Simultaneous inductive/coinductive definition of continuous functions

Helmut Schwichtenberg (j.w.w. Kenji Miyamoto)

Mathematisches Institut, LMU, München

Schloß Dagstuhl, 10. Oktober 2011

Main points

- Semantics for constructive analysis based on the Scott/Ershov partial continuous functionals.
- Simultaneous inductive/coinductive definition of (uniformly) continuous functions.
- Extraction of computational content from proofs in an abstract theory.

Corecursion (1/2)

Example: transformation of an "abstract" real in $\mathbb{I}:=[-1,1]$ into a stream representation using "signed digits" -1,0,1.

- Assume an abstract (axiomatic) theory of reals, having an unspecified type ρ , and a type σ for rationals.
- ▶ Assume that the abstract theory provides us with a function $g: \rho \to \sigma \to \sigma \to \mathbf{B}$ comparing a real x with a proper rational interval p < q:

$$g(x, p, q) = tt \rightarrow x \le q,$$

 $g(x, p, q) = ff \rightarrow p \le x.$

Corecursion (2/2)

▶ From g define a function $h: \rho \to \mathbf{U} + \rho + \rho + \rho$ by

$$h(x) := \begin{cases} \inf(\inf(\inf(2x+1))) & \text{if } g(x, -\frac{1}{2}, 0) = \mathfrak{tt} \\ \inf(\inf(2x)) & \text{if } g(x, -\frac{1}{2}, 0) = \mathfrak{ff}, \ g(x, 0, \frac{1}{2}) = \mathfrak{tt} \\ \inf(2x-1) & \text{if } g(x, 0, \frac{1}{2}) = \mathfrak{ff} \end{cases}$$

▶ h is definable by a closed term M_h in Gödel's T.

Then the desired function f transforming an abstract real x into a stream can be defined by

$$f(x) := {}^{\mathrm{co}}\mathcal{R}_{\mathbf{I}}^{\rho}xM_{h}.$$

Free algebras

- ▶ **N** with constructors 0, S.
- ▶ I with constructors \mathbb{I} (for [-1,1]) and C_{-1},C_0,C_1 (for the left, middle, right part of the interval, of half its length). For example, $C_{-1}\mathbb{I}$, $C_0\mathbb{I}$ and $C_1\mathbb{I}$ denote [-1,0], $[-\frac{1}{2},\frac{1}{2}]$ and [0,1].
- ▶ $\mathbf{R}(\alpha)$ with constructors

$$R_d : \alpha \to \mathbf{R}(\alpha),$$

 $R : \mathbf{R}(\alpha) \to \mathbf{R}(\alpha) \to \mathbf{R}(\alpha) \to \mathbf{R}(\alpha).$

Using $\mathbf{R}(\alpha)$ define \mathbf{W} with constructors

$$W_0 \colon \mathbf{W},$$
 $W \colon \mathbf{R}(\mathbf{W}) \to \mathbf{W}.$

Information systems \mathbf{C}_{ρ} for partial continuous functionals

- ▶ Types ρ : from algebras ι by $\rho \to \sigma$.
- $ightharpoonup \mathbf{C}_{\rho} := (C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho}).$
- ▶ Tokens a (= atomic pieces of information): constructor trees $Ca_1^*, \ldots a_n^*$ with a_i^* a token or *. Example: S(S*).
- ▶ Formal neighborhoods U: $\{a_1, \ldots, a_n\}$, consistent.
- ▶ Entailment $U \vdash a$.

Ideals $x \in |\mathbf{C}_{\rho}|$ ("points", here: partial continuous functionals): consistent deductively closed sets of tokens.

