (f 1<f 0)
((Rec nat=>nat=>nat)
([n1]0)
([n1,f2,n3][if (f(Succ n3)<f n3)

(f2(Succ n3))
n3])

(f 0)
1)
0]



More readable description of the algorithm

Discussion: Rec defines a function h of type N → N → N. After
an initial check whether f (1) < f (0), in the positive case, apply h
to f (0) and 1.

Point-of-increase(f) := [if (f 1<f 0) (h(f 0)1) 0]
where

h 0 := [m] 0
h(n+1) := [m] [if (f(m+1)<f m) (h n(m+1)) m]



Example 3: Dickson’s lemma

For every k, l ,

∀f1,...,fk ∃̃i0,...,il

∧∧
λ<l

(
iλ < iλ+1 ∧

k∧∧
κ=1

fκ(iλ) ≤ fκ(iλ+1)
)
.

Applications in algebra, combinatorics, Petri net theory.

Proof uses the minimum principle for undecidable sets.
No obvious computational content.



Proof of Dickson’s lemma

∀f1,...,fk ∃̃i0,...,il

∧∧
λ<l

(
iλ < iλ+1 ∧

k∧∧
κ=1

fκ(iλ) ≤ fκ(iλ+1)
)
.

Proof from minimum principle w.r.t. a measure function.
Call Q ⊆ N unbounded if ∀x ∃̃y>xQ(y).

Lemma 1. Let Q be unbounded and f : Q̄ ⊇ Q → N. Then the
set Qf of left f -minima w.r.t. Q is unbounded

Qf (x) := Q(x) ∧ ∀y>x(Q(y) → f (x) ≤ f (y)).



Proof of Lemma 1. Given x , we must find y > x with Qf (y).
Minimum principle for { y > x | Q(y) } with measure f :

∃̃y>xQ(y) → ∃̃y>x(Q(y) ∧ ∀z>x(Q(z) → f (y) ≤ f (z))).

Since Q is unbounded, the premise is true. We show that the y
provided by the conclusion satisfies Qf (y), i.e.,

Q(y) ∧ ∀z>y (Q(z) → f (y) ≤ f (z)).

Let z > y with Q(z) be given. From y > x obtain z > x , hence
f (y) ≤ f (z).



Let Q be unbounded and f0, f1 . . . be functions from a superset of
Q to N. Then for every k there is an unbounded subset Qk of Q
such that f0, . . . , fk−1 increase on Qk w.r.t. Q.
Lemma 2.

∀x ∃̃y>xQ(y) → ∀k ∃̃Qk⊆Q(
∀x ∃̃y>xQk(y) ∧ ∀i<k∀x ,y ;x<y (Qk(x) → Q(y) → fi (x) ≤ fi (y))

)
.

Proof. Induction on k. Base Let Q0 := Q. Step. Consider (Qk)fk .
By IH, f0, . . . , fk−1 increase on Qk w.r.t. Q, and therefore also on
its subset (Qk)fk . Moreover, by construction also fk increases on
(Qk)fk w.r.t. Q.



Dickson’s lemma: Extracted term

Note: Recursion parameters serve as upper bounds only. Reason:
induction via minimum principle. Hence R 7→

Rgen
τ : (N → N → τ) → N → τ, Rgenhx = hx(Rgenh).

Extracted program: ϕ(0), where

ϕ(i) = ψ(i , ϕ)

ψ(i , h) = ξi ,h(i + 1)

ξi ,h(j) =


ψ(j , ξi ,h) if g(j) < g(i)

h(j) if not & f (j) < f (i)

(i , j) otherwise



Dialectica interpretation

I Gödel translation, soundness

I A unified view of realizability and Dialectica interpretation

I Extraction of uniform bounds

I The negative fragment: classical arithmetic

I Extraction of uniform bounds from classical proofs with
extensionality



Gödel translation A 7→ ∃x∀y |A|xy

In his original functional interpretation, Gödel (1958) assigned to
every formula A a new one ∃xA1(x) with A1(x) a universal
formula, i.e., of the form ∀y |A|xy with |A|xy quantifier-free.

To determine the types of x and y , we assign to every formula A
types τ+(A), τ−(A). τ+(A) is intended to be the type of a
(Dialectica-)realizer to be extracted from a proof of A, and τ−(A)
the type of a challenge for the claim that this term realizes A.

