Higman's Lemma and its computational content

Helmut Schwichtenberg (j.w.w. Monika Seisenberger and Franziskus Wiesnet)

Mathematisches Institut, LMU, München

Schloß Dagstuhl, Januar 2016

Higman's lemma

 (A, \preceq) is a well-quasiorder (wqo) if

- \leq is transitive, and
- ► every infinite sequence in A is good, i.e., $\forall_{(a_i)_{i < \omega}} \exists_{i,j} (i < j \land a_i \preceq a_j).$

Call $[a_1, \ldots, a_n]$ embeddable (\leq^*) in $[b_1, \ldots, b_m]$ if there exists a strictly increasing map $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ such that $a_i \leq b_{f(i)}$ for all $i \in \{1, \ldots, n\}$.

Lemma (Higman)

If (A, \preceq) is a well-quasiorder, then so is (A^*, \preceq^*) .

Nash-Williams' proof

- (1) Assume that there is a bad sequence of words in A^* .
- (2) Choose a minimal bad one, i.e. (w_i)_{i<ω} s. t. w₀,..., w_n starts an infinite bad sequence, but w₀,..., w_{n-1}, v does not, where v is a proper end segment of w_n.
- (3) $w_i = a_i * v_i$. There is an infinite subsequence $a_{\kappa_0} \leq a_{\kappa_1} \leq \cdots$ of the sequence $(a_i)_{i < \omega}$. This also determines a corresponding sequence $w_0, \ldots, w_{\kappa_0-1}, v_{\kappa_0}, v_{\kappa_1}, \ldots$

The sequence $w_0, \ldots, w_{\kappa_0-1}, v_{\kappa_0}, v_{\kappa_1}, \ldots$ is bad (otherwise also $(w_i)_{i < \omega}$ would be good). This contradicts the minimality in (2).

Computational content of Nash-Williams' proof

- Murthy (1990) applied Friedman's A-translation to the classical proof (in NuPRL). Huge resulting program.
- Seisenberger (2003) applied a refined version of the A-translation (in Minlog), not eliminating the axiom of classical dependent choice. Much smaller extracted program.
- ▶ Powell (2012) applied Gödel's Dialectica Interpretation.
- Sternagel (2014): formalization of Higman and Kruskal (in Isabelle). No extraction.

Constructive reformulation of Nash-Williams' proof

- Coquand & Fridlender (1993): for a {0,1}-alphabet.
 Formalizations: Fridlender (in Agda), Seisenberger (in Minlog), Berghofer (in Isabelle and Coq).
- ► General case: Seisenberger (2001). Much more elaborate.
- ► Formalization by Delobel (in Coq). No extraction. Problem (pointed out by Fridlender): acc_≤-based definition of well-quasiorders results in a brute force search. To let the proof determine the case, one needs a "positive" formulation of well-quasiorders, with 2 rules.
- ► Here: formalization and extraction for the general case.

Constructive reformulation of Nash-Williams' proof (ctd.)

Inductively define $BarA \subseteq A^*$, by

GoodA(<i>as</i>)	∀ _a BarA(a∗as)
BarA(as)	BarA(as)

BarWws is defined similarly, using the corresponding GoodWws.
(1) Prove inductively "BarA([]) → BarW([])".
(2) Replace minimality argument by structural induction on ws.

Given $ws = [w_n, \ldots, w_0]$ s.t. $w_i = a_i * v_i$. Consider subsequences $a_{\kappa_l} \succeq \cdots \succeq a_{\kappa_0}$ of maximal length & corresponding sequences $v_{\kappa_l}, \ldots, v_{\kappa_0}, w_{\kappa_0-1}, \ldots, w_0$. The sequences $[a_{\kappa_l}, \ldots, a_{\kappa_0}]$ form a "forest". Define Forest(ws) with nodes labelled in $A^{**} \times A^*$.

- In the produced forest the right-hand components of each node form such a descending subsequence [a_{κi},..., a_{κ0}]. Corresponding left component: [v_{κi},..., v_{κ0}, w_{κ0-1},..., w₀].
- ► If we extend ws by a word a*v, then in the existing forest either new nodes, possibly at several places, are inserted, or a new singleton tree with root node (v*ws, [a]) is added.
- Idea: if in Forest(ws) new nodes cannot be inserted infinitely often (without ending up with a good left-hand component in a node) and if also new trees cannot be added infinitely often, then ws can not be extended badly infinitely often.

Why formalize?

- Correctness.
- Get hold of the computational content of a (non-trivial) proof by means of its extracted term.

Underlying theory: TCF, with Kleene-Kreisel modified realizability.

