
Invariance axioms for realizability

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

May 7, 2016

1 / 18

Kolmogorov 1932: “Zur Deutung der intuitionistischen Logik”

I Proposed to view a formula A as a computational problem, of
type τ(A), the type of a potential solution or “realizer” of A.

I Example: ∀n∃m>nPrime(m) has type N→ N.

The fact that nested implications may occur in A requires the
concept of higher type computable functionals.

2 / 18

Computation in higher types

Fundamental property of computation:

evaluation must be finite.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable just in case its
set of finite approximations is (primitive) recursively
enumerable (or equivalently, Σ0

1-definable).

3 / 18

I Gödel (1958): “Über eine noch nicht benützte Erweiterung
des finiten Standpunkts”. Higher type term system T .

I Platek (1966): “Foundations of recursion theory”.

I Scott (1969): LCF “Logic for Computable Functions”. LCF’s
term language has arithmetic, booleans and recursion in
higher types. LCF is based on classical logic.

I Plotkin (1977): Higher type term system PCF, with partiality.

I Martin-Löf (1984): constructive type theory. Formulas are
types. Functionals are total.

I Proposal here: a constructive theory of computation in higher
types, based on the Scott (1970) - Ershov (1977) model of
partial continuous functionals.

points, ideals, abstract objects

↑↓
finite approximations

4 / 18

(Finitary) algebras viewed as “non-flat Scott information systems”.

I An algebra ι is given by its constructors.

I Example: 0N,SN→N for N (unary natural numbers)

I Examples of “tokens”: Sn0 (n ≥ 0), S2∗ (in N) (∗: special
symbol; no information).

I A token is total if it contains no ∗.

5 / 18

Flat or non flat algebras?

I Flat:

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .

I Non flat:

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

6 / 18

Non flat!

I Continuous maps are monotone: x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms: Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones. There
constructors must be strict (i.e., C~x∅~y = ∅), hence

in P: S1∅ = ∅ = S2∅ (overlapping ranges),

in D: C∅{0} = ∅ = C{0}∅ (not injective).

7 / 18

The Scott-Ershov model of partial continuous functionals.

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A→ B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` (U, b) := ({ bi | U `A Ui } `B b).

I Partial continuous functionals of type ρ: the “ideals” in Cρ
(ideals are consistent and deductively closed sets of tokens).

Cι := (Aι,Conι,`ι), Cρ→σ := Cρ → Cσ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

8 / 18

TCF (theory of computable functionals), a variant of HAω with
variables ranging over arbitrary partial continuous functionals.

I Existence axioms: by terms, built from constants for (partial)
computable functionals, given by defining equations
(computation rules, pattern matching conditions apply)

I Inductively (and coinductively) defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate. (Coinduction := greatest-fixed-point axiom
for a coinductively defined predicate.)

I Minimal logic: →,∀ only. =d (Leibniz), ∃, ∨, ∧ inductively
defined (Russell, Martin-Löf).

I ⊥ := (False =d True). Ex-falso-quodlibet: ⊥ → A provable.

9 / 18

Definition (a ∈ [[λ~xM]])

Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

10 / 18

Predicates and formulas

P,Q ::= X | {~x | A } | µX (∀~xi ((Aiν)ν<ni → X~ri))i<k

A,B ::= P~r | A→ B | ∀xA

Examples

Total := µX (X0, ∀n(Xn→ X (Sn)))

ExY := µX (∀x(Yx → X))

OrY ,Z := µX (Y → X , Z → X)

11 / 18

Define τ(C) for predicates and formulas C . Given X 7→ ξ.

τ(X) := ξ

τ({~x | A }) := τ(A)

τ(µX (∀~xi (~Ai → X~ri))i<k︸ ︷︷ ︸
I

) := µξ(τ(~xi)→ τ(~Ai)→ ξ)i<k︸ ︷︷ ︸
ιI

ιI is the algebra associated with I .

τ(P~r) := τ(P)

τ(A→ B) := (τ(A)→ τ(B))

τ(∀xρA) := (ρ→ τ(A))

12 / 18

Examples of ιI . Recall

Total := µX (X0, ∀n(Xn→ X (Sn)))

ExY := µX (∀x(Yx → X))

OrY ,Z := µX (Y → X , Z → X)

Then

ιTotal algebra with constructors O : ιTotal, C : N→ ιTotal → ιTotal

ιExY := ρ× ζ
ιOrY ,Z := ζ + η

13 / 18

Realizability. Given X : (~ρ) 7→ X r : (τ(X), ~ρ).

X r := as given

{~y | A }r := { x , ~y | x r A }
I r := µncX r(∀~yi ,~xi ((xiν r Aiν)ν<ni → Ci~yi~xi r X~ri))i<k

for I := µX (∀~yi ((Aiν)ν<ni → X~ri))i<k

x r P~r := P rx~r

x r (A→ B) := ∀y (y r A→ xy r B)

x r ∀yA := ∀y (xy r A)

14 / 18

Examples. Recall

Total := µX (X0,∀n(Xn→ X (Sn))),

ιTotal with constructors O : ιTotal, C : N→ ιTotal → ιTotal

Then

Totalr := µncX r(O r X0,∀n,x(x r Xn→ C(n, x) r X (Sn))).

With x0 := O, xn+1 := C(n, xn) we have

xn r Total n

15 / 18

Recall

ExY := µX (∀y (Yy → X))

OrY ,Z := µX (Y → X , Z → X)

Then

ExrY r := µncX r(∀y ,x(x r Yy → (y , x) r X)),

OrrY r,Z r := µncX r(∀y (y r Y → Inl(y) r X), ∀z(z r Z → Inr(z) r X)).

16 / 18

I Add µnc-clause in the definition of predicates.

I Witnesses in µnc-predicates ignored: they are already there.

I Add axioms:

A↔ ∃x(x r A) (invariance under realizability)

I Then (Troelstra): AC, IP derivable. Realizers are identities.

I Soundness theorem:

M ` A implies ` et(M) r A.

17 / 18

I Decoration (for fine tuning): ∀nc,→nc,X nc, µnc

I Correct proof: ignore nc-decorations in n.c. subproofs

I A 7→ Anc (in final conclusion µ,X 7→ µnc,X nc)

I Variants of ∃, ∨ etc., e.g.

ExLY := µX (∀x(Yx →nc X))

OrU := µX (Y →nc X , Z →nc X)

OrNC := µncX (Y →nc X , Z →nc X)

I Properties of r for ∃l etc., e.g. (x r ∃lxA)↔ Anc

I ` (A→nc B)↔ (Anc → B)

I Decoration algorithm

18 / 18