Rather than including amongst the types a special “nulltype”
object ε and case distinctions – as we did for realizability –, it is
more convenient here to use the unit type U instead and so avoid
case distinctions. Using some obvious isomorphisms (like
(ρ→ U) ∼= U and (U → ρ) ∼= ρ) we can later “clean” such types.



Positive and negative types

τ+(P(~s )) := U,

τ+(∀xρA) := ρ→ τ+(A),

τ+(∃xρA) := ρ× τ+(A),

τ−(P(~s )) := U,

τ−(∀xρA) := ρ× τ−(A),

τ−(∃xρA) := τ−(A).

and for implication

τ+(A → B) :=
(
τ+(A) → τ+(B)

)
×

(
τ+(A) → τ−(B) → τ−(A)

)
,

τ−(A → B) := τ+(A)× τ−(B).

Example

τ+(∀n∃kG (n, k)) := N → N×U 7→clean N → N,

τ−(∀n∃kG (n, k)) := N×U 7→clean N.



Gödel translation

|P(~s )|rs := P(~s ),

|∀xA(x)|rs := |A(s0)|r(s0)s1 ,

|∃xA(x)|rs := |A(r0)|r1s ,

|A → B|rs := |A|s0r1(s0)(s1) → |B|r0(s0)
s1 .

For readability we sometimes write terms of a pair type in pair
form. Then

|∀zA|xz,y := |A|xzy ,
|∃zA|z,x

y := |A|xy ,
|A → B|f ,g

x ,u := |A|xgxu → |B|fxu .



Markov principle (Mω), for higher type variables and quantifier-free
formulas A0,B0:

(∀yA0 → B0) → ∃y (A0 → B0) (y /∈ FV(B0)).

Theorem (Soundness)

Let M be a derivation in

WE-HAω + AC + IPω
∀ + Mω + Ax∀ of a formula A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci ) be
variables for realizers of the assumptions, and y be a variable of
type τ−(A) for a challenge of the goal. Then we can find terms
[[M]]+ =: t of type τ+(A) with y /∈ FV(t) and [[M]]−i =: ri of type
τ−(Ci ), and a derivation µ(M) in

WE-HAω + Ax∀ of the formula |A|ty

from assumptions ūi : |Ci |xi
ri
.



Theorem (Characterization)

AC + IPω
∀ + Mω ` A ↔ ∃x∀y |A|xy .

Proof.
Induction on A; we only treat one case.

(A → B) ↔ (∃x∀y |A|xy → ∃v∀u |B|vu) by IH

↔ ∀x(∀y |A|xy → ∃v∀u |B|vu) by MLω

↔ ∀x∃v (∀y |A|xy → ∀u |B|vu) by (IPω
∀ )

↔ ∀x∃v∀u(∀y |A|xy → |B|vu) by MLω

↔ ∀x∃v∀u∃y (|A|xy → |B|vu) by (Mω)

↔ ∃f ∀x∀u∃y (|A|xy → |B|fxu ) by (AC)

↔ ∃f ,g∀x ,u(|A|xgxu → |B|fxu ) by (AC)

↔ ∃f ,g∀x ,u|A → B|f ,g
x ,u by definition.



A unified view of realizability and the Dialectica
interpretation (Oliva 2006)

Modified realizability can be treated in such a way that similarities
with the Dialectica interpretation become visible. Change the
definitions of τ+(A), τ−(A) and |A|xy in the implicational case:

τ+(A → B) := τ+(A) → τ+(B),

τ−(A → B) := τ+(A)× τ−(B),
|A → B|fx ,u := ∀y |A|xy → |B|fxu .

Then mr can be expressed in terms of the (new) |A|xy :

` r mr A ↔ ∀y |A|ry .

Proved by induction on A. Case A → B (τ+(A) 6= ε, τ−(A) 6= ε):

r mr (A → B) ↔ ∀x(x mr A → rx mr B) by definition

↔ ∀x(∀y |A|xy → ∀u |B|rxu ) by IH

↔ ∀x ,u(∀y |A|xy → |B|rxu ) by MLω

= ∀z |A → B|rx ,u by definition.



Theorem (Extraction)

Assume

WE-HAω + AC + IPω
∀ + Mω + Ax∀ ` ∀x

(
∀uA0(x , u) → ∃yB(x , y)

)
with A0 quantifier-free, and all formulas have at most the displayed
variables free. Then we can find a closed HAω-term t such that

WE-HAω + AC + IPω
∀ + Mω + Ax∀ ` ∀x

(
∀uA0(x , u) → B(x , tx)

)
.