- Computational content only arises from inductive predicates.
- ► Need "non computational" (n.c.) universal quantification (Berger 1993) written ∀^{nc} to correctly express the type of a computational problem of the form

 $\forall_{as}^{nc}(BarA(as) \rightarrow \dots).$

Relation of TCF to type theory

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- ► Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Russell, Martin-Löf).
- $\perp := (False = True)$. Ex-falso-quodlibet: $\perp \rightarrow A$ provable.
- "Decorations" →^{nc}, ∀^{nc} (i) allow abstract theory (ii) remove unused data.

BarA

Inductively define $\operatorname{BarA} \subseteq A^*$, by the clauses

$$\begin{split} \texttt{InitBarA:} &\forall^{\texttt{nc}}_{\preceq,\textit{as}}(\texttt{GoodA}_{\preceq}(\textit{as}) \rightarrow \texttt{BarA}_{\preceq}(\textit{as})), \\ \texttt{GenBarA:} &\forall^{\texttt{nc}}_{\preceq,\textit{as}}(\forall_{\textit{a}}\texttt{BarA}_{\preceq}(\textit{a} * \textit{as}) \rightarrow \texttt{BarA}_{\preceq}(\textit{as})). \end{split}$$

 GoodA n.c. inductive predicate.

- ► The (free) algebra of witnesses for the inductive predicate BarA is called T_A (or treeA).
- In GenBarA the generation tree of BarA_≤(as) should have infinitely many predecessors indexed by a, hence we need ∀_a.
- ► Have ∀^{nc}_{≤,as}, since we do not want to let the argument as be involved in the computational content of BarA_≤(as).

Constructors of T_A :

 $\texttt{CInitBarA:} \ \mathbf{T}_A,$ $\texttt{CGenBarA:} \ (\mathbf{N}
ightarrow \mathbf{T}_A)
ightarrow \mathbf{T}_A.$

BarF

Inductively define BarF , by the clauses

- ► Need "A-projection" of a tree t ∈ T(A^{**} × A^{*}), where each head of the rhs of a label in t is projected out.
- Only the A-projection of ts (not ts) is used computationally.
- ► The predecessors of BarF_⊥(𝔅) are all InsertF_⊥(𝔅, ν, 𝑌) for ν, 𝑌 with LA_⊥(𝔅, Heads(Rights(Roots(𝔅)))).
- ► To decide the latter, we need (computationally) Heads(Rights(Roots(ts))), i.e., the A-projection of ts.

Witnesses for BarF

Recall

$$\begin{split} \texttt{InitBarF:} &\forall^{\texttt{nc}}_{\preceq, \texttt{ts}, i} (i < \texttt{Lh}(\texttt{ts}) \rightarrow \texttt{GLT}_{\preceq}(\texttt{ts})_i \rightarrow \texttt{BarF}_{\preceq}(\texttt{ts})), \\ \texttt{GenBarF:} &\forall^{\texttt{nc}}_{\preceq, \texttt{ts}} (\forall_{\texttt{ts}, \texttt{a}, \texttt{v}}(\texttt{ts} = \texttt{ProjF}(\texttt{ts}) \rightarrow \texttt{LA}_{\preceq}(\texttt{a}, \texttt{Roots}(\texttt{ts})) \rightarrow \\ & \texttt{BarF}_{\preceq}(\texttt{InsertF}_{\preceq}(\texttt{ts}, \texttt{v}, \texttt{a})) \rightarrow \\ & \texttt{BarF}_{\preceq}(\texttt{ts})). \end{split}$$

The (free) algebra of witnesses for the inductive predicate BarF is called T_F (or treeF). Constructors:

$$\begin{split} & \texttt{CInitBarF:} \ \mathbf{T}_F, \\ & \texttt{CGenBarF:} \ \ (\mathbf{L}(\mathbf{T}_N) \to \mathbf{N} \to \mathbf{L}(\mathbf{N}) \to \mathbf{T}_F) \to \mathbf{T}_F. \end{split}$$

BarFAppdAux

```
all wqo allnc ts(BarF wqo ts ->
  allnc ss(BarF wqo ss ->
  all m(m=Lh ss -> BarF wqo(ts++ss))))
```

BarFNew

```
all wqo(BarA wqo(Nil nat) ->
  allnc ws(BarW wqo ws ->
  all as BarF wqo((NewTree(ws pair as)):)))
```

HigmanAux

all wqo(all a,b,c(wqo a b -> wqo b c -> wqo a c) ->
BarA wqo(Nil nat) ->
allnc as(BarA wqo as ->
allnc ts(BarF wqo ts ->
all ws(Adm ws -> BSeq wqo(Heads ws)=as ->
all tas(tas=ProjF ts ->
Forest wqo ws=ts -> BarW wqo ws)))))

BarFNew

Inserting new nodes in a singleton forest finally makes it good:

 $\operatorname{BarA}([]) \to \forall_{ws_0}^{\operatorname{nc}}(\operatorname{BarW}(ws_0) \to \forall_{as_0} \operatorname{BarF}[\operatorname{Newtree} \langle ws_0, as_0 \rangle]).$

Proof. Ind₁(BarW). 1.1. GoodW(ws₀). Easy. 1.2. Assume

ih₁: $\forall_{w,as}$ BarF[Newtree $\langle w * ws, as \rangle$].

