Invariance axioms for realizability

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

May 7, 2016

1/18

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

» Proposed to view a formula A as a computational problem, of
type 7(A), the type of a potential solution or “realizer” of A.

» Example: V3> ,Prime(m) has type N — N.

The fact that nested implications may occur in A requires the
concept of higher type computable functionals.

2/18

Computation in higher types

Fundamental property of computation:

evaluation must be finite.

» Principle of finite support. If H(®) is defined with value n,
then there is a finite approximation ®q of ® such that H(®g)
is defined with value n.

» Monotonicity principle. If H(®) is defined with value n and ¢’
extends ®, then also H(®') is defined with value n.

» Effectivity principle. An object is computable just in case its
set of finite approximations is (primitive) recursively
enumerable (or equivalently, ¥9-definable).

3/18

Gédel (1958): “Uber eine noch nicht beniitzte Erweiterung
des finiten Standpunkts”. Higher type term system T.

Platek (1966): “Foundations of recursion theory".

Scott (1969): LCF “Logic for Computable Functions”. LCF's
term language has arithmetic, booleans and recursion in
higher types. LCF is based on classical logic.

Plotkin (1977): Higher type term system PCF, with partiality.

Martin-Lof (1984): constructive type theory. Formulas are
types. Functionals are total.

Proposal here: a constructive theory of computation in higher
types, based on the Scott (1970) - Ershov (1977) model of
partial continuous functionals.

points, ideals, abstract objects

™

finite approximations

4/18

(Finitary) algebras viewed as “non-flat Scott information systems”.

» An algebra ¢ is given by its constructors.

» Example: ON, SN=N for N (unary natural numbers)

» Examples of “tokens”: S"0 (n > 0), S%+ (in N) (*: special
symbol; no information).

> A token is total if it contains no .

5/18

Flat or non flat algebras?

» Flat:
{o} {1} {2}
0

» Non flat:

6/18

Non flat!
» Continuous maps are monotone: x C y — fx C fy.
» Easy: every constructor gives rise to a continuous function.

» Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms: Sx # 0 and Sx = Sy — x = y).

» This holds for non-flat algebras, but not for flat ones. There
constructors must be strict (i.e., CX()y = (), hence

inP: $10=0=50 (overlapping ranges),
in D: CP{0} =0 = C{0}0 (not injective).

7/18

The Scott-Ershov model of partial continuous functionals.

» Let A =(A,Conp,a), B=(B,Cong,Fpg) be information
systems (Scott). Function space: A — B := (C, Con,), with

C :=Cong x B,

{(Ui, bi)}ies € Con := VJg/(U U; € Conp — {bj}jes € Cong),
jeJ
{(Ui, bi)}tier = (U, b) == ({bi | Uta Uj } Fg b).

» Partial continuous functionals of type p: the “ideals” in C,
(ideals are consistent and deductively closed sets of tokens).

C, = (A, Con,t,), C—o=C,—C,.
» f € |C,|: limit of formal neighborhoods U € Con,_,,.

» f € |C,| computable: r.e. limit.

8/18

TCF (theory of computable functionals), a variant of HA* with
variables ranging over arbitrary partial continuous functionals.

>

v

Existence axioms: by terms, built from constants for (partial)
computable functionals, given by defining equations
(computation rules, pattern matching conditions apply)

Inductively (and coinductively) defined predicates. Totality for
ground types inductively defined.

Induction := elimination (or least-fixed-point) axiom for a
totality predicate. (Coinduction := greatest-fixed-point axiom
for a coinductively defined predicate.)

Minimal logic: —,V only. =4 (Leibniz), 3, V, A inductively
defined (Russell, Martin-Lof).
1 := (False =9 True). Ex-falso-quodlibet: 1 — A provable.

9/18

Definition (a € [AxM])
Case Az, zM with X free in M, but not y.

—

(0, W, a) € Dz
(U,V,W,a) € [\sy.zM]

Case A\zyM with X the free variables in M.

(K).

Ut a (U,V,a) € [)sM] (U, V) C [»sN]

W e Goocbemyy

For every constructor C and defined constant D:

Ut a* () (V,a) e [\:sM] UF P(V)
(U,ca*)e[C] (U,a) € [D]

(D)7

with one rule (D) for every defining equation DP(X) = M.

10/ 18

Predicates and formulas
P,Qu=X[{X[A}| ux(Vz((Ai)v<n, — XTi))i<k
A B:=Pr|A— B|V/A

Examples

Total = pux(XO0,V,(Xn — X(Sn)))
Exy = pux(Vx(Yx — X))
Ory z :=pux(Y = X, Z = X)

11/18

Define 7(C) for predicates and formulas C. Given X — &.

T(X):=¢
T{X|A}) =7(A)
T(px (Y, (Ai = XB))ick) = pe(r(%:) = 7(A7) — €)ick

12/18

Examples of ¢;. Recall

Total = pux(XO0,V,(Xn — X(Sn)))
Exy = pux(Vx(Yx — X))
Ory7z = ,ux(Y — X, Z— X)

Then

LTotal algebra with constructors O: tpotal, C: N — trotal = tTotal
LExy =px(
LOry z =(+ n

13/18

Realizability. Given X: () — X": (7(X), 7).

X" := as given
{VYIAY ={xy|xrA}
I" = 15 (g, 2 (Xiv ¥ Aiv)u<n; — CiyiXi v X7:))ick
for I := px(Vy,((Aiv)v<n — XT7i))i<k

xr Pr:= P'xr

xr(A—=B)=VY,(yrA—=xyrB)
xrVY, A=V, (xyrA)

14 /18

Examples. Recall

Total := pux(X0,V,(Xn — X(5n))),

LTotal With constructors O: trotal, C: N = tTotal = (Total
Then

Total" := pi: (O r X0,V «(x r Xn — C(n, x) r X(5n))).
With xg := O, xp+1 := C(n, x,) we have

x, r Total n

1518

Recall

Exy = pux(V,(Yy — X))
Ory’z = ,uX(Y — X, Z — X)

Then

ExVe = puxi(Vyx(xr Yy = (v, x) r X)),
Orye 7o := pxe(Vy(y r Y — Inl(y) r X), V(2 r Z — Inr(z) r X)).

16 /18

v

v

v

v

Add p"°-clause in the definition of predicates.
Witnesses in p"°-predicates ignored: they are already there.

Add axioms:
A+ Iu(xr A (invariance under realizability)

Then (Troelstra): AC, IP derivable. Realizers are identities.

Soundness theorem:

MHEA implies Fet(M)rA.

17/18

v

v

v

v

v

v

v

Decoration (for fine tuning): V"¢, —"¢ X1¢ e
Correct proof: ignore "°-decorations in n.c. subproofs
A — A" (in final conclusion g, X — u™¢, X")
Variants of 4, V etc., e.g.

ExLy = ux(Vx(Yx =" X))
OrU = pux(Y =" X, Z =" X)
OrNC := pux (Y =" X, Z =" X)

Properties of r for 3' etc., e.g. (x r 3L A) <+ A"®
F (A =" B)+ (A" — B)

Decoration algorithm

1818