Majorization and the Dialectica interpretation

The Dialectica interpretation produces complex extracted terms, as
opposed to the realizability interpretation. This is partially due to
contraction (necessary in the →−-rule). Therefore

I consider derivations from lemmata, and

I try to simplify extracted terms by only looking for majorants.

This has led Kohlenbach to develop his “monotone Dialectica
interpretation”, where one only looks for bounds of realizers rather
than exact realizers.
Essential: one can then deal with additional axioms Ax∀∃≤∀:

∀xρ∃y≤σrx∀zτ A0(x , y , z) (A0 quantifier-free),

with r a closed term of type ρ→ σ. Need to consider strenghtened
versions Ax′∀∃≤∀ of these assumptions:

∃Y≤ρ→σr∀xρ,zτ A0(x ,Yx , z).



Theorem (Soundness with majorants)

Let M be a derivation in

WE-HAω + AC + IPω
∀ + Mω + Ax∀∃≤∀ of a formula A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci ) be
variables for realizers of the assumptions, and y of type τ−(A) be
a variable for a challenge of the goal. Let ~z of type ~ρ be the
variables free in M. Then we can find closed terms
[[λ~z , ~uM]]∗+ =: T ∗ of type τ+(C1) → . . .→ τ+(Cn) → ~ρ→ τ+(A)
and [[λ~z , ~uM]]∗−i =: R∗

i of type
τ+(C1) → . . .→ τ+(Cn) → ~ρ→ τ−(A) → τ−(Ci ), and a
derivation µ(M) in

WE-HAω + Ax′∀∃≤∀

of the formula

∃T ,R!,...,Rn

(
T ∗ maj T ∧ R∗

1 maj R1 ∧ · · · ∧ R∗
n maj Rn ∧

∀~x ,~z,y (|C1|x1

R1~x~zy → · · · → |Cn|xn

Rn~x~zy → |A|T~x~z
y )

)
.



Theorem (Extraction of uniform bounds)

Let s be a closed HAω-term, A(x , y , z) a formula with at most the
displayed variables free, and τ a type of level ≤ 2. Assume that

WE-HAω + AC + IPω
∀ + Mω + Ax∀∃≤∀ ` ∀x1∀y≤ρsx∃zτ A(x , y , z).

Then we can find a closed HAω-term t such that

WE-HAω +AC+ IPω
∀ +Mω +Ax∀∃≤∀ ` ∀x1∀y≤ρsx∃z≤τ tx A(x , y , z).

Moreover, if A contains ∀∃-premises only, then the conclusion can
already be derived in WE-HAω + Ax′∀∃≤∀.



The weak Lemma of König as a ∀∃≤∀-Axiom

WKL says that every infinite binary tree has an infinite path.
When we try to directly formalize it in our (functional) language, it
does not quite have the required form, since the assumption that
the given tree is infinite needs an additional ∀ in the premise.

However, one can easily find an equivalent statement of the
required form. To this end, we define the “infinite extension” of a
given tree, and let WKL′ say that for every t, the infinite
extension I (t̂) of its “associated tree” t̂ has an infinite path. It
then is easy to see that WKL and WKL′ are equivalent.



Consider hereditary extensional equality, defined as follows

x1 ≈µ x2 := x1 =µ x2,

x1 ≈ρ→σ x2 := ∀y1,y2(y1 ≈ρ y2 → x1y1 ≈σ x2y2).

By definition, x1 ≈1 x2 is the same as x1 =1 x2.

Lemma
` x1 =ρ x ′1 → x2 =ρ x ′2 → x1 ≈ρ x2 → x ′1 ≈ρ x ′2.

Lemma
For every HAω-term t,

HAω ` ~x1 ≈ ~x2 → t(~x1) ≈ρ t(~x2).

Corollary

For every closed HAω-term t, HAω ` t ≈ρ t.



Application: uniform moduli of continuity

Theorem
For every closed HAω-term t of type 2, we can find another closed
HAω-term t̄ of HAω also of type 2 such that

HAω ` ∀k,y∀x ,x ′≤1y

(
∀i<t̄kyxi = x ′i → ∀j<ktxj = tx ′j

)
.

Proof.
Because of the remark above, from HAω ` t ≈2 t we obtain

HAω ` ∀x ,x ′(∀ixi = x ′i → ∀k∀j<ktxj = tx ′j),

HAω + Mω ` ∀k,x ,x ′∃i (xi = x ′i → ∀j<ktxj = tx ′j),

HAω + Mω ` ∀k,y∀x ,x ′≤1y∃i (xi = x ′i → ∀j<ktxj = tx ′j).