Let $as_0 \in A$. Goal: BarF[Newtree $\langle ws, as_0 \rangle$]. Instead we show more generally that this assertion holds for all t with Root $(t) = \langle ws, as_0 \rangle$ and (a) Subtrees (t) in BarF, and (b) Heads(Rights(Roots(Subtrees (t)))) in BarA. We do this by main induction on (b) and side induction on (a), i.e., we prove

 $\forall_{as}^{nc}(\operatorname{BarA}(as) \to \neg \operatorname{GoodA}(as) \to \\ \forall_{ts}^{nc}(\operatorname{BarF}(ts) \to as = \operatorname{Heads}(\operatorname{Rights}(\operatorname{Roots}(ts))) \to \operatorname{BarF}[\langle ws, as_0 \rangle ts])).$

```
[wqo,treeA,treeW]
(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)
([gw,hw,v]
  (Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)
  ([ga,hatt,treeF]
     (Rec treeF=>treeF)treeF CInitBarF
     ([g,g0]
      CGenBarF
       ([tas,a,v0]
         [if (LargerAR wqo a Roots Subtrees Head tas)
           (g0 Subtrees Head tas a v0)
           (hatt a
           (cBarFAppd wqo(hw v0(a::v))(CGenBarF g)
                      Lh Subtrees Head tas)))))
  (CGenBarF([tas,a,v0]CInitBarF)))
```

with gw: $L(N) \rightarrow T_W$, hw: $L(N) \rightarrow L(N) \rightarrow T_F$, ga: $N \rightarrow T_A$, hatt: $N \rightarrow T_F \rightarrow T_F$, g: $L(T_N) \rightarrow N \rightarrow L(N) \rightarrow T_F$. cBarFAppd abbreviates the extracted term of BarFAppd.

Structure of the extracted term

Three nested recursions:

- ▶ an outer one on T_W with value type $L(N) \rightarrow T_F$,
- then on \mathbf{T}_A with value type $\mathbf{T}_F \to \mathbf{T}_F$,
- and innermost on \mathbf{T}_F with value type \mathbf{T}_F .

This corresponds to the three elimination axioms used in the proof.

Recall the constructors of T_F (or treeF):

$$extsf{CInitBarF:} \ \mathbf{T}_F,$$
 $extsf{CGenBarF:} \ (\mathbf{L}(\mathbf{T}_N) o \mathbf{N} o \mathbf{L}(\mathbf{N}) o \mathbf{T}_F) o \mathbf{T}_F.$

 $\Phi :=$ (Rec treeF=>alpha), the recursion operator on T_F with value type α , has type

$$\mathbf{T}_F \to \alpha \to (\mathbf{L}(\mathbf{T}_N) \to \mathbf{N} \to \mathbf{L}(\mathbf{N}) \to \mathbf{T}_F) \to \\ (\mathbf{L}(\mathbf{T}_N) \to \mathbf{N} \to \mathbf{L}(\mathbf{N}) \to \alpha) \to \alpha.$$

It is given by recursion equations

$$\Phi(\texttt{CInitBarF}) := G, \ \Phi(\texttt{CGenBarF}(g)) := H(g, \lambda_{\vec{x}} \Phi(g(\vec{x}))).$$

with g: $L(T_N) \rightarrow N \rightarrow L(N) \rightarrow T_F$.

An experiment

- To run the extracted terms we need to "animate" the lemmas involved.
- ▶ Final proposition: $\forall_f \exists_n \text{GoodW}_{\leq}(\text{Rev}(\bar{f}(n))).$
- Let neterm be the result of normalizing the term extracted from this proof.

```
(add-program-constant "Seq" (py "nat=>list nat"))
(add-computation-rules
   "Seq 0" "5::2:"
   "Seq 1" "2::8:"
   "Seq 2" "4::2::1:"
   "Seq 3" "6::9:"
   "Seq 4" "3::5:"
   "Seq (Succ(Succ(Succ(Succ n))))" "0:")
```

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))
Result: 4.

Conclusion, further work

- Formalized a constructive proof of Higman's Lemma that contains the same combinatorial idea as Nash-Williams' indirect proof. Extracted and discussed its inherent algorithm.
- Many other constructive proofs of Higman's Lemma are based on a different combinatorial idea: De Jongh & Parikh (1977), Schmidt (1979), Schütte & Simpson (1985), Richman & Stolzenberg (1993), Hasegawa (1994), Veldman (2004). Open: comparison with the algorithm here.
- Explore applications to termination proofs for string- and term rewriting systems. Cf. Ogawa (2001), Vytiniotis & Coquand & Wahlstedt (2012), Goubault & Larrecq (2013), Sternagel (2014).