Tokens and entailment for N

Constructors as continuous functions

▶ Every constructor C generates an ideal in the function space: $r_{\rm C} := \{ (U, {\rm C}a^*) \mid U \vdash a^* \}$. Associated continuous map:

$$|r_{\mathbf{C}}|(x) = \{ \mathbf{C}a^* \mid \exists_{U \subseteq x} (U \vdash a^*) \}.$$

Constructors are injective and have disjoint ranges:

$$|r_{\mathrm{C}}|(\vec{x}) \subseteq |r_{\mathrm{C}}|(\vec{y}) \leftrightarrow \vec{x} \subseteq \vec{y},$$

 $|r_{\mathrm{C}_1}|(\vec{x}) \cap |r_{\mathrm{C}_2}|(\vec{y}) = \emptyset.$

▶ Both properties are false for flat information systems (for them, by monotonicity, constructors need to be strict).

$$|r_{\mathbf{C}}|(\emptyset, y) = \emptyset = |r_{\mathbf{C}}|(x, \emptyset),$$

$$|r_{\mathbf{C}_1}|(\emptyset) = \emptyset = |r_{\mathbf{C}_2}|(\emptyset).$$

Total and cototal ideals of base type

▶ Total ideals of I:

$$\mathbb{I}_{\frac{i}{2^k},k} := \left[\frac{i}{2^k} - \frac{1}{2^k}, \frac{i}{2^k} + \frac{1}{2^k} \right] \quad \text{for } -2^k < i < 2^k.$$

▶ Cototal ideals of I: reals in [-1,1], in (non-unique) stream representation using signed digits -1,0,1. Examples:

$$\left\{ \begin{array}{l} \mathbf{C}_{-1}^n \mathbb{I} \mid n \geq 0 \right\} \quad \text{(representing the real } -1\text{),} \\ \left\{ \mathbb{I} \right\} \cup \left\{ \begin{array}{l} \mathbf{C}_1^n \mathbf{C}_{-1} \mathbb{I} \mid n \geq 0 \right\} \quad \text{(representing 0),} \\ \left\{ \mathbb{I} \right\} \cup \left\{ \begin{array}{l} \mathbf{C}_{-1}^n \mathbf{C}_1 \mathbb{I} \mid n \geq 0 \right\} \quad \text{(representing 0).} \\ \end{array}$$

- ► Cototal ideals x: every constructor tree $P(*) \in x$ has a " \succ_1 -successor" $P(C^{\vec{*}}) \in x$.
- ▶ Total ideals: the cototal ones with \succ_1 well-founded.

W and continuous real functions

- Consider a well-founded "read tree", i.e., a constructor tree built from R (ternary) with R_d at its leaves. The digit d at a leaf means that, after reading all input digits on the path leading to the leaf, the output d is written.
- Let R_{d_1}, \ldots, R_{d_n} be all leaves. At a leaf R_{d_i} continue with W (i.e., write d_i), and continue reading.
- ▶ Result: a "**W**-cototal **R**(**W**)-total" ideal, representing a uniformly continuous real function $f : \mathbb{I} \to \mathbb{I}$.

Formalization

- ► TCF: theory of computable functionals.
- Minimal logic (→, ∀), plus inductive & coinductive definitions.
- Variables range over partial continuous functionals.
- Constants denote computable functionals.
- ► Terms: from T⁺, a common extension of Gödel's T and Plotkin's PCF.

Cototality for **N**

▶ In the algebra **N** totality is inductively defined by the clauses

$$T_{\mathbf{N}}0, \qquad T_{\mathbf{N}}m \to T_{\mathbf{N}}(\mathbf{S}m).$$

As for every inductively defined predicate we have a corresponding coinductively defined one, written ^{co} T:

$${}^{\operatorname{co}}T_{\mathbb{N}}n \to n = 0 \vee \exists_{m}(n = \operatorname{S}m \wedge {}^{\operatorname{co}}T_{\mathbb{N}}m).$$

▶ Its greatest-fixed-point axiom (coinduction) is

$$Pn \to \forall_n (Pn \to n = 0 \lor \exists_m (n = \operatorname{Sm} \land (^{\operatorname{co}} T_{\mathbb{N}} \lor P)m)) \to {^{\operatorname{co}}} T_{\mathbb{N}} n.$$

It expresses that every "competitor" P satisfying the same clause is a subset of ${}^{co}T_N$.