Extraction of uniform bounds gives a closed HAω-term t̄:

HAω ` ∀k,y∀x ,x ′≤1y∃i≤t̄ky (xi = x ′i → ∀j<ktxj = tx ′j).



The negative fragment: classical arithmetic

Classically, we understand an existential formula “there is an x
such that A(x)” as an abbreviation for “it is not true that for all x ,
A(x) is false”. We propose to make this distinction explicit and use
both ∃xA and ∃̃xA, where the latter is an abbreviation for ¬∀x¬A.
Then in a classical context we only deal with ∃̃xA, and hence need
to work with →∀∧⊥-formulas only.
Recall that in arithmetic atomic formulas have the form atom(rB).
There is no need for (logical) falsity ⊥, since we can take the
atomic formula F := atom(ff) – called arithmetical falsity – built
from the boolean constant ff instead.
In particular, stability ¬¬A → A holds for atomic formulas, and
therefore every atomic formula is equivalent to a negated formula.
Hence it suffices in classical arithmetic PAω to work with
→∀∧-formulas only. This implies stability for all formulas.



IP, M and AC with classical existence

We study what happens to the Independence of Premise axiom
(IPω) and Markov’s Principle (Mω) – both of which involve ∃ –
under the “negative interpretation” of the existential quantifier,
that is, replacement of ∃ by ∃̃. It turns out that both become
derivable.

Lemma

(a) (ĨP
ω
) is derivable from F → A:

` (F → A) → (A → ∃̃xρB) → ∃̃xρ(A → B) (x /∈ FV(A)).

(b) (M̃ω) is derivable from ∀xρ(¬¬A → A):

` ∀xρ(¬¬A → A) → (∀xρA → B) → ∃̃xρ(A → B) (x /∈ FV(B)).



AC with classical existence

Lemma
(QF-ÃC) is derivable from (QF-AC) plus Markov’s Principle (Mω)
for quantifier-free formulas.

Proof.
We argue informally. Assume (QF-AC)

∀xρ∃yσA0(x , y) → ∃f ρ→σ∀xρA0(x , f (x))

with A0 quantifier-free. Then

∀x ∃̃yA0(x , y)

∀x(∀y¬A0(x , y) → F )

∀x∃y (¬A0(x , y) → F ) by (Mω)

∀x∃yA0(x , y) by stability ¬¬A0 → A0

∃f ∀xA0(x , f (x)) by (QF-AC)

∃̃f ∀xA0(x , f (x)),

where the last step is a logical weakening.



Extraction from classical proofs

Assume

WE-PAω + QF-ÃC + Ax∀ ` ∀x ∃̃yA0(x , y),

A0(x , y) a quantifier-free formula with at most the displayed
variables free. Then we can find a closed HAω-term t such that

WE-HAω + Ax∀ ` ∀xA0(x , tx).

Proof:

WE-PAω + QF-ÃC + Ax∀ ` ∀x ∃̃yA0(x , y)

WE-HAω + QF-AC + Mω + Ax∀ ` ∀x ∃̃yA0(x , y)

WE-HAω + QF-AC + Mω + Ax∀ ` ∀x∃yA0(x , y) by (Mω)

WE-HAω + Ax∀ ` |∀x∃yA0(x , y)|tx
for some closed HAω-term t, where in the last step we have used
the Soundness Theorem. But

|∀x∃yA0(x , y)|tx = |∃yA0(x , y)|txε = |A0(x , tx)|εε = A0(x , tx).



Extraction of uniform bounds from classical proofs

Let s be a closed HAω-term, and τ, γ types of level ≤ 2. Assume

WE-PAω + QF-ÃC ` ∀aδ ∃̃b≤σra∀cγB0(a, b, c) →
∀x1∀y≤ρsx ∃̃zτ A0(x , y , z).

Then we can find a closed HAω-term t such that

WE-HAω ` ∀c∃B≤δ→σr∀aδ∀c ′≤γcB0(a,Ba, c ′) →
∀x1∀y≤ρsx∃z≤τ tx A0(x , y , z).

Why interesting? ε-weakening of the Skolem normal form of the
∀∃∀-form WKL′ of WKL is derivable:

WKL′ := ∀t∃f N→B∀n f̄ (n) ∈ I (t̂).

