
Higman’s Lemma and its computational content

Helmut Schwichtenberg
(j.w.w. Monika Seisenberger and Franziskus Wiesnet)

Mathematisches Institut, LMU, München

Schloß Dagstuhl, Januar 2016

1 / 19

Higman’s lemma

(A,�) is a well-quasiorder (wqo) if

I � is transitive, and

I every infinite sequence in A is good, i.e.,
∀(ai)i<ω

∃i ,j(i < j ∧ ai � aj).

Call [a1, . . . , an] embeddable (�∗) in [b1, . . . , bm] if there exists a
strictly increasing map f : {1, . . . , n} → {1, . . . ,m} such that
ai � bf (i) for all i ∈ {1, . . . n}.

Lemma (Higman)

If (A,�) is a well-quasiorder, then so is (A∗,�∗).

2 / 19

Nash-Williams’ proof

(1) Assume that there is a bad sequence of words in A∗.

(2) Choose a minimal bad one, i.e. (wi)i<ω s. t. w0, . . . ,wn starts
an infinite bad sequence, but w0, . . . ,wn−1, v does not, where
v is a proper end segment of wn.

(3) wi = ai∗vi . There is an infinite subsequence aκ0 � aκ1 � · · ·
of the sequence (ai)i<ω. This also determines a corresponding
sequence w0, . . . ,wκ0−1, vκ0 , vκ1 ,

The sequence w0, . . . ,wκ0−1, vκ0 , vκ1 , . . . is bad (otherwise also
(wi)i<ω would be good). This contradicts the minimality in (2).

3 / 19

Computational content of Nash-Williams’ proof

I Murthy (1990) applied Friedman’s A-translation to the
classical proof (in NuPRL). Huge resulting program.

I Seisenberger (2003) applied a refined version of the
A-translation (in Minlog), not eliminating the axiom of
classical dependent choice. Much smaller extracted program.

I Powell (2012) applied Gödel’s Dialectica Interpretation.

I Sternagel (2014): formalization of Higman and Kruskal (in
Isabelle). No extraction.

4 / 19

Constructive reformulation of Nash-Williams’ proof

I Coquand & Fridlender (1993): for a {0, 1}-alphabet.
Formalizations: Fridlender (in Agda), Seisenberger (in
Minlog), Berghofer (in Isabelle and Coq).

I General case: Seisenberger (2001). Much more elaborate.

I Formalization by Delobel (in Coq). No extraction. Problem
(pointed out by Fridlender): acc�-based definition of
well-quasiorders results in a brute force search. To let the
proof determine the case, one needs a “positive” formulation
of well-quasiorders, with 2 rules.

I Here: formalization and extraction for the general case.

5 / 19

Constructive reformulation of Nash-Williams’ proof (ctd.)

Inductively define BarA ⊆ A∗, by

GoodA(as)

BarA(as)

∀a BarA(a∗as)

BarA(as)
.

BarWws is defined similarly, using the corresponding GoodWws.

(1) Prove inductively “BarA([])→ BarW([])”.

(2) Replace minimality argument by structural induction on ws.

6 / 19

(3)

Given ws = [wn, . . . ,w0] s.t. wi=ai∗vi . Consider subsequences
aκl � · · · � aκ0 of maximal length & corresponding sequences
vκl , . . . , vκ0 ,wκ0−1, . . . ,w0. The sequences [aκl , . . . , aκ0] form a
“forest”. Define Forest(ws) with nodes labelled in A∗∗ × A∗.

I In the produced forest the right-hand components of each
node form such a descending subsequence [aκi , . . . , aκ0].
Corresponding left component: [vκi , . . . , vκ0 ,wκ0−1, . . . ,w0].

I If we extend ws by a word a∗v , then in the existing forest
either new nodes, possibly at several places, are inserted, or a
new singleton tree with root node 〈v∗ws, [a]〉 is added.

I Idea: if in Forest(ws) new nodes cannot be inserted infinitely
often (without ending up with a good left-hand component in
a node) and if also new trees cannot be added infinitely often,
then ws can not be extended badly infinitely often.

7 / 19

Why formalize?

I Correctness.

I Get hold of the computational content of a (non-trivial) proof
by means of its extracted term.

Underlying theory: TCF, with Kleene-Kreisel modified realizability.

I Computational content only arises from inductive predicates.

I Need “non computational” (n.c.) universal quantification
(Berger 1993) written ∀nc to correctly express the type of a
computational problem of the form

∀ncas (BarA(as)→ . . .).

8 / 19

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Russell, Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

9 / 19

BarA
Inductively define BarA ⊆ A∗, by the clauses

InitBarA : ∀nc�,as(GoodA�(as)→ BarA�(as)),

GenBarA : ∀nc�,as(∀aBarA�(a ∗ as)→ BarA�(as)).

GoodA n.c. inductive predicate.

I The (free) algebra of witnesses for the inductive predicate
BarA is called TA (or treeA).

I In GenBarA the generation tree of BarA�(as) should have
infinitely many predecessors indexed by a, hence we need ∀a.

I Have ∀nc�,as , since we do not want to let the argument as be
involved in the computational content of BarA�(as).

Constructors of TA:

CInitBarA : TA,

CGenBarA : (N→ TA)→ TA.

10 / 19

BarF
Inductively define BarF, by the clauses

InitBarF : ∀nc�,ts,i (i < Lh(ts)→ GLT� (ts)i → BarF�(ts)),

GenBarF : ∀nc�,ts(∀tas,a,v (tas = ProjF(ts)→ LA�(a,Roots(tas))→
BarF�(InsertF�(ts, v , a))→

BarF�(ts)).

I Need “A-projection” of a tree t ∈ T (A∗∗ × A∗), where each
head of the rhs of a label in t is projected out.