Cototality for I

▶ In the algebra I of standard rational intervals cototality is coinductively defined by

$$\begin{array}{l}
^{\text{co}} T_{\mathsf{I}} x \to x = \mathbb{I} \vee \exists_{y} (x = \mathrm{C}_{-1} y \wedge {}^{\text{co}} T_{\mathsf{I}} y) \vee \\
\exists_{y} (x = \mathrm{C}_{0} y \wedge {}^{\text{co}} T_{\mathsf{I}} y) \vee \\
\exists_{y} (x = \mathrm{C}_{1} y \wedge {}^{\text{co}} T_{\mathsf{I}} y).
\end{array}$$

► A model is provided by the set of all finite or infinite streams of signed digits -1,0,1, i.e., the (non-unique) stream representation of real numbers.

A simultaneous inductive/coinductive definition (1/4)

- ▶ Example: formalization of an abstract theory of (uniformly) continuous real functions $f: \mathbb{I} \to \mathbb{I}$ where $\mathbb{I} := [-1, 1]$.
- Let Cf express that f is a continuous real function, and $\mathbb{I}_{p,k} := [p-2^{-k}, p+2^{-k}]$. Assume the abstract theory proves

$$Cf \to \forall_k \exists_l B_{l,k} f$$
, with $B_{l,k} f := \forall_p \exists_q (f[\mathbb{I}_{p,l}] \subseteq \mathbb{I}_{q,k})$.

Let $\mathbb{I}_{-1}:=[-1,0]$, $\mathbb{I}_0:=[-\frac{1}{2},\frac{1}{2}]$ and $\mathbb{I}_1:=[0,1]$. Define in_d , out_d such that $\operatorname{in}_d[\mathbb{I}]=\mathbb{I}_d$ and $\operatorname{out}_d[\mathbb{I}_d]=\mathbb{I}$ by

$$\operatorname{in}_d(x) := \frac{d+x}{2}, \quad \operatorname{out}_d(x) := 2x - d.$$

Both functions are inverse to each other.

A simultaneous inductive/coinductive definition (2/4)

▶ Inductively define a predicate Read(Y) (Y a parameter) by

$$egin{aligned} f[\mathbb{I}] \subseteq \mathbb{I}_d &
ightarrow Y(\operatorname{out}_d \circ f)
ightarrow \operatorname{Read}(Y)f \quad (d \in \{-1,0,1\}), \ (\operatorname{Read}(Y)(f \circ \operatorname{in}_d))_{d \in \{-1,0,1\}} &
ightarrow \operatorname{Read}(Y)f. \end{aligned}$$

The corresponding least-fixed-point axiom is

$$\operatorname{Read}(Y)f \to (\forall_f (f[\mathbb{I}] \subseteq \mathbb{I}_d \to Y(\operatorname{out}_d \circ f) \to Pf))_{d \in \{-1,0,1\}} \to \forall_f ((\operatorname{Read}(Y)(f \circ \operatorname{in}_d))_{d \in \{-1,0,1\}} \to (P(f \circ \operatorname{in}_d))_{d \in \{-1,0,1\}} \to Pf) \to Pf).$$

A simultaneous inductive/coinductive definition (3/4)

▶ Using Read(Y) we define a predicate Write inductively by

$$\operatorname{Write}(\lambda_x x),$$

 $\operatorname{Read}(\operatorname{Write})f \to \operatorname{Write}f.$

► As for every inductively defined predicate we have a corresponding coinductively defined one, written ^{co}Write:

$$^{\text{co}}$$
Write $f \to f = \lambda_x x \vee \text{Read}(^{\text{co}}\text{Write})f$.