The ε-weakening of its Skolem normal form is

∀n∃F∀t∀n′≤nFt(n′) ∈ I (t̂).

But this is easy to derive (in HAω): Given n, let Fnt pick from the
infinite tree I (t̂) a path of length n.



Elimination of extensionality (Gandy 1956)

Eµx := tt,

(x1 =e
µ x2) := (x1 =µ x2),

Eρ→σx := ∀y1,y2(y1 =e
ρ y2 → xy1 =e

σ xy2),

(x1 =e
ρ→σ x2) := Eρ→σx1 ∧ Eρ→σx2 ∧ ∀y (Eρy → x1y =e

σ x2y).

Properties (AE from A by relativizing all quantifiers to E ).

I Eρx → x =e x .

I Eρ→σx → Eρy → Eσ(xy).

I x1 =e
ρ→σ x2 ↔ ∀y1,y2(y1 =e

ρ y2 → x1y1 =e
σ x2y2).

I (Eρx)E ↔ Eρx and (x1 =e
ρ→σ x2)

E ↔ (x1 =e
ρ→σ x2).

I ~x1 =e ~x2 → r(~x1) =e r(~x2).

I Eρx1 ∧ Eρx2 ∧ (x1 =ρ x2)
E ↔ x1 =e

ρ x2.

Theorem
E-HAω ` A(~x) implies HAω ` E (~x) → AE (~x).



Extraction of uniform bounds from classical proofs with
extensionality

Theorem (Kohlenbach)

Let ∆ be a set of axioms from Ax∀∃≤∀, and ∆ε consist of their
ε-weakenings. Assume that the types of the existential variables
are all ≤ 1 and of the final ∀-variables are ≤ 2. Let s be a closed
HAω-term, A0(x , y , z) a quantifier-free formula with at most the
displayed variables free, and τ a type of level ≤ 2. Assume that

E-PAω + QF-ÃC
0,1

+ ∆̃ + ˜WKL ` ∀x1∀y≤1sx ∃̃zτ A0(x , y , z).

Then we can find a closed HAω-term t such that

HAω + ∆ε ` ∀x1∀y≤1sx∃z≤τ tx A0(x , y , z).



Comments

I Obtain constructive existence from classical existence

I Useful for parameter independence

I Terms found by the Dialectica interpretation are complex



Best L1 approximation

Goal: A classical proof, when analyzed logically, can give
quantitative and hence constructive information.

I CSM-spaces, compactness

I Cheney’s proof

I Logical analysis



Best L1-approximation

Theorem
Let f ∈ C [0, 1], given with a modulus ωf of uniform continuity,
and p1, p2 ∈ Pn (:= the set of all polynomials of degree ≤ n). One
can find a modulus of uniqueness Ψ(ωf , n, k) for best
L1-approximation, that is,∧∧

i=1,2

(
||f − pi ||1 − d1(f ,Pn) ≤ Ψ(ωf , n, ε)

)
→ ||p1 − p2||1 ≤ ε,

where d1(f ,Pn) := infp∈Pn ||f − p||1.



Moduli of continuity for polynomials

Lemma (Markov inequality)

Consider q ∈ Pn as ∈ C [0, 1]. Then

||q′||∞ ≤ 2 · n2||q||∞.

Lemma (Estimate of ||q||∞ by ||q||1)
Consider q ∈ Pn as ∈ C [0, 1]. Then ||q||∞ ≤ 2(n + 1)2||q||1.

Lemma (Lipschitz constant for q ∈ Pn in terms of ||q||1)
Consider q ∈ Pn as ∈ C [0, 1]. Then 4n2(n + 1)2||q||1 is a Lipschitz
constant for q.

Lemma (Estimate of the coefficients)

Consider q(x) = anx
n + · · ·+ a1x + a0 as ∈ C [0, 1]. Then

maxi |ai | ≤ n2n||q||∞.



CSM-spaces

Let X be a complete separable metric space (CSM-space, or Polish
space), given with a countable subset Q ⊆ X and a metric
d : Q → Q → R with the property that Q is dense in X .

Examples

(a) The set R of reals is a CSM-space, with the rationals Q as
countable dense subset.

(b) The Baire space NN is a CSM-space.

(c) C [0, 1], where each function comes with a modulus of uniform
continuity. The metric is defined from a norm; for instance
||f ||1 or ||f ||∞. As the required countable dense subset we can
take either the polynomials with rational coefficients (which is
dense by a theorem of Weierstraß), or else the set of all
rational polygons (i.e., polygons with rational corners).



