Higman's Lemma and its computational content

Helmut Schwichtenberg
(j.w.w. Monika Seisenberger and Franziskus Wiesnet)

Mathematisches Institut, LMU, Miinchen

SchloB Dagstuhl, Januar 2016

1/19

Higman's lemma

(A, =) is a well-quasiorder (wqo) if

» < is transitive, and

» every infinite sequence in A is good, i.e.,

Y(a)ico 30 <J N ai 2 aj).

Call [a1,. .., an] embeddable (=*) in [b1,..., by if there exists a
strictly increasing map f: {1,...,n} — {1,..., m} such that
aj X bf(,‘) forall i € {1,...n}.
Lemma (Higman)
If (A, %) is a well-quasiorder, then so is (A*, <*).

2/19

Nash-Williams' proof

(1) Assume that there is a bad sequence of words in A*.

(2) Choose a minimal bad one, i.e. (Wj)j<w S. t. wo, ..., w, starts
an infinite bad sequence, but wy, ..., w,_1, v does not, where
v is a proper end segment of w,,.

(3) w; = ajxv;. There is an infinite subsequence a,, < a,, = ---
of the sequence (aj)j<w- This also determines a corresponding
sequence wWo, ..., Wgo—1, Vikgy Vikgs -+ - -

The sequence wy, . .., Wiy—1, Vig, Viy, - - - IS bad (otherwise also
(Wj)i<w would be good). This contradicts the minimality in (2).

3/19

Computational content of Nash-Williams’ proof

» Murthy (1990) applied Friedman's A-translation to the
classical proof (in NuPRL). Huge resulting program.

» Seisenberger (2003) applied a refined version of the
A-translation (in Minlog), not eliminating the axiom of
classical dependent choice. Much smaller extracted program.

» Powell (2012) applied Godel's Dialectica Interpretation.

» Sternagel (2014): formalization of Higman and Kruskal (in
Isabelle). No extraction.

4/19

Constructive reformulation of Nash-Williams' proof

» Coquand & Fridlender (1993): for a {0, 1}-alphabet.
Formalizations: Fridlender (in Agda), Seisenberger (in
Minlog), Berghofer (in Isabelle and Coq).

» General case: Seisenberger (2001). Much more elaborate.

» Formalization by Delobel (in Coq). No extraction. Problem
(pointed out by Fridlender): acc<-based definition of
well-quasiorders results in a brute force search. To let the
proof determine the case, one needs a “positive” formulation
of well-quasiorders, with 2 rules.

» Here: formalization and extraction for the general case.

5/19

Constructive reformulation of Nash-Williams' proof (ctd.)

Inductively define BarA C A*, by

GoodA (as) V, BarA (axas)
BarA (as) BarA (as)

BarWws is defined similarly, using the corresponding GoodW ws.
(1) Prove inductively “BarA([]) — BarW({[])".
(2) Replace minimality argument by structural induction on ws.

6/19

Given ws = [wy, ..., wp| s.t. wj=a;*v;. Consider subsequences
ak, = -+ = ax, of maximal length & corresponding sequences
Vig/s -+ - s Vigy Wieg—15 - - - » Wo. T he sequences [ay,, . .., ax,| form a

“forest”. Define Forest(ws) with nodes labelled in A** x A*.

> In the produced forest the right-hand components of each
node form such a descending subsequence [ay,, ..., ax,].
Corresponding left component: [vi., ..., Vig, Wig—1, - - - » W0].

> If we extend ws by a word axv, then in the existing forest
either new nodes, possibly at several places, are inserted, or a
new singleton tree with root node (vxws, [a]) is added.

» Idea: if in Forest(ws) new nodes cannot be inserted infinitely
often (without ending up with a good left-hand component in
a node) and if also new trees cannot be added infinitely often,
then ws can not be extended badly infinitely often.

7/19

Why formalize?

» Correctness.

» Get hold of the computational content of a (non-trivial) proof
by means of its extracted term.

Underlying theory: TCF, with Kleene-Kreisel modified realizability.

» Computational content only arises from inductive predicates.

» Need “non computational” (n.c.) universal quantification
(Berger 1993) written V"¢ to correctly express the type of a
computational problem of the form

Vis(BarA(as) — ...).

8/19

Relation of TCF' to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. x = y (Leibniz equality), 3, V, A
inductively defined (Russell, Martin-Lof).

1 := (False = True). Ex-falso-quodlibet: 1 — A provable.

v

v

“Decorations” —"¢, V"¢ (i) allow abstract theory (ii) remove
unused data.

9/19

BarA
Inductively define BarA C A*, by the clauses

InitBarA: VX', (GoodA<(as) — BarA<(as)),
GenBarA: VX', (V,BarA<(ax* as) — BarA<(as)).

GoodA n.c. inductive predicate.

» The (free) algebra of witnesses for the inductive predicate
BarA is called T4 (or treeh).

> In GenBarA the generation tree of BarA<(as) should have
infinitely many predecessors indexed by a, hence we need V.

> Have V', since we do not want to let the argument as be
involved in the computational content of BarA~(as).
Constructors of T 4:

CInitBarA: Tpx,
CGenBarA: (N — T4) — Ta.

10/ 19

BarF

Inductively define BarF, by the clauses

InitBarF: VX', ;(i < Lh(ts) — GLT< (t5); — BarF<(ts)),
GenBarF: VX' (Vix,av(tas = ProjF(ts) — LA<(a, Roots(tas)) —
BarF < (InsertF<(ts, v,a)) —
BarF<(ts)).