Its greatest-fixed-point axiom is

$$Qf \to \forall_f (Qf \to f = \lambda_x x \vee \operatorname{Read}(^{\operatorname{co}}\operatorname{Write} \vee Q)f) \to ^{\operatorname{co}}\operatorname{Write} f.$$

A simultaneous inductive/coinductive definition (4/4)

▶ Consider a continuous function $f: \mathbb{I} \to \mathbb{I}$, and let

$$B'_{l,k}f := \forall_p \exists_q (f[\mathbb{I}_{p,l} \cap \mathbb{I}] \subseteq \mathbb{I}_{q,k}).$$

- ▶ Lemma. (a). $B'_{l,k}(\operatorname{out}_d \circ f) \to B'_{l,k+1}f$. (b). Assume $B'_{l_d,k+1}(f \circ \operatorname{in}_d)$ for all $d \in \{-1,0,1\}$. Then $B'_{l,k+1}f$ with $I := 1 + \max_{d \in \{-1,0,1\}} I_d$.
- ▶ Proposition. Assume $f[I] \subseteq I$. The following are equivalent.
 - ► Cf.
 - ightharpoonup coWrite f.
 - $\triangleright \forall_k \exists_l B'_{l,k} f$.
- ▶ This is interesting from a computational point of view.

Realizability interpretation

- ▶ Realizability interpretation $t \, \mathbf{r} \, A$ by terms $t \, \text{in } \mathrm{T}^+$.
- Soundness theorem.
- ▶ Decorations (\rightarrow^c , \forall^c and \rightarrow^{nc} , \forall^{nc}) for fine-tuning:

$$t \mathbf{r} (A \to^{c} B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B),$$

$$t \mathbf{r} (A \to^{nc} B) := \forall_{x} (x \mathbf{r} A \to t \mathbf{r} B),$$

$$t \mathbf{r} (\forall_{x}^{c} A) := \forall_{x} (tx \mathbf{r} A),$$

$$t \mathbf{r} (\forall_{x}^{nc} A) := \forall_{x} (t \mathbf{r} A).$$

Decorating the existential quantifier

 $ightharpoonup \exists_x A$ is inductively defined by the clause

$$\forall_x (A \to \exists_x A)$$

with least-fixed-point axiom

$$\exists_{\mathsf{X}} \mathsf{A} \to \forall_{\mathsf{X}} (\mathsf{A} \to \mathsf{P}) \to \mathsf{P}.$$

▶ Decorations lead to variants $\exists^d, \exists^l, \exists^r, \exists^u$ (d for "double", I for "left", r for "right" and u for "uniform").

$$\forall_{x}^{c}(A \to^{c} \exists_{x}^{d}A), \qquad \exists_{x}^{d}A \to^{c} \forall_{x}^{c}(A \to^{c} P) \to^{c} P,
\forall_{x}^{c}(A \to^{nc} \exists_{x}^{l}A), \qquad \exists_{x}^{l}A \to^{c} \forall_{x}^{c}(A \to^{nc} P) \to^{c} P,
\forall_{x}^{nc}(A \to^{c} \exists_{x}^{r}A), \qquad \exists_{x}^{r}A \to^{c} \forall_{x}^{nc}(A \to^{c} P) \to^{c} P,
\forall_{x}^{nc}(A \to^{nc} \exists_{x}^{u}A), \qquad \exists_{x}^{u}A \to^{nc} \forall_{x}^{nc}(A \to^{nc} P) \to^{c} P.$$

Computational content of coinductive definitions (1/3)

- ▶ Reconsider the example concerning "abstract" reals, having an unspecified type ρ .
- Assume the abstract theory proves that every real can be compared with a proper rational interval:

$$\forall_{x \in R; p, q \in Q}^{c} (p < q \rightarrow x \leq q \lor p \leq x).$$

Computational content of coinductive definitions (2/3)