Compactness

K ⊆ X is compact if it is closed and totally bounded. The latter
notion means that for every k ∈ N we have a k-net in Q ∩ K , that
is, a finite list ak,0, . . . ak,h(k)−1 of elements of Q ∩ X such that for

every a ∈ Q ∩ K there is an i < h(k) such that d(a, ak,i ) ≤ 2−k .

Examples

(a) [0, 1] is a compact subset of the reals.

(b) The set { f ∈ NN | ∀nf (n) ≤ M } and in particular the Cantor
space {0, 1}N is a compact subset of the Baire space NN.

(c) For fixed M, n, the set KM,n of all polynomials p ∈ Pn with
||p||1 ≤ M is a compact subset of C [0, 1]. To see this, recall
that the coefficients of p ∈ Pn can be estimated by n2n||p||∞,
so (Markov’s inequality) by n2n(n + 1)2||p||1 ≤ n2n(n + 1)2M.

(d) The set of all f ∈ C [0, 1] with f (0) = 0 and a fixed modulus ω
of uniform continuity is a compact subset of C [0, 1]. It is
denoted by Cω[0, 1].



Reduction to a compact subspace of Pn

It suffices to prove the theorem for p1, p2 in the compact set
KM,n := { p ∈ Pn | ||p||1 ≤ M }, for some M ≥ 5

2 ||f ||1.

Lemma
Assume Ψ(ωf , n, ε) ≤ ε

8 . Then

∀p1,p2∈KM,n

( ∧∧
i=1,2

(
||f−pi ||1 ≤ d1(f ,Pn)+Ψ(ωf , n, ε)

)
→ ||p1−p2||1 ≤ ε

)
implies

∀p1,p2∈Pn

( ∧∧
i=1,2

(
||f−pi ||1 ≤ d1(f ,Pn)+Ψ(ωf , n, ε)

)
→ ||p1−p2||1 ≤ ε

)
.



Uniform continuity of g

We want to show that

g(x) := |f (x)− p(x)| − 1

2

(
|f (x)− p1(x)|+ |f (x)− p2(x)|

)
.

is continuous:

∀ω∀f ∈Cω[0,1];f (0)=0∀p1,p2∈KM,n
∀ε∀a,b∈[0,1]∃̃δ(a <δ b → |g(a)− g(b)| < ε),

with M := d 1
ω(1)e. The logical form is

∀ω∀f ∈Cω[0,1];f (0)=0∀p1,p2∈KM,n
∀ε∀a,b∈[0,1]∃̃δ∃̃B0.

Recall that the set of all f ∈ Cω[0, 1] with f (0) = 0 is compact.
Therefore if we would have a derivation, then by the metatheorem
we could extract a Dialectica realizer of δ depending on n, ω and ε
only.

∀ω∀f ∈Cω[0,1];f (0)=0∀p1,p2∈KM,n
∀ε∀a,b∈[0,1](

|b − a| < 2Φg (n,ω,ε) → |g(a)− g(b)| < ε
)
.



If g is uniformly continuous, ≤ 0 and ||g ||1 = 0, then g = 0

∀ω∀g∈Cω[0,1]

(
∀a,b∈[0,1]∀η∈Q+(|b − a| ≤ ω(η) → |g(b)− g(a)| ≤ η) →

∀a∈[0,1]g(a) ≤ 0 →
∫
|g | = 0 → ∀x∈[0,1]g(x) = 0

)
.

We make some of the hidden quantifiers explicit:

∀ω∀g∈Cω[0,1]∀ε∈Q+ ∃̃δ∈Q+(
∀a,b∈[0,1]∀η∈Q+(|b − a| ≤ ω(η) → |g(b)− g(a)| ≤ η) →

∀a∈[0,1]g(a) ≤ 0 →
∫
|g | ≤ δ → ||g ||∞ ≤ ε

)
.

Observe that the purely universal premises do no harm to the
applicability of the metatheorem: we can always pull their universal
quantifiers as weak existential ones to the front, and disregard
bounds provided for them.



If g is uniformly continuous, ≤ 0 and ||g ||1 = 0, then g = 0
(continued)

So by the metatheorem we have Φ∞ such that

∀ω∀g∈Cω[0,1]∀ε∈Q+

(
∀a,b∈[0,1]∀η∈Q+(|b − a| ≤ ω(η) → |g(b)− g(a)| ≤ η) →

∀a∈[0,1]g(a) ≤ 0 →
∫
|g | ≤ Φ∞(ω, ε) → ||g ||∞ ≤ ε

)
.