I Only the A-projection of ts (not ts) is used computationally.

I The predecessors of BarF�(ts) are all InsertF�(ts, v , a) for
v , a with LA�(a,Heads(Rights(Roots(ts)))).

I To decide the latter, we need (computationally)
Heads(Rights(Roots(ts))), i.e., the A-projection of ts.

11 / 19

Witnesses for BarF

Recall

InitBarF : ∀nc�,ts,i (i < Lh(ts)→ GLT� (ts)i → BarF�(ts)),

GenBarF : ∀nc�,ts(∀tas,a,v (tas = ProjF(ts)→ LA�(a,Roots(tas))→
BarF�(InsertF�(ts, v , a))→

BarF�(ts)).

The (free) algebra of witnesses for the inductive predicate BarF is
called TF (or treeF). Constructors:

CInitBarF : TF ,

CGenBarF : (L(TN)→ N→ L(N)→ TF)→ TF .

12 / 19

BarFAppdAux

all wqo allnc ts(BarF wqo ts ->

allnc ss(BarF wqo ss ->

all m(m=Lh ss -> BarF wqo(ts++ss))))

BarFNew

all wqo(BarA wqo(Nil nat) ->

allnc ws(BarW wqo ws ->

all as BarF wqo((NewTree(ws pair as)):)))

HigmanAux

all wqo(all a,b,c(wqo a b -> wqo b c -> wqo a c) ->

BarA wqo(Nil nat) ->

allnc as(BarA wqo as ->

allnc ts(BarF wqo ts ->

all ws(Adm ws -> BSeq wqo(Heads ws)=as ->

all tas(tas=ProjF ts ->

Forest wqo ws=ts -> BarW wqo ws)))))

13 / 19

BarFNew
Inserting new nodes in a singleton forest finally makes it good:

BarA([])→ ∀ncws0(BarW(ws0)→ ∀as0BarF[Newtree 〈ws0, as0〉]).

Proof. Ind1(BarW). 1.1. GoodW(ws0). Easy. 1.2. Assume

ih1 : ∀w ,asBarF[Newtree 〈w∗ws, as〉].

Let as0 ∈ A. Goal: BarF[Newtree 〈ws, as0〉]. Instead we show
more generally that this assertion holds for all t with
Root (t) = 〈ws, as0〉 and (a) Subtrees (t) in BarF, and (b)
Heads(Rights(Roots(Subtrees (t)))) in BarA. We do this by
main induction on (b) and side induction on (a), i.e., we prove

∀ncas (BarA(as)→ ¬GoodA(as)→
∀ncts (BarF(ts)→ as = Heads(Rights(Roots(ts)))→ BarF[〈ws, as0〉ts])).

. . .
14 / 19

[wqo,treeA,treeW]

(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)

([gw,hw,v]

(Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)

([ga,hatt,treeF]

(Rec treeF=>treeF)treeF CInitBarF

([g,g0]

CGenBarF

([tas,a,v0]

[if (LargerAR wqo a Roots Subtrees Head tas)

(g0 Subtrees Head tas a v0)

(hatt a

(cBarFAppd wqo(hw v0(a::v))(CGenBarF g)

Lh Subtrees Head tas))])))

(CGenBarF([tas,a,v0]CInitBarF)))

with gw : L(N)→ TW , hw : L(N)→ L(N)→ TF , ga : N→ TA,
hatt : N→ TF → TF , g : L(TN)→ N→ L(N)→ TF .
cBarFAppd abbreviates the extracted term of BarFAppd.

15 / 19

Structure of the extracted term

Three nested recursions:

I an outer one on TW with value type L(N)→ TF ,

I then on TA with value type TF → TF ,

I and innermost on TF with value type TF .

This corresponds to the three elimination axioms used in the proof.

16 / 19

Recall the constructors of TF (or treeF):

CInitBarF : TF ,

CGenBarF : (L(TN)→ N→ L(N)→ TF)→ TF .

Φ := (Rec treeF=>alpha), the recursion operator on TF with
value type α, has type

TF → α→ (L(TN)→ N→ L(N)→ TF)→
(L(TN)→ N→ L(N)→ α)→ α.

It is given by recursion equations

Φ(CInitBarF) := G ,

Φ(CGenBarF(g)) := H(g , λ~xΦ(g(~x))).

with g : L(TN)→ N→ L(N)→ TF .

17 / 19

An experiment
I To run the extracted terms we need to “animate” the lemmas

involved.
I Final proposition: ∀f ∃nGoodW≤(Rev(f̄ (n))).
I Let neterm be the result of normalizing the term extracted

from this proof.

(add-program-constant "Seq" (py "nat=>list nat"))

(add-computation-rules

"Seq 0" "5::2:"

"Seq 1" "2::8:"

"Seq 2" "4::2::1:"

"Seq 3" "6::9:"

"Seq 4" "3::5:"

"Seq(Succ(Succ(Succ(Succ(Succ n)))))" "0:")

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))

Result: 4.
18 / 19

Conclusion, further work

I Formalized a constructive proof of Higman’s Lemma that
contains the same combinatorial idea as Nash-Williams’
indirect proof. Extracted and discussed its inherent algorithm.

I Many other constructive proofs of Higman’s Lemma are based
on a different combinatorial idea: De Jongh & Parikh (1977),
Schmidt (1979), Schütte & Simpson (1985), Richman &
Stolzenberg (1993), Hasegawa (1994), Veldman (2004).
Open: comparison with the algorithm here.

I Explore applications to termination proofs for string- and term
rewriting systems. Cf. Ogawa (2001), Vytiniotis & Coquand
& Wahlstedt (2012), Goubault & Larrecq (2013), Sternagel
(2014).

19 / 19