▶ Coinductively define a predicate J of arity (ρ) by the clause

$$\forall_{x}^{\text{nc}}(Jx \to^{\text{c}} x = 0 \lor \exists_{y}^{\text{r}}(x = \frac{y-1}{2} \land Jy) \lor$$
$$\exists_{y}^{\text{r}}(x = \frac{y}{2} \land Jy) \lor$$
$$\exists_{y}^{\text{r}}(x = \frac{y+1}{2} \land Jy)).$$

▶ The greatest-fixed-point axiom for *J* is

$$\forall_{x}^{\text{nc}}(Px \to^{\text{c}} \forall_{x}^{\text{nc}}(Px \to^{\text{c}} x = 0 \lor \exists_{y}^{\text{r}}(x = \frac{y-1}{2} \land (J \lor P)y) \lor$$
$$\exists_{y}^{\text{r}}(x = \frac{y}{2} \land (J \lor P)y) \lor$$
$$\exists_{y}^{\text{r}}(x = \frac{y+1}{2} \land (J \lor P)y)) \to^{\text{c}} Jx).$$

Computational content of coinductive definitions (3/3)

- J's clause has the same form as the definition of cototality or T₁ for 1; in particular, its "associated algebras" are the same.
- ▶ The types of the clause and of the GFP axiom for *J* are

$$\iota \to \mathbf{U} + \iota + \iota + \iota, \qquad \tau \to (\tau \to \mathbf{U} + (\iota + \tau) + (\iota + \tau)) \to \iota,$$

respectively, with ι the algebra associated with this clause (which is I), and $\tau := \tau(Pr)$.

- ▶ The former is the type of the destructor for ι , and the latter is the type of the corecursion operator ${}^{co}\mathcal{R}^{\tau}_{\iota}$.
- Proposition. (a). $\forall_x^{\text{nc}}(Rx \to^{\text{c}} Jx)$. (b). $\forall_x^{\text{nc}}(Jx \to^{\text{c}} \forall_k^{\text{c}} B_k x)$ with $B_k x := \exists_q^{\text{l}}(x \in \mathbb{I}_{q,k})$, i.e., x can be approximated by a rational q with accuracy 2^{-k} .

Decorating inductive/coinductive definitions (1/3)

Decorate clauses and LFP axiom for Read(Y) as follows.

$$\begin{split} &\forall_f^{\mathrm{nc}}(f[\mathbb{I}] \subseteq \mathbb{I}_d \to Y(\mathrm{out}_d \circ f) \to^{\mathrm{c}} \mathrm{Read}(Y)f) \quad (d \in \{-1,0,1\}), \\ &\forall_f^{\mathrm{nc}}((\mathrm{Read}(Y)(f \circ \mathrm{in}_d))_{d \in \{-1,0,1\}} \to^{\mathrm{c}} \mathrm{Read}(Y)f). \\ &\forall_f^{\mathrm{nc}}(\mathrm{Read}(Y)f \to^{\mathrm{c}} \\ &\quad (\forall_f^{\mathrm{nc}}(f[\mathbb{I}] \subseteq \mathbb{I}_d \to Y(\mathrm{out}_d \circ f) \to^{\mathrm{c}} Pf))_{d \in \{-1,0,1\}} \to^{\mathrm{c}} \\ &\quad \forall_f^{\mathrm{nc}}((\mathrm{Read}(Y)(f \circ \mathrm{in}_d))_{d \in \{-1,0,1\}} \to^{\mathrm{c}} \\ &\quad (P(f \circ \mathrm{in}_d))_{d \in \{-1,0,1\}} \to^{\mathrm{c}} Pf) \to^{\mathrm{c}} \\ &\quad Pf). \end{split}$$

▶ The types are, for $\alpha := \tau(Yf)$ and $\tau_P := \tau(Pr)$

$$egin{aligned} lpha &
ightarrow \mathsf{R}(lpha), \ \mathsf{R}(lpha) &
ightarrow \mathsf{R}(lpha) &
ightarrow \mathsf{R}(lpha) &
ightarrow \mathsf{R}(lpha), \end{aligned}$$