If q ∈ Pn has n + 1 zeros, then q = 0

We write this fact in a form where q is restricted to the compact
subset Kf ,n of Pn, and the hidden quantifiers are made explicit, in
order to know that a modulus can be extracted from a proof.

∀n∈N∀q∈Kf ,n
∀x0,...,xn∈[0,1]∀r ,ε∃̃δ∈Q+(

∀i<nxi + r ≤ xi+1 → ∀i≤n|q(xi )| ≤ δ → ||q||∞ ≤ ε
)
.

By the metatheorem we have Φmany such that

∀n∈N∀q∈Kf ,n
∀x0,...,xn∈[0,1]∀r ,ε(

∀i<nxi + r ≤ xi+1 → ∀i≤n|q(xi )| ≤ Φmany(n, r , ε) → ||q||∞ ≤ ε
)
.



Using Cheney’s Lemma 1 to guarantee n + 1 roots

Lemma (Cheney)

∀f ∈C [0,1]∀n∈N∀p1,p2∈Kf ,n
∀x1≤···≤xn∈[0,1]∀M∈N∀h∈Pn;||h||∞≤M∀ε,r∈Q+ ∃̃l∈Q+

(
∀y∈A|f0(y)| > ε→

n+1∑
i=1

σi

∫
Ai

h >

∫
B
|h|+ 1 →

∃̃λ∈R(||f0 − λh||1 + l < ||f0||1)
)
,

where

σi := f0(
xi−1 + xi

2
) with x0 := 0 and xn+1 := 1,

B :=
n⋃

i=1

(xi −
r

2
, xi +

r

2
), ,A := [0, 1] \ B.

Here ε and l have been (vacuously) added in order to obtain useful
moduli.



Proof of Cheney’s lemma

Notice that A consists of n + 1 possibly degenerated closed
intervals Ai . We can assume that sgf is defined on A (arbitrarily
on degenerated closed intervals Ai ). Hence∫

A
h · sgf =

n+1∑
i=1

σi

∫
Ai

h > 1 +

∫
B
|h|.

Choose l := λ := ε/M. Then on nondegenerated intervals Ai we
have |λh| < ε < |f |; hence sgf = sg(f − λh). Therefore



Proof of Cheney’s lemma (continued)

∫
|f − λh| =

∫
B
|f − λh|+

∫
A
|f − λh|

=

∫
B
|f − λh|+

∫
A
(f − λh)sgf

=

∫
B
|f − λh|+

∫
A
|f | − λ

∫
A

h · sgf

=

∫
B
|f − λh| −

∫
B
|f |+

∫
|f | − λ

∫
A

h · sgf

≤ λ

∫
B
|h| − λ

∫
A

h · sgf +

∫
|f |

< −λ+

∫
|f |.



Using Cheney’s Lemma 1 to guarantee n + 1 roots

By the metatheorem we have ΦC (ω, n, ε, r ,M) such that

∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Kf ,n
∀x1≤···≤xn∈[0,1]∀M∈N∀h∈Pn;||h||∞≤M∀ε,r∈Q+

(
∀y∈A|f0(y)| > ε→

n+1∑
i=1

σi

∫
Ai

h >

∫
B
|h|+ 1 →

∃̃λ∈R(||f0 − λh||1 + ΦC (ω, n, ε, r ,M) < ||f0||1)
)
.

(8)

We now aim at removing the dependency of ΦC on r and M, by
working with a particular polynomial h. We claim that

∀n∈N∀x1≤···≤xn∈[0,1]∀σ1≤···≤σn+1∈[−1,1]∃̃h∈Pn ∃̃r∈Q+

(n+1∑
i=1

σi

∫
Ai

h >

∫
B
|h|

)
.

To see this, let y1, . . . , ym consist of those xi with σi 6= σi+1, and
h := ±(x − y1) . . . (x − ym). Now choose r sufficiently small.



Using Cheney’s Lemma 1 to guarantee n + 1 roots

Using the hidden η in the inequality and h/η ∈ Pn we get

∀n∈N∀x1≤···≤xn∈[0,1]∀σ1≤···≤σn+1∈[−1,1]∃̃h∈Pn ∃̃r∈Q+(n+1∑
i=1

σi

∫
Ai

h >

∫
B
|h|+ 1

)
.