> Need “A-projection” of a tree t € T(A™ x A*), where each
head of the rhs of a label in t is projected out.

» Only the A-projection of ts (not ts) is used computationally.

» The predecessors of BarF<(ts) are all InsertF<(ts, v, a) for
v, a with LA<(a, Heads(Rights(Roots(ts)))).

» To decide the latter, we need (computationally)
Heads(Rights(Roots(ts))), i.e., the A-projection of ts.

11/19

Witnesses for BarF

Recall

InitBarF: VX', ;(i < Lh(ts) = GLT< (ts5); — BarF<(ts)),
GenBarF: VX' (Vix,a,v(t = ProjF(ts) — LA<(a, Roots(tas)) —
BarF<(InsertF<(ts, v, a)) —
BarF<(ts)).

The (free) algebra of witnesses for the inductive predicate BarF is
called Tg (or treeF). Constructors:

CInitBarF: Tp,
CGenBarF: (L(Ty) >N —=L(N)—Tr)— Tr.

12/19

BarFAppdAux

all wqo allnc ts(BarF wqo ts ->
allnc ss(BarF wqo ss ->
all m(m=Lh ss —-> BarF wqo(ts++ss))))

BarFNew

all wqo(BarA wqo(Nil nat) ->
allnc ws(BarW wqo ws ->
all as BarF wqo((NewTree(ws pair as)):)))

HigmanAux

all wqo(all a,b,c(wqo a b => wqo b ¢ -> wqo a ¢c) ->
BarA wqo(Nil nat) ->
allnc as(BarA wqo as ->
allnc ts(BarF wqo ts ->
all ws(Adm ws -> BSeq wqo(Heads ws)=as ->
all tas(tas=ProjF ts ->
Forest wqo ws=ts -> BarW wqo ws)))))

13 /19

BarFNew

Inserting new nodes in a singleton forest finally makes it good:
BarA([]) — Vi, (BarW (wsg) — VagBarF [Newtree (wsp, aso)])-
Proof. Ind;(BarW). 1.1. GoodW (wsp). Easy. 1.2. Assume
ihy: V\y ssBarF [Newtree (wxws, as)].

Let asp € A. Goal: BarF[Newtree (ws, asp)]. Instead we show
more generally that this assertion holds for all t with

Root (t) = (ws, asp) and (a) Subtrees(t) in BarF, and (b)
Heads(Rights(Roots(Subtrees (t)))) in BarA. We do this by
main induction on (b) and side induction on (a), i.e., we prove

Vi (BarA(as) — —GoodA (as) —
Ve (BarF (ts) — as = Heads(Rights(Roots(ts))) — BarF[(ws, asp) ts])).

14 /19

[wqo,treeA,treeW]
(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)
([gw,hw,v]
(Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)
([ga,hatt,treeF]
(Rec treeF=>treeF)treeF CInitBarF
([g,g0]
CGenBarF
([tas,a,v0]
[if (LargerAR wqo a Roots Subtrees Head tas)
(g0 Subtrees Head tas a vO0)
(hatt a
(cBarFAppd wqo(hw vO(a::v)) (CGenBarF g)
Lh Subtrees Head tas))])))
(CGenBarF([tas,a,v0]CInitBarF)))

with gw: L(N) — Ty, hw: L(N) - L(N) — Tr, ga: N — Ty4,
hatt: N — TF — Tr, g: L(Ty) > N — L(N) = Tr.

cBarFAppd abbreviates the extracted term of BarFAppd.
15 /19

Structure of the extracted term

Three nested recursions:
» an outer one on Ty with value type L(N) — Tg,
> then on T4 with value type Tgp — TpF,

> and innermost on T g with value type T£.

This corresponds to the three elimination axioms used in the proof.

16 /19

Recall the constructors of Tg (or treeF):

CInitBarF: TpF,
CGenBarF: (L(Ty) >N —=L(N)—Tg)— Tr.

® := (Rec treeF=>alpha), the recursion operator on Tg with
value type «, has type

Ter—a— (L(Ty) > N—=L(N) - Tg) —
(L(Ty) > N—=L(N) - a) = a.

It is given by recursion equations

®(CInitBarF) :=G,
®(CGenBarF(g)) := H(g, \x®(g(X))).

with g: L(Tny) = N = L(N) — Tr.

17/19

An experiment

> To run the extracted terms we need to “animate” the lemmas
involved.

» Final proposition: V¢3,GoodW <(Rev(f(n))).

> Let neterm be the result of normalizing the term extracted
from this proof.

(add-program-constant "Seq" (py "nat=>list nat"))
(add-computation-rules

"Seq 0" "5::2:"
"Seq 1" "2::8:"
"Seq 2" "4::2::1:"
"Seq 3" "6::9:"
"Seq 4" "3::5:"

"Seq(Succ(Succ(Succ(Succ(Succ n)))))" "0:")

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))

Result: 4.
18/19

Conclusion, further work

» Formalized a constructive proof of Higman's Lemma that
contains the same combinatorial idea as Nash-Williams'
indirect proof. Extracted and discussed its inherent algorithm.

» Many other constructive proofs of Higman's Lemma are based
on a different combinatorial idea: De Jongh & Parikh (1977),
Schmidt (1979), Schiitte & Simpson (1985), Richman &
Stolzenberg (1993), Hasegawa (1994), Veldman (2004).
Open: comparison with the algorithm here.

» Explore applications to termination proofs for string- and term
rewriting systems. Cf. Ogawa (2001), Vytiniotis & Coquand
& Wabhlstedt (2012), Goubault & Larrecq (2013), Sternagel
(2014).

19/19