Decorating inductive/coinductive definitions (2/3)

► The simultaneous inductive/coinductive definition of ^{co}Write is decorated by

$$\forall_f^{\text{nc}}(^{\text{co}}\text{Write }f\to^{\text{c}}f=\lambda_x x\vee \text{Read}(^{\text{co}}\text{Write})f)$$

and its greatest-fixed-point axiom by

$$\forall_f^{\rm nc}(Qf \to^{\rm c} \forall_f^{\rm nc}(Qf \to^{\rm c} f = \lambda_x x \vee {\rm Read}({}^{\rm co}{\rm Write} \vee Q)f) \to^{\rm c} {}^{\rm co}{\rm Write} f$$

▶ The types are, for $\tau_Q := \tau(Qs)$

$$\mathbf{W}
ightarrow \mathbf{U} + \mathbf{R}(\mathbf{W}),$$
 $au_{\mathcal{O}}
ightarrow (au_{\mathcal{O}}
ightarrow \mathbf{U} + \mathbf{R}(\mathbf{W} + au_{\mathcal{O}}))
ightarrow \mathbf{W}.$

Decorating inductive/coinductive definitions (3/3)

▶ Substituting α by **W** gives

$$\begin{split} \mathbf{W} &\rightarrow \mathbf{R}(\mathbf{W}), \\ \mathbf{R}(\mathbf{W}) &\rightarrow \mathbf{R}(\mathbf{W}) \rightarrow \mathbf{R}(\mathbf{W}) \rightarrow \mathbf{R}(\mathbf{W}), \\ \mathbf{R}(\mathbf{W}) &\rightarrow (\mathbf{W} \rightarrow \tau_P)^3 \rightarrow (\mathbf{R}(\mathbf{W})^3 \rightarrow \tau_P^3 \rightarrow \tau_P) \rightarrow \tau_P, \\ \mathbf{W} &\rightarrow \mathbf{U} + \mathbf{R}(\mathbf{W}), \\ \tau_Q &\rightarrow (\tau_Q \rightarrow \mathbf{U} + \mathbf{R}(\mathbf{W} + \tau_Q)) \rightarrow \mathbf{W}. \end{split}$$

These are the types of the first three constructors for $\mathbf{R}(\mathbf{W})$, the fourth constructor for $\mathbf{R}(\mathbf{W})$, the recursion operator $\mathcal{R}_{\mathbf{R}(\mathbf{W})}^{\tau_{P}}$, the destructor for \mathbf{W} and the corecursion operator ${}^{\mathrm{co}}\mathcal{R}_{\mathbf{M}}^{\tau_{Q}}$.

Conclusion

TCF (theory of computable functionals) as a possible foundation for exact real arithmetic.

- Simply typed theory, with "lazy" free algebras as base types (⇒ constructors are injective and have disjoint ranges).
- Variables range over partial continuous functionals.
- Constants denote computable functionals (:= r.e. ideals).
- Minimal logic (→, ∀), plus inductive & coinductive definitions.
- ▶ Computational content in abstract theories.
- ▶ Decorations (\rightarrow^c , \forall^c and \rightarrow^{nc} , \forall^{nc}) for fine-tuning.

References

- U. Berger, From coinductive proofs to exact real arithmetic.
 CSL 2009.
- ▶ U. Berger, K. Miyamoto, H.S. and M. Seisenberger, The interactive proof system Minlog. Calco-Tools 2011.
- U. Berger and M. Seisenberger, Proofs, programs, processes.
 CiE 2010.
- ► H.S., Realizability interpretation of proofs in constructive analysis. Theory of Computing Systems, 2008.
- ► H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Mathematical Logic, ASL & Cambridge UP. To appear, 2011.