We can also add the existence of a k ≥ ||h||∞. Now the
metatheorem provides us with Φdist(n) and Φbound(n) such that

∀n∈N∀x1≤···≤xn∈[0,1]∀σ1≤···≤σn+1∈[−1,1]∃̃h∈Pn ∃̃r≥Φdist(n)

(
n+1∑
i=1

σi

∫
Ai

h >

∫
B
|h|+ 1 ∧ Φbound(n) ≥ ||h||∞

)
.

(9)

Here we can leave out ∃̃r≥Φdist(n) and replace r in the kernel by
r := Φdist(n) (recall that Ai and B depend on r), because h is
such that

∑
i σi

∫
Ai

h =
∫
A |h|, and hence is monotone in r .



Using Cheney’s Lemma 1 to guarantee n + 1 roots

Now let f ∈ C [0, 1], n ∈ N, p1, p2 ∈ Kk,n and

x1 ≤ · · · ≤ xn ∈ [0, 1] be fixed. Let ĥ be the h provided by (9),
where σi := f0(

xi−1+xi

2 ) with x0 := 0 and xn+1 := 1. Therefore
from (8) we get (by contraposition)

∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Kf ,n
∀x1≤···≤xn∈[0,1]∀ε∈Q+(

∀λ∈R(||f0 − λh||1 + Φ′C (ω, n, ε) ≥ ||f0||1) → ∃̃y∈A|f0(y)| ≤ ε
)

with Φ′C (ω, n, ε) := ΦC (ω, n, ε,Φdist(n),Φbound(n)). It follows that

∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Kf ,n
∀ε∈Q+

(
∀h∈Pn(||f0 − h||1 + Φ′C (ω, n, ε) ≥ ||f0||1) →
∀x1≤···≤xn∈[0,1]∃̃y∈A|f0(y)| ≤ ε

)
.



Using Cheney’s Lemma 1 to guarantee n + 1 roots

This (classical) existence proof of y ∈ A can be repeated until we
have n + 1 roots which are Φdist(n) apart:

∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Kf ,n
∀ε∈Q+

(
∀h∈Pn(||f0 − h||1 + Φ′C (ω, n, ε) ≥ ||f0||1) →
∃̃x0,...,xn∈[0,1](∀i<n|f0(xi )| ≤ ε ∧ ∀i<n xi + Φdist(n) ≤ xi+1)

)
.



Putting the parts together

Fix ω, f ∈ Cω[0, 1], n ∈ N, p1, p2 ∈ Kf ,n and ε ∈ Q+. Assume (for
i = 1, 2)

||f − pi ||1 − d1(f ,Pn) < Ψ(ω, n, ε) :=

min{Φ∞(Φg (n, ω, ε),Φmany(n,Φdist(n), ε)),

Φ′C (ω, n,Φmany(n,Φdist(n), ε)),
ε

8
}.

Using the previous arguments, this implies ||p1 − p2||∞ ≤ ε, as
required.



Conclusion (Kohlenbach and Oliva, APAL 2003)

By a logical analysis of a Cheney’s proof of uniqueness of best
L1-approximations

E-PAω + QF-ÃC
0,1

+ ˜WKL ` ∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Pn∀ε∃̃δ( ∧∧
i=1,2

(||f − pi ||1 − d1(f ,Pn) ≤ δ) → ||p1 − p2||1 ≤ ε
)

we have seen that there exists a modulus of uniqueness depending
on ω, n and ε only:

HAω ` ∀ω∀f ∈Cω[0,1]∀n∈N∀p1,p2∈Pn∀ε( ∧∧
i=1,2

(||f − pi ||1 − d1(f ,Pn) < Ψ(ω, n, ε)) → ||p1 − p2||1 ≤ ε
)
.



Future work

I Get more experience in unwinding classical proofs. Compare
Gödel’s Dialectica interpretation and its variants (Kohlenbach,
Ferreira/Oliva) with refinements of the Dragalin-Friedman
A-translation.

I Existence proofs for ODE’s by the Cauchy-Euler method.
Compare estimates based on the “fundamental inequality”,
with the ones obtained by Moore’s first-order and K th-order
interval method.

I Type theory with approximations: a constructive theory of
formal neighborhoods approximating continuous functionals,
based on Scott’s “information systems”, representing domains.
Computable functionals appear as r.e. limits or “ideals”.